Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen

Exercises

Preliminaries

How to get the most out of the exercises

  • I try to upload next week's exercise materials after each exercise
    • Take some time during the week to look at the problem statement
    • try to solve it yourself
    • If you run into problems, ask me – email or in person – or start reading suggested literature
  • After each exercise, you are going to get the solutions for the theory part
    • You do not need to copy everything from the whiteboard
    • I am not going to wait until everyone has copied everything
  • Thus, during the exercise: Think, listen, talk with me, ask questions
    • Try to only write down key points, tricks, shortcuts, etc...
  • redo the calculations yourself when you have the solutions

Python Crashcourse

https://fgnt.github.io/python_crashkurs_doc/

Support Notebooks

Exercise Materials

  1. (2019-04-18) Continuous and Discrete Time Fourier Transform
    Solution - Notebook (as html)
  2. (2019-04-18) Sampling and Reconstruction
    Solution
  3. (optional homework) Energy and Parseval Theorem
    Solution
  4. (2019-04-25) DFT and Computational Effort Notebook (as html preview)
    (Update 2019-04-25: Fixed errors in notebook)
    Solution - Notebook as html
  5. (2019-05-02) Overlap-Save & Partioned FilteringNotebook (as html preview)
    Solution
  6. (2019-05-09) Window Functions & Leakage EffectNotebook (as html preview)
    Solution
  7. (2019-05-22) Periodogram and ACF EstimationNotebook (as html preview)
    Solution - Notebook as html
    (Note: Subtask 7.5 and 7.9 belong to Exercise 8)
  8. (2019-05-22) Linear Estimator for Auto-regressive Processes
    (Note: Subtask 7.5 and 7.9 are discussed afterwards)
    Solution
  9. (2019-06-27) Wiener Filter for Noise SuppressionNotebook (as html preview)
    (Note: This is going to be a double exercise - first half theory, second half coding)
    Solution
  10. (dropped)
  11. (2019-07-11) LMS (Adaptive Filters) - Matlab programs as zip archive

Die Universität der Informationsgesellschaft