Elek­tro­tech­nik News

Re­kord in der Si­gna­le­r­fas­sung: For­schungs­grup­pe ent­wi­ckelt welt­weit prä­zi­ses­te und schnells­te Schal­tung

 |  EIM-NachrichtenEI-Nachrichten

Daten zu übertragen und miteinander zu vernetzen sind zentrale Prozesse in Zeiten des digitalen Wandels. Dabei lassen immer größer werdende Datenmengen die Anforderungen an Sender- und Empfangsgeräte steigen. Um eine schnellere Übertragungsgeschwindigkeit über größere Entfernungen hinweg zu erzielen, setzt die Photonik auf Lichtsignale anstelle von Elektronen und Leitungen. Auf Basis dieser Methode haben Wissenschaftler*innen aus Paderborn, Aachen, Karlsruhe und Hamburg die weltweit präziseste und schnellste sogenannte „Abtasthalteschaltung“ entwickelt. Damit ebnen sie den Weg für einen zukünftigen Einsatz dieser Technologie auch in besonders anspruchsvollen Arbeits- und Forschungsbereichen.

Die Deutsche Forschungsgemeinschaft (DFG) fördert das 2019 gestartete Projekt „Ultrabreitbandiger Photonisch-Elektronischer Analog-Digital-Wandler“ (PACE) im Rahmen des Schwerpunktprogramms „Integrierte Elektronisch-Photonische Systeme für die Ultrabreitbandige Signalverarbeitung“ (SPP 2111) mit rund 2,9 Millionen Euro. Beteiligt sind Wissenschaftler um Prof. Dr.-Ing. Christoph Scheytt vom Institut für Elektrotechnik und des Heinz Nixdorf Instituts der Universität Paderborn sowie Forschende der RWTH Aachen, des Karlsruher Instituts für Technologie und der Universität Hamburg. Kürzlich wurde die Förderung um drei Jahre bis 2024 verlängert.

Leistungsstarke und energieeffiziente Datenübertragung
 

Bei der photonischen Datenübertragung werden Informationen durch optische Signale von einem Sender zu einem Empfänger übermittelt. Dort angekommen wird das Signal, also das Licht bzw. seine unterschiedlichen Farben, in Form einer physikalischen Größe (Intensität) gemessen. Komplexe Schaltkreise stellen die Verbindungen zwischen Sender und Empfänger her. Schnelle Schaltungen für die Signalerfassung können demnach nur entwickelt werden, wenn auch Messgeräte mit einer besonders hohen Präzision existieren. Wie die Wissenschaftler*innen des „PACE“-Projekts jetzt erforscht haben, ist das durch den Einsatz von Photonik in Kombination mit bereits erprobten Halbleitertechnologien auf Siliziumbasis möglich.

Neben der gestiegenen Leistung bringt die Silizium-Photonik weitere Vorteile mit sich. „Lichtbasierte elektronische Systeme können durch den deutlich geringeren Energieverbrauch bei der Datenübertragung die Belastung von Umwelt und Klima reduzieren. Außerdem ermöglichen die Schaltungen auch Hardware-Lösungen für ganz neue Anwendungen, zum Beispiel in der Medizintechnik oder für autonome Fahrzeuge“, erläutert Maxim Weizel, wissenschaftlicher Mitarbeiter der Fachgruppe „Schaltungstechnik“ des Paderborner Heinz Nixdorf Instituts unter der Leitung von Scheytt.

Zweite Projektphase zielt auf Gesamtsystem ab
 

Nachdem die Forschungsgruppe in der ersten Projektphase von 2019 bis 2021 vorrangig daran gearbeitet hat, verschiedene Komponenten zu entwickeln, soll in der zweiten Förderphase von 2022 bis 2024 der Fokus darauf liegen, die Einzelteile in ein kompaktes Gesamtsystem zu integrieren. Ziel der Wissenschaftler*innen ist es, Signale mit einer Bandbreite von bis zu 400 Gigahertz erfassen zu können und somit den Forschungsstand in der extrem präzisen Signalerfassung voranzubringen.

Innerhalb des von der Universität Paderborn koordinierten SPP 2111 decken insgesamt elf Projekte verschiedene Forschungsfelder rund um die elektronisch-photonische Signalverarbeitung ab. Die Teams wollen Schaltungen erforschen, entsprechende Algorithmen entwickeln und damit auch den Forschungsschwerpunkt der integrierten Photonik und der Bauelementephysik hin zu einer Schaltungs- und Systemperspektive verlagern.

(Foto: Heinz Nixdorf Institut): Messaufbau: In eine Silizium-Photonik-Technologie integrierte, hochpräzise, optisch getaktete Schaltung.

Kontakt