Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen

Microgrid Laboratory

Microgrid Laboratory

The research project is funded and supported by the European Regional Development Fund within the framework of the Northrhine-Westphalian initiative 'Forschungsinfrastrukturen'

Project acronym: μG-Lab
Funding period: 04/2019 - 03/2023
Project budget: 3,741,687.50 €
Project funding: 3,367,518.75 €
Project manager: PTJ

Motivation

Today's energy supply system is characterized by networked, geographically distributed structures that must meet the highest safety and reliability standards. The transformation of this system to a sustainable structure characterized by renewable energies is a central social challenge of the 21st century. The inherent volatility of renewable energy sources requires a shift away from hierarchically structured top-down energy networks towards flexible, cross-sectoral and intelligent energy systems using a cellular approach. Therefore, in the course of the energy turnaround, so-called microgrids represent an important solution component to ensure a secure, clean, efficient and cost-effective energy supply in the future. The term microgrid is used to describe the concept of a local grid, which consists of energy sources, storage facilities and consumers in different sectors, and which operates with or without external grid connection. This structure creates a wide range of options for increasing flexibility in operation. The local integration of renewable energies by means of microgrids, for example within industrial companies or residential areas, relieves the distribution and transmission grids and reduces the need for cost- and resource-intensive grid expansion. The efficiency of the energy supply is also increased, as loss-intensive transport over long distances is avoided and energy is increasingly generated and consumed locally. Through local storage integration, microgrids can also provide grid services within the primary, secondary and tertiary control systems and even operate autonomously as so-called island grids in emergencies. These grid-stabilising measures can be strengthened if geographically neighbouring microgrids are coupled to form virtual power plants or large storage facilities. The potentials of microgrids have so far been investigated worldwide primarily academically. However, the industrial implementation is subject to high technical and financial risks. For successful transfer to industry, however, both extensive practical studies and the upgrading of microgrid components (e.g. power-to-x technologies) for field use are essential.

The Competence Center for Sustainable Energy Technology (KET) at the University of Paderborn, under the leadership of the Department of Power Electronics and Electrical Drive Technology (LEA), is developing the infrastructure with which the behavior of e.g. battery storage systems, wind turbines, photovoltaic systems or combined heat and power plants can be simulated in the laboratory. With the Microgrid laboratory in Paderborn, a platform for future research and development projects will be created to test and verify new innovative concepts under realistic conditions. This will also strengthen the competitive position of the domestic economy.

Objectives

Microgrids are intended to guarantee renewable energy production in the future. Microgrids are local networks consisting of energy sources, storage facilities and consumers in various sectors. Their advantages: The energy consumption share of renewable energy can be increased and the peak power required at the grid connection point can be reduced. Transports over long distances, which otherwise involve losses, are reduced, thus increasing the efficiency of the energy supply. In addition, distribution and transmission networks are relieved due to the local structure, which reduces the need to expand cost- and resource-intensive networks. Possible areas of application for microgrids are industrial companies or residential areas.

This project includes the procurement of the necessary hardware to build a microgrid emulator. Core components are universal converters that act as network nodes and are controlled by a freely configurable and high-performance rapid control prototyping system from dSPACE.

For later research on the emulator, it is also necessary to purchase measuring equipment and modular circuitry. The latter allows any network configuration up to the megawatt range to be displayed via a busbar system. In addition, the premises intended for the emulator must be technically adapted and the connection to the public power grid must be extended.

The investment project is completed by the research and development project for modelling and implementing microgrid components for upgrading the emulator, which was submitted as part of the same application.

In combination with control and component modelling, the Microgrid laboratory offers a highly flexible and modular development and validation platform on which a wide range of questions on local grids can be investigated and solutions developed.

All project updates and event information (in German) can be found on LinkedIn.

 

Contact:

Dr.-Ing. Karl Stephan Stille

Kontakt
Publikationen
Dr.-Ing. Karl Stephan  Stille

Leistungselektronik und Elektrische Antriebstechnik (LEA)

Wissenschaftlicher Mitarbeiter - Microgrid-Labor & Energiemanagement im SmartGrid

Telefon:
+49 5251 60-3970
Fax:
+49 5251 60-3443
Büro:
E4.324
Web:
Besucher:
Pohlweg 55
33098 Paderborn

Liste im Research Information System öffnen

2022


2020

Emulation of Microgrids for Research and Validation of Control and Operation Strategies

K.S.C. Stille, D. Weber, J. Lange, T. Vogt, O. Wallscheid, J. Böcker, in: 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, 2020

DOI


2018

Energy Management for a Nano-CHP Unit and an Electrical Storage System in a Residential Application

D. Weber, K.S.C. Stille, O. Wallscheid, J. Böcker, in: 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), IEEE, 2018

DOI


Energiemanagement von Haushaltsgroßgeräten

K.S.C. Stille, Springer Berlin Heidelberg, 2018

DOI


2016

Local demand response and load planning system for intelligent domestic appliances

K.S.C. Stille, J. Böcker, in: 2015 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2016

DOI


Integration of home photovoltaic generation into electricity tariff for load optimization

K.S.C. Stille, J. Böcker, N. Fröhleke, R. Bettentrup, I. Kaiser, in: 2016 4th International Istanbul Smart Grid Congress and Fair (ICSG), IEEE, 2016

DOI


Local grid load coordination for load-shiftable domestic appliances in a variable-tariff environment

K.S.C. Stille, J. Böcker, N. Fröhleke, R. Bettentrup, I. Kaiser, in: 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), IEEE, 2016

DOI


Supervisional load optimization for households with intelligent domestic appliances

K.S.C. Stille, J. Böcker, N. Fröhleke, R. Bettentrup, I. Kaiser, in: 2016 10th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), IEEE, 2016

DOI


2015

Concept for a hierarchical load control for domestic appliances in smart grids

K.S.C. Stille, J. Böcker, R. Bettentrup, I. Kaiser, in: 2014 International Conference on Advances in Green Energy (ICAGE), IEEE, 2015

DOI


Hierarchisches Optimierungskonzept für die Laststeuerung von Haushaltsgeräten

K.S.C. Stille, J. Böcker, R. Bettentrup, I. Kaiser, in: ETG-Fachtagung "Von Smart Grids zu Smart Markets", VDE, 2015

Haushaltsgeräte aus der Klasse der "Weißen Ware" tragen mit etwa einem Drittel ($34,2%$ \citeBDEW2013) zum privaten Energieverbrauch bei. Diese Veröffentlichung präsentiert eine Struktur und die dafür notwendige optimale Betriebsstrategie für Weiße Ware in einer Umgebung mit Strompreisen, die wegen der Volatilität der Regenerativen Energien stark fluktuieren. Das vorgeschlagene Konzept nutzt dafür ein dezentrales Energiemanagementsystem, das über drei Hierarchieebenen verteilt ist: die Geräteebene, die Haushaltsebene und die Ortsnetzebene. Auf der Geräteebene nutzt dieses Konzept zusätzlich Betriebsflexibilitäten der Haushaltsgeräte aus.


2013

Konzipierung eines selbstoptimierenden hybriden Energiespeichersystems unter besonderer Berücksichtigung der Verlässlichkeit

J. Gausemeier, P. Iwanek, R. Dorociak, K.S.C. Stille, J. Böcker, in: Wissenschaftsforum Intelligente Technische Systeme, 9. Paderborner Workshop Entwurf mechatronischer Systeme, 2013

Die absehbare Entwicklung der Informations- und Kommunikationstechnik wird mechatronische Systeme mit inhärenter Teilintelligenz ermöglichen. Hierfür verwenden wir den Begriff Selbstoptimierung (S.O.). Selbstoptimierende (s.o.) Systeme reagieren autonom und flexibel auf sich ändernde Umfeldbedingungen [ADG+09]. Die Entwicklung derartiger Systeme erfordert eine enge Zusammenarbeit der Entwickler der beteiligten Domänen Mechanik, Elektrik/Elektronik, Regelungstechnik und Softwaretechnik. In diesem Beitrag wird erklärt, wie die Steigerung der Verlässlichkeit durch S.O. bei der Konzipierung eines s.o. Systems adäquat berücksichtigt wird. Die Konzipierung des hybriden Energiespeichersystems des innovativen Schienenfahrzeugs RailCab wird retrospektive durchgeführt. Dies erfolgt von der ersten Funktionsdefinition über die Lösungsauswahl und die dazugehörige Nutzwertanalyse bis hin zur Produktkonzeption des Energiespeichersystems. Es wird gezeigt, wie die Schwachstellen und Widersprüche eines technischen Systems identifiziert sowie mit Hilfe geeigneter Gegenmaßnahmen behoben werden können. Hierbei soll insbesondere die Integration der S.O. als Möglichkeit zur Behebung der Schwachstellen betrachtet werden. Somit wird gezeigt wann und wie die Entscheidung über die s.o. Auslegung des Systems getroffen und die Steigerung der Verlässlichkeit dabei ins Kalkül gezogen wird.


Selbstoptimierung in der Anwendung

J. Böcker, O. Buchholz, C. Romaus, C. Schulte, K.S.C. Stille, in: Wissenschaftsforum Intelligente Technische Systeme, 9. Paderborner Workshop Entwurf mechatronischer Systeme, 2013

Die absehbare Entwicklung der Informations- und Kommunikationstechnik wird mechatronische Systeme mit inhärenter Teilintelligenz ermöglichen. Hierfür verwenden wir den Begriff Selbstoptimierung (S.O.). Selbstoptimierende (s.o.) Systeme reagieren autonom und flexibel auf sich ändernde Umfeldbedingungen [ADG+09]. Die Entwicklung derartiger Systeme erfordert eine enge Zusammenarbeit der Entwickler der beteiligten Domänen Mechanik, Elektrik/Elektronik, Regelungstechnik und Softwaretechnik. In diesem Beitrag wird erklärt, wie die Steigerung der Verlässlichkeit durch S.O. bei der Konzipierung eines s.o. Systems adäquat berücksichtigt wird. Die Konzipierung des hybriden Energiespeichersystems des innovativen Schienenfahrzeugs RailCab wird retrospektive durchgeführt. Dies erfolgt von der ersten Funktionsdefinition über die Lösungsauswahl und die dazugehörige Nutzwertanalyse bis hin zur Produktkonzeption des Energiespeichersystems. Es wird gezeigt, wie die Schwachstellen und Widersprüche eines technischen Systems identifiziert sowie mit Hilfe geeigneter Gegenmaßnahmen behoben werden können. Hierbei soll insbesondere die Integration der S.O. als Möglichkeit zur Behebung der Schwachstellen betrachtet werden. Somit wird gezeigt wann und wie die Entscheidung über die s.o. Auslegung des Systems getroffen und die Steigerung der Verlässlichkeit dabei ins Kalkül gezogen wird.


Crosslinked Test Benches

K.S.C. Stille, J. Böcker, in: Design Methodology for Intelligent Technical Systems, Springer, 2013, pp. 46-49


Online capable optimized planning of power split in a hybrid energy storage system

K.S.C. Stille, C. Romaus, J. Böcker, in: Eurocon 2013, IEEE, 2013

DOI


Self-optimization energy management considering stochastic influences for a hybrid energy storage of an electric road vehicle

C. Romaus, D. Wimmelbücker, K.S.C. Stille, J. Böcker, in: 2013 International Electric Machines & Drives Conference, IEEE, 2013

DOI


Hybrid Energy Storage System (HES)

K.S.C. Stille, C. Romaus, J. Böcker, in: Design Methodology for Intelligent Technical Systems, Springer, 2013, pp. 42-46


2011

Modellbasierte Konzipierung eines hybriden Energiespeichersystems für ein autonomes Schienenfahrzeug

J. Gausemeier, R. Dumitrescu, C. Tschirner, K.S.C. Stille, in: Tag des Systems Engineering, 2011

Die Kommunikations- und Informationstechnik eröffnet neue Möglichkeiten zur Erweiterung und Optimierung der Systemfunktionalität mechatronischer Systeme. Die erfolgreiche Entwicklung dieser fortgeschrittenen mechatronischen Systeme bedarf sowohl einer besonderen Strukturierung der Informationsverarbeitung als auch einer geeigneten modellbasierten Entwurfstechnik. SysML und CONSENS eignen sich für den Entwurf derartiger Systeme. Die Anwendung von CONSENS wird anhand eines Demonstrators vertieft.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft