Head of Group

Erdal Kayacan  

Prof. Dr. Erdal Kayacan

Office: P1.7.14.1
Phone: +49 5251 60-1691
E-mail: erdal.kayacan@uni-paderborn.de
Web: Homepage

Administrative Staff

Dorothea Hermann  

Dorothea Hermann

Office: P1.7.14
Phone: +49 5251 60-1692
E-mail: dorothea.hermann@uni-paderborn.de
Web: Homepage

Marcus Hund  

Dr. Marcus Hund

Lab

Office: P1.7.09.2
Phone: +49 5251 60-2994
E-mail: marcus.hund@uni-paderborn.de
Web: Homepage

Research Associates

Julio Betancourt  

Dr. Julio Betancourt

Research and teaching

Office: P1.7.15.5
Phone: +49 5251 60-1695
E-mail: julio.betancourt@uni-paderborn.de

Adrian Redder  

Dr. Adrian Redder

Research and teaching

Office: P1.7.09.2
Phone: +49 5251 60-3006
E-mail: aredder@mail.uni-paderborn.de

Office hours:

Friday 13:00 - 14:00 Uhr
By appointment.


Van Huyen Dang  

M. Sc. Van Huyen Dang

Develop and design DRL for UAV navigation and exploration tasks

Office: P1.7.08.5
Phone: +49 5251 60-2216
E-mail: vhdang@mail.uni-paderborn.de

Office hours:

Mon-Fri: 9 a.m to 11:30 a.m


Uros Petrovic  

Uros Petrovic

Research assistant

Office: P1.7.08.5
Phone: +49 5251 60-2233
E-mail: uros.petrovic@uni-paderborn.de

Student assistance (SHK/WHB)

Samantha Schmidtmann  

Samantha Schmidtmann

Research Assistant

E-mail: sasch4@mail.uni-paderborn.de

Current bachelor thesis (BA) and master thesis (MA) students

Title: Data-driven model-free reference governor design based on differentiable convex optimization models

Brief Abstract: In den letzten Jahre hat das Interesse an modellfreien Referenz Governorn immmer mehr zugenommen. Das heißt, Referenz Governor bei denen ein exakter Modell des zu regelnden Systems nicht bekannt sein muss. In dieser Bachelorarbeit soll ein neuer Ansatz für einen modellfreien Referenz Governor getestet werden. Bei diesem Ansatz soll das konvexe Optimierungsproblem eines Referenz Governors selbst parametrisiert und optimiert wird. Dieser Ansatz beruht auf der Idee, dass man die Ableitung der Lösung eines konvexen Optimierungsproblems effizient annähern kann.

Supervisor: Dr. Adrian Redder

Title: End-to-end tracking of multiple objects using time models

Brief Abstract: This thesis addresses the impact of using time models on the accuracy of multiple object tracking and how it differs from traditional methods in this area.

Partners: dSPACE GmbH

Supervisor: Prof. Dr. Erdal Kayacan

Title: AI-Driven Mixed-Case Palletization with Robots

Brief Abstract: In the field of logistics, organizing boxes of varying sizes on a standard pallet is a tedious and challenging operation. This thesis aims to achieve and solve the challenge of palletizing boxes of various sizes on a pallet using reinforcement learning techniques. The RL agent determines the box's orientation and location on the pallet, while the robot picks and places the boxes on the pallet. For training and simulation purposes, the Nvidia Isaac simulator will be used.

Partners: Unchained Robotics

Supervisor: Prof. Dr. Erdal Kayacan

 

Title: Nonlinear control for a tilting quadrotor

Brief Abstract: Tilting quadrotors are innovative unmanned aerial vehicles (UAVs) that offer enhanced agility and versatility compared to traditional quadcopters. By integrating tilting mechanisms into their design, these quadrotors can dynamically adjust the orientation of their rotors, enabling rapid shifts in flight direction and improved maneuverability. 

Supervisor: Dr. Julio Betancourt
 

 

Title: Active SLAM for aerial robots in dense environments

Brief Abstract: Active SLAM (A-SLAM) presents a solution that allows for the autonomous exploration of environments without the need for human supervision. This thesis aims to develop a three-layer framework to optimize and influence every step of the exploration. This thesis will seek to implement a 3D A-SLAM where the main information is the amount of entropy observable from a given point of view.

Supervisor: Dr. Julio Betancourt

Title: Thermal imaging for robot navigation

Brief Abstract: 

Supervisor: Dr. Julio Betancourt

Title: Learning nonlinear model predictive control for quadrotor in dynamic environments

Brief Abstract: The thesis aims to develop a drone and the underlying control system. This will include the following workflow:

  • Design, select parts, and construct the drone.
  • Research on Gaussian Processes for disturbance estimation.
  • Implementation of a nonlinear MPC for position control.
  • Utilize Gaussian Process for disturbance estimation caused by wind or changing payloads.
  • Use disturbance estimation from GP to adapt NMPC
  • Tests in simulation and real-world scenarios e.g. wind turbine inspection which can include wind or changing payloads.

Supervisor: Dr. Julio Betancourt

Further information: