Teil­nahme an der VDE-Kon­fer­enz „Sensoren und Messsysteme 2018“

Vom 26.06. bis zum 27.06.2018 war das Fachgebiet Elektrische Messtechnik mit drei Teilnehmern auf der "Sensoren und Messsysteme 2018", dem bedeutendsten nationalen Ereignis auf dem Gebiet der Mess- und Sensortechnik, in Nürnberg vertreten.

Frau Sarah Johannesmann berichtete in ihrem Vortrag über die "Acoustic material characterization of prestressed, plate-shaped specimens", während Herr Christian Thiel ein Poster über die "Extraction of Interpretable Features from Temporal Measurements using Approximate Prototypes" vorstellte, die zur Optimierung eines Produktionsprozesses dienen.

Neben der Teilnahme an der Konferenz wurde auch die gleichzeitig stattfindende Messe "Sensor+Test" besucht.

Abstracts:


Acoustic material characterization of prestressed, plate-shaped specimens

For a realistic FEM-Simulation of mechanical systems, an accurate knowledge of the material parameters is necessary. Depending on the simulated component, high stresses might need to be considered. They can change the effective material parameters because of the nonlinear strain-stress relation which is normally assumed to be linear by Hook’s law. These parameter changes caused by the high stresses will be quantified by material characterization while a uniaxial tensile force is applied.

Extraction of Interpretable Features from Temporal Measurements using Approximate Prototypes

Measured data in the manufacturing industry becomes increasingly diverse. To capture every detail in the production process, sensors provide locally and temporally resolved measurements, thus producing time series like data. In order to make this data usable, a feature extraction is mandatory. In this work, we firstly discuss time series clustering and prototype generation in the context of real world data from a tube production process. Secondly, we present a method to convert the distances between time series and the previously calculated prototypes to meaningful similarities. This enables us to infer process knowledge of domain experts to unseen data.