Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Modellbasierte Bestimmung nichtlinearer Eigenschaften von Piezokeramiken für Leistungsschallanwendungen

DFG Projektnummer:

444955436, FOR 5208

Kurzfassung:

Ultraschallsensoren und -aktoren finden heute vielfältige Anwendungen in Wissenschaft und Technik. Auch beim Design und bei der Optimierung dieser Komponenten setzt man zunehmend auf den Einsatz von Computertechnik. Als eines der größten Probleme erweist sich dabei die  ungenügende Kenntnis der akustischen bzw. elektromechanischen Materialeigenschaften der piezoelektrischen Werkstoffe bzw. der gefertigten piezoelektrischen Bauelemente. Nach gegenwärtigem Stand der Technik werden diese Materialeigenschaften für eine Werkstoffprobe anhand mehrerer, unterschiedlich prozessierter Materialproben bestimmt, was zur Folge hat, dass der Materialparametersatz inkonsistent ist.

Insbesondere gilt dies für die Charakterisierung von piezokeramischen Werkstoffen im höheren Leistungsbereich, zum Beispiel bei Leistungsschallanwendungen, bei denen die nichtlinearen Eigenschaften der Werkstoffe beim Designprozess mit berücksichtigt werden müssen. Auch die dissipativen Eigenschaften piezoelektrischer Materialien (infolge Dämpfung) sind in die Betrachtungen miteinzubeziehen.

Für dieses Forschungsvorhaben ergeben sich folgende wesentliche Zielstellungen: Es sind Messverfahren und Messsysteme zur ganzheitlichen Charakterisierung des thermopiezoelektrischen Materialverhaltens piezokeramischer Werkstoffe zu entwickeln. Komplettiert durch angepasste, strukturausnutzende Optimierungsmethoden soll die Bestimmung vollständiger und konsistenter Materialparametersätze erfolgen. Messverfahren und Messsystem sollen dabei die messtechnische Bestimmung der Materialparameter an einer einzelnen Piezokeramik-Probe applikationstypischer Geometrie gewährleisten.

Hierzu ist es wichtig, geeignete Materialmodelle zu entwickeln, die insbesondere die nichtlinearen Materialeigenschaften mathematisch hinreichend gut beschreiben. Darüber hinaus müssen diese Materialmodelle (hinsichtlich der nichtlinearen Materialeigenschaften) geeignet sein, um in eine im Rahmen dieses Vorhabens zu entwickelnde Simulationsumgebung auf Basis der transienten Discontinuous-Galerkin-Methode effizient implementiert werden zu können.

Abgrenzend sei darauf hingewiesen, dass die Charakterisierung nicht auf einer atomistischen, mikroskaligen Ebene erfolgen soll, sondern auf eine makroskopisch orientierte, kontinuumsphysikalische Beschreibung des Verhaltens piezoelektrischer Keramiken zielt.

Da in Zukunft ein Verbot zum Einsatz bleihaltiger Piezokeramiken zu erwarten ist, wird die Bereitstellung einer neuen ganzheitlichen Charakterisierungsmethodik für piezokeramische Werkstoffe und die Schaffung einer performanten Simulationsumgebung die Substitution durch bleifreie piezoelektrische Materialien unterstützen, wovon insbesondere kleinere und mittlere Unternehmen profitieren werden. Darüber hinaus ist zu erwarten, dass diese Charakterisierungsmethodik indirekt auch die Entwicklung neuer hocheffizienter piezoelektrischer Materialien als auch die Verbesserung der Herstellungsprozesse positiv beeinflussen wird.

Kooperationspartner:

Prof. Dr. rer. nat. Jens Förstner (Theoretische Elektrotechnik, Universität Paderborn)
Dr.-Ing. Tobias Hemsel (Lehrstuhl für Dynamik und Mechatronik, Universität Paderborn)
Dr. rer. nat. Benjamin Henry Jurgelucks (Mathematische Optimierung, Humboldt-Universität zu Berlin)
Prof. Dr. rer. nat. Andrea Walther (Mathematische Optimierung, Humboldt-Universität zu Berlin)
Prof. Dr. rer. nat. Michael Winkler (Arbeitsgruppe Partielle Differentialgleichungen, Universität Paderborn)

Projektlaufzeit:

2022 bis 2026

Projektbezogene Publikationen


Liste im Research Information System öffnen


Arbitrary sensitivity for inverse problems in piezoelectricity

B. Jurgelucks, V. Schulze, N. Feldmann, L. Claes, 2019


Inverse piezoelectric material parameter characterization using a single disc-shaped specimen

N. Feldmann, V. Schulze, L. Claes, B. Jurgelucks, A. Walther, B. Henning, tm - Technisches Messen (2020), pp. 50-55

The increasingly simulation-driven design process of ultrasonic transducers requires several reliable parameters for the description of the material behaviour. Exact results can only be achieved when a single specimen is used in the identification process, which typically is prone to the problem of low sensitivities to certain material parameters and thus high uncertainties. Therefore, a custom electrode topology for increased sensitivity is proposed for a piezoceramic disc. The thereupon conducted measurements of the electric impedance can be used as a starting point for an inverse approach where an equivalent simulation model is used to identify fitting material parameters. An optimisation strategy based on a preliminary sensitivity analysis is presented that leads to a good agreement between measurement and simulation. Furthermore, the proposed measurement procedure is able to evaluate the quality of the simulation model. Hence, different frequency-dependent damping models are presented and evaluated.


Ein modellbasiertes Messverfahren zur Charakterisierung von Piezokeramiken unter Verwendung eines einzelnen scheibenförmigen Probekörper

N. Feldmann, Universität Paderborn, 2021

Designprozesse von Schallwandlern werden durch zunehmende Rechenkapazitäten immer mehr durch simulative Betrachtungen unterstützt. Dabei ist vor allem die Wahl der Materialparameter der verwendeten Materialien wichtig für ein realitätsnahes Simulationsergebnis. Bei Schallwandlern werden häufig Piezokeramiken als aktive Elemente genutzt, welche sich durch eine Verkopplung mechanischer und elektrischer Eigenschaften auszeichnen. Zur Bestimmung ihrer Materialparameter stellt der IEEE Standard on Piezoelectricity ein standardisiertes Verfahren dar. Dazu sind fünf Impedanzmessungen an vier unterschiedlich gefertigten Probekörpergeometrien notwendig. Da an jedem einzelnen Probekörper nur eine Untermenge aller notwendigen Materialparameter bestimmt werden kann, werden diese dann zu einem kompletten Materialparametersatz zusammengefügt. Aufgrund der unterschiedlichen Prozessbedingungen, bei denen die jeweiligen Probekörper hergestellt werden, ist dieser Materialparametersatz jedoch inkonsistent und kann nie das Verhalten einer einzelnen Probe beschreiben. Daher wird in der vorliegenden Arbeit ein Messverfahren entwickelt, mit dem es möglich ist, alle relevanten Materialparameter unter besonderer Berücksichtigung von Dämpfung an einem einzelnen Probekörper allein durch Impedanzmessungen zu bestimmen. Als Probekörper wird dazu eine in der Anwendung häufig verwendete Scheibengeometrie verwendet. Um eine hinreichend hohe Sensitivität auf alle Materialparameter zu gewährleisten, wird diese mit einer optimierten Elektrodentopologie gefertigt. Da in diesem Fall keine analytische Betrachtung mehr möglich ist, wird das Messverfahren durch einen inversen Ansatz realisiert.


Optimal experiment design with respect to electrode configurations for a piezoelectric problem

V. Schulze, S. Schmidt, B. Jurgelucks, N. Feldmann, L. Claes, 2021


Modelling damping in piezoceramics: A comparative study

N. Feldmann, V. Schulze, L. Claes, B. Jurgelucks, L. Meihost, A. Walther, B. Henning, tm - Technisches Messen (2021), 88(5), pp. 294 - 302

The progress in numerical methods and simulation tools promotes the use of inverse problems in material characterisation problems. A newly developed procedure can be used to identify the behaviour of piezoceramic discs over a wide frequency range using a single specimen via fitting simulated and measured impedances by optimising the underlying material parameters. Since there is no generally accepted damping model for piezoelectric ceramics, several mechanical damping models are examined for the material identification. Three models have been chosen and their ability to replicate the measured impedances is evaluated. On the one hand, the common Rayleigh model is considered as a reference. On the other hand, a Zener model and a model using complex constants are extended to model the transversely isotropic material. As the Rayleigh model is only valid for a limited frequency range, it fails to model the broadband behaviour of the material. The model using complex constants leads to the best fit over a wide frequency range while at the same time only adding three additional parameters for modelling damping. Thus, damping can be assumed approximately frequency-independent in piezoceramics.


Optimised Multi-Electrode Topology for Piezoelectric Material Characterisation

L. Claes, N. Feldmann, B. Jurgelucks, V. Schulze, S. Schmidt, A. Walther, B. Henning, 2021, pp. 237-238

DOI


Piezoelectric BC Modeling for Electrode Shapes with OED

V. Schulze, S. Schmidt, B. Jurgelucks, N. Feldmann, L. Claes, 2021


Identification of piezoelectric material parameters using optimised multi-electrode specimens

L. Claes, N. Feldmann, V. Schulze, B. Jurgelucks, A. Walther, B. Henning, in: Fortschritte der Akustik - DAGA 2022, 2022, pp. 1326-1329


Estimation of piezoelectric material parameters of ring-shaped specimens

O. Friesen, L. Claes, N. Feldmann, B. Henning, 2022


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft