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The problem of light scattering by ice crystals of cirrus clouds is considered in the case of a hexagonal ice
plate with different distributions over crystal orientations. The physical-optics approximation based on
(E, M)-diffraction theory is compared with two exact numerical methods: the finite difference time
domain (FDTD) and the discontinuous Galerkin time domain (DGTD) in order to estimate its accuracy and
limits of applicability. It is shown that the accuracy of the physical-optics approximation is estimated as
95% for the averaged backscattering Mueller matrix for particles with size parameter more than 120.
Furthermore, the simple expression that allows one to estimate the minimal number of particle or-
ientations required for appropriate spatial averaging has been derived.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Light scattering by ice crystals of cirrus clouds is a challenging
problem in the atmospheric optics. On the one hand, the radiative
properties of cirrus clouds like the optical depth, extinction and
scattering coefficients along with their phase function or, more
generally, the Mueller matrix, are needed to incorporate in the
numerical models of the Earth’s radiative balance [1,2]. At present,
these radiative properties are poorly known and they are one of
the main sources of uncertainties in numerical climate models
[3,4]. On the other hand, interpretation of the data obtained by
remote sensing instruments sounding cirrus clouds should be
based on the solution of the basic problem of light scattering by
one ice crystal averaged over statistical ensembles of the crystals.
This problem has not been satisfactorily solved yet [5]. The main
obstacle in solving this problem is a great variation of the crystal
size, where the size occurring in the cirrus range from a few mi-
crons up to millimeters [6,7].

Any numerical solution to the problem of light scattering by
nonspherical particles crucially depends on the magnitude of the
so-called size parameter. In this paper we define the size
36 Lenin Ave, 634050 Tomsk,
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parameter as π λ=s a2 / , where a is the maximum size of the par-
ticle and λ is the incident wavelength, while previously we did not
use the factor 2π. When the size parameter of the ice crystals is
moderately small, e.g. ≤s 150, a number of exact numerical
methods based on the Maxwell equations such as the finite-dif-
ference time domain (FDTD) method [8–12], the T-matrix method
[13–15], the discrete dipole approximation (DDA) [16–19], etc. have
been successfully applied to the small-size fraction of the ice
crystals. A survey of such works together with numerous refer-
ences can be found, for example, in [20,21].

For the large-size fraction of the crystals, i.e. >s 150, the exact
numerical methods become very computationally costly. In this
case, the geometric-optics approximation becomes a reasonable
approach and it is widely used for the optics of cirrus as well [21–
24]. Obviously, the geometric-optics approximation does not re-
solve the fine angular structure of the scattered light caused by
diffraction. This drawback of the geometric-optics approximation
sometimes becomes an obstacle in the interpretation of experi-
mental data. In particular, lidar signals mainly originate from the
backscattering process. It was shown earlier [23,25] that the
backscattering in the geometric optics approximation for the ty-
pical case of randomly oriented hexagonal ice columns and plates
becomes an infinite quantity because of the corner-reflection ef-
fect. Therefore, to avoid this discrepancy, one should take into
account the diffraction patterns that appear within the backward
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scattering direction.
To include diffraction to the problem of light scattering by large

ice crystals of cirrus clouds >s 150, we extended the geometric-
optics approximation to the physical-optics (PO) one [26–28] si-
milarly as in the classical diffraction theory [29,30]. As a result, our
PO code allowed us to resolve the above mentioned infinite
backscattering of randomly oriented crystals [31]. It is worth
noting that several other codes taking into account diffraction
were developed in application to cirrus optics by other authors,
too. In particular, the so-called improved geometric-optics method
(IGOM) and the geometric-optics integral equation method (GOIE)
have been used by Yang et al. [21] for long. However, it was re-
cently noticed that the genuine IGOM code failed to calculate the
backscattering for cirrus clouds [32], and the authors had to add an
empirical correction [33]. Also, recently Bi et al. [34,35] have
proposed the code which is similar to our PO code but it has not
been applied yet to real cirrus clouds.

An advantage of the PO is its applicability to the particles with a
large size parameter. Indeed, this approximation is based on the
assumption that the scattered field on the particle surface is re-
placed by the field obtained by the geometric-optics laws. Of
course, it is not valid for small particles λ≈a but with increasing
size parameter, the scattered field both inside a crystal and on its
surface approaches the geometric-optics value. The accuracy of
this method increases with the magnitude of the size parameter.
Thus, the PO seems to be the best method to calculate the optical
properties of the large-size fraction of cirrus clouds, especially in
terms of the calculation time.

In our previous paper [36] we have compared three formula-
tions of the PO and proved that only the PO based on (E,M)-dif-
fraction theory looks reliable. We also have briefly compared PO
results for a particle with fixed orientation with results obtained
by a numerically exact method – the discontinuous Galerkin time-
domain (DGTD). That illustrative comparison showed that the
agreement is quite good within three diffraction fringes but some
discrepancies had to be studied thoroughly. The aim of this paper
is to estimate accuracy and determinate the limits of applicability
of the PO in the case of backscattering, which is crustal for lidar
studies. We compare the PO solution with two solutions obtained
independently by different exact numerical methods, namely, the
DGTD (German coauthors) [37,38] and the FDTD (Japan coauthors)
[10] to avoid a mistake. It is worth noting that there are other
methods to compare with, e.g. T-matrix [13–15] or DDA [16–19],
but we think that the comparison with these two independent
methods is reliable. Since the capability of up-to-date computers
allows one to solve effectively the light scattering problem by
randomly oriented non-spherical particles using the exact nu-
merical methods for size parameters up to ≈s 150, we compare
light scattering by hexagonal ice plates of the diameters 10 mm
( ≈s 120) and 5 μm ( ≈s 60) at the incident wavelength of
0.532 μm. In this case, the accuracy of the PO is rather high and
the solutions obtained by the exact numerical methods and the
physical-optics one should be close. For simplicity, we did not take
into account absorption.

The paper is organized as follows. Section 2 presents our PO
code. Section 3 presents the comparison of the scattered fields
obtained by the DGTD and FDTD methods and the PO for a particle
with fixed orientation. In Section 4 the accuracy of the PO is nu-
merically studied for the case of arbitrary oriented crystals. The
question of appropriate averaging over particle orientations is also
considered in the section. Conclusion summarizes the obtained
results.

2. Physical-optics approximation

For convenience, this section gives a brief overview of our
physical-optics approximation. The PO code is described in more
details in the previous paper [36]. It is worth noting that we have
changed the approximation as compared to [28,31,39] by replacing
the E-diffraction theory for the (E,M)-diffraction theory. Moreover,
this section gives more attention to the shadow-forming beam.

In the problem of light scattering by large particles, as com-
pared with the incident wavelength, the PO can be strictly defined
by means of two following steps [28]. First, the exact scattered
field both inside the particle and on its surface should be replaced
by the scattered field obtained within the geometric-optics ap-
proximation. Then, outside the particle, the scattered field is found
as the result of the propagation of the field, which is determined
on the particle surface, to any observation point using the Maxwell
equations.

If a particle is faceted like an ice crystal of cirrus clouds, the
geometric-optics field on the crystal surface consists of a set of
plane-parallel beams with various polygonal shapes and localiza-
tions leaving the crystal facets in the different directions nj. In the
far zone of the crystal, i.e. at the distance λ> >R a /2 , every beam
undergoes the Fraunhofer diffraction according to the Maxwell
equations. As a result, the diffraction pattern appears on the
scattering direction sphere n around the initial propagation di-
rection nj for any beam.

Let the crystal be illuminated by the incident plane wave

( ) = ( )eE r E , 1inc
ikn r

0 0

where ( )E rinc is the transverse electric field, r is a point in 3D space,
and π λ=k 2 / . In the far zone, the scattered field becomes the di-
verging spherical wave

( ) = ( ) ( )e RE r F n / , 2scat
ikR

where = | |R r , = | |n r r/ is the scattering direction, and F is the
complex-valued scattering amplitude. The transformation of the
incident wave of Eq. (1) into the scattered wave of Eq. (2) is gen-
erally described by the ×2 2 complex-valued Jones matrix

( ) = ( ) ( )F n J n E . 30

Finding of the Jones matrix is the full solution to a scattering
problem because the Jones matrix determines the scattered field
for the arbitrary polarization of incident waves. It is often con-
venient to describe the polarization of an incident wave by the
Stokes vector I. In this case, the Stokes vector of the scattered wave
is transformed by means of the ×4 4 Mueller matrix ( )M n like Eq.
(3)

( ) = ( ) ( )I n M n I , 4scat inc

where the Mueller matrix can be expressed through the Jones
matrix (see e.g., [40])

To determine the Jones or Mueller matrices explicitly, we need
to consider the scattered field on the crystal surface in details. The
geometric-optics scattered field on the crystal surface becomes
obviously the superposition of the plane-parallel beams ( )E rj , i.e.

∑( ) = ( )
( )

∞

E r E r .
5

scat
j

0

Every beam, both on the crystal surface and in the near zone
around the crystal, has the form of Eq. (1) except for its finite
transverse size.

In the superposition of Eq. (5), the case of =j 0 is reserved for a
specific component of the geometric-optics scattered field called
the shadow-forming field [28].

Let us explain the useful concept of the shadow-forming field.
This component appears automatically if one uses the general
definition of the total field as the superposition of the incident and
scattered waves:
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( ) = ( ) + ( ) ( )E r E r E r . 6inc scat

Indeed, for illustration, consider the non-illuminated (i.e. sha-
ded) part of the crystal surface if the particle is absolutely ab-
sorbing. In this case, the total field obviously vanishes ( ) =E r 0 on
the shaded part of the surface. Thus, we arrive at the following
equation on the shaded part of the surface

( ) = − ( ) ( )E r E r 7scat inc

proving the appearance of the shadow-forming field.
Then consider a non-absorbing crystal. Here the scattered

beams of the superposition (5) can leave the crystal surface from
arbitrary facets and in arbitrary directions including the incident
direction n0. We state that it is useful to complete the super-
position of the geometric-optics scattered beams of Eq. (5) with
the shadow-forming beam, which is strictly defined as

⎧⎨⎩( ) = − ( )
( )

E r
E r on the shaded part of the particle,

0 otherwise. 8
inc0

Note that this concept is quite general; it is applicable to par-
ticles of arbitrary shapes and absorbing properties. In the near
zone of a particle, the shadow-forming beam propagates in the
same direction n0 as the incident wave of Eq. (1) but it is in the
antiphase to the incident wave according to the factor of (-1). Its
transverse shape exactly corresponds to the geometric-optics
shade of the particle.

Thus, in other words, the shadow-forming component of Eq. (8)
is the inevitable component of both geometric-optics and physi-
cal-optics approximations. In the light of this concept, a lot of
optical phenomena become physically obvious. In particular, the
phenomenon of the so-called anomalous diffraction [41] is readily
explained by interference between the shadow-forming and
transmitted beams [42], and so on.

Therefore, in the superposition of Eq. (5), the index =j 0
corresponds to the shadow-forming beam of Eq. (8), while the
other beams >j 0 are found numerically, for example, using the
beam-splitting code.

After the scattered field on a crystal surface is found, it is
transformed to the far zone within the physical-optics approx-
imation [36]. As known, if a scattered field is given on any particle
surface S, this field in the arbitrary point r outside the particle is
strictly determined as an integral over the surface, this integral
being the consequence of the Maxwell equations (see, e.g.,[9], Eq.
(10.87))

{ }∫ ( ) ( ) ρ( ) = ⋅∇ ( ′ − ( ′) ⋅∇ ( ′) ′ ( )′ ′G G dE r N r r r r N E r, , , 9scat
S

scatr r

where ( ′)N r is the outward normal to the surface, ( ′)G r r, is the
Green function of free space, and ρ′d is the area element of the
surface S . In the far zone, where | − ′| ≈ − ′Rr r nr , Eq. (9) is re-
duced to the following integral for the scattering amplitude ([29],
Eq. (10.92))

∫ {λ

ρ

( ) = [ ( )] × ( − ′) [ × ( ′)]

+ [( × ∇ × ( ′)) × ] ( )} ′ ( )

i ik

ik d

F n n nr N E r

N E r n

/ 2 exp

/ . 10

S
scat

scat

Substitution of the near-zone field of Eq. (5) in Eq. (10) trans-
forms the scattered field into a superposition of diverging sphe-
rical waves with the scattering amplitudes

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦{ }
∫

λ

ηρ ρ ρ

( ) = × × + × [( × ) × ]

× [ ( − ) ] ( )
( )

ξi
e

ik d

F n n N E N n E n

n n

2

exp .
11

j
i

j j j j j

S
j j j j j

j

j

where η is the shape function.
It is worth noting that in the classical theory of diffraction
dealing with the transmission of any incident wave through a hole
in a screen, the integral (10) with the substitution of

( ′) ≈ ( ′)E r E rscat inc is called the Kirchhoff approximation, the (E,M)-
diffraction theory. Here two other approximations associated with
names of Rayleigh and Sommerfeld (the E and M diffraction the-
ories) are often used when only one of the terms enclosed in the
square brackets in Eq. (11) remains after doubling [29,30].

In our previous papers [31,39], within the E-diffraction theory,
we used only the first doubled term of Eq. (11) since both terms of
Eq. (11) were approximately equal for the small scattering angles

≈n nj. However, when a beam leaves a crystal facet at the grazing
angle, both terms become noticeably different. Therefore, in the
light scattering problem, Eq. (11) including both the terms seems
to be more reasonable, see [36]. Indeed, an argument in favor of
both terms is that they both follow directly from the Maxwell
equations.

Thus, our PO algorithm calculating the field scattered by an ice
crystal consists of two parts. First, all characteristics of the plane-
parallel beams leaving a crystal surface are found by means of the
beam-splitting code [43]. Second, the diffraction of the beams is
calculated using Eq. (11).
3. Normally illuminated hexagonal ice plate

For comparison of solutions to the light scattering problem by
different numerical methods, we consider the simplest case of
normal illumination of a hexagonal ice plate (Fig. 1). The incident
wavelength is 0.532 mm and the refractive index is assumed as
1.3116. Two diameters of the plate of 10 mm and 5 mm with the
plate thicknesses of 5.79 μm and 2.895 μm, respectively, are used.

As shown in Fig. 1(a), here only three plane-parallel beams are
formed in the near zone of the crystal. They are the shadow-
forming ( )E 0 , the forward scattered ( )E 1 and the backscattered ( )E 2

beams

η( ) + ( ) = ( − + ) ( ) > ( )ξ( ) ( )x x te y z e x lE E E1 , at /2, 12i ikx0 1
01

η( ) = ( ) < − ( )ξ( ) −x re y z e x lE E, at /2, 13i ikx2
02

where l is the crystal thickness and t and r are the transmissivity
and reflectivity, respectively, obeying the energy conservation law

+ =t r 12 2 for non-absorptive crystals.
Amplitudes and phases of the forward and backward scattered

beams can be taken from the well-known problem of transmission
and reflection of light for a plane-parallel plate. Otherwise, this
reflected and transmitted light can be obtained as a series of
successive acts of re-reflections inside the crystal by the front and
rear facets that is easily modeled by the beam-splitting code. In
our calculations, we limit the beam-splitting code by 10 reflected/
refracted events which correspond to more than 99.99% scattered
energy. In the far zone, the surface integral of Eq. (11) corresponds
to the diffraction pattern from a hexagonal hole in a screen shown
in Fig. 1(b).

The scattered field at any direction n is characterized, in gen-
eral, by the ×2 2 complex-valued Jones matrix of Eq. (3) or by the
real-valued ×4 4 Mueller matrix of Eq. (4). The intensities of the
scattered field in any scattering direction obtained by the PO and
the DGTD method are presented in Fig. 2. We see that the scat-
tered fields match each other qualitative, however, there is some
quantitative difference.

To avoid comparison of these 2D numerical data, we have
averaged the Mueller matrices over the azimuth angle φ. The
above Mueller matrices also correspond to averaging over crystal



Fig. 1. Scattering by a hexagonal plate in the PO: (a) plane-parallel beams in the near zone; (b) the Fraunhofer diffraction pattern in the wave zone (the plate diameter is
10 mm, the wavelength is 0.532 mm, and the scale indicates the scattering angles relative to the forward direction).

Fig. 2. The intensity of the scattered light on the scattering direction sphere ob-
tained by the PO (upper) and by the DGTD method (lower).

Fig. 3. The normalized differential scattering cross section obtained by the DGTD
and FDTD methods for the plate of the diameter D ¼10 mm.
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rotation around the x- axis. As known [40–42], the averaged ma-
trices for particles having plane of symmetry have 6 independent
non-zero elements

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
θ

θ θ
θ θ

θ θ
θ θ

( ) =

( ) ( )
( ) ( )

( ) ( )
− ( ) ( ) ( )

M M

M M

M M

M M

M

0 0
0 0

0 0
0 0

,

14

11 12

12 22

33 34

34 44

where θ( )M11 is the differential scattering cross-section and the
other elements are responsible for polarization.

The normalized differential scattering cross section
θ θ′ ( ) = ( ) ( )M M M/ 011 11 11 obtained by two exact methods for the

plate diameter of 10 mm is presented in Fig. 3. It should be noted
that the results of the comparison of the DGTD and the PO for the
10 mm particle have already been presented in [36]. Here we
compare these results with the FDTD and pay more attention to
the forward and backward scattering directions. We see that these
data completely coincide with each other for the quantities larger
than −10 5. On the one hand, this fact proves reliability of both
methods. On the other hand, it shows accuracy of the data ob-
tained. Namely, the small values of θ′ ( )M11 that are less than −10 5

within the interval 70–175° of the scattering angles reveal some
dispersion. Consequently, the quantity −10 5 can be assumed as the
low limit of these calculations. The discrepancy of these two
numerically exact methods within the interval 70–175° of the
scattering angles is caused by differences of particle discretization
or imperfection of numerical integration procedures of these
methods. Moreover, these two methods are numerical and the
difference is close to numerical accuracy. One can see that the
results of the DGTD and the FDTD seems to be different for the first
diffraction minimum at the point of about 4 degrees (Fig. 3), but
Fig. 5 shows that this discrepancy is due to small spatial resolution
of the solutions.

Fig. 4 shows the comparison of the same values as in Fig. 3
obtained by the DGTD and the PO methods. In this case, the data
agree with each other for the quantities larger than −10 4. This
agreement takes place near the forward and backward scattering
directions that are the propagation directions of the near-zone
beams (Fig. 1(a)).

For a detailed study of this agreement, the vicinities of the
forward and backward scattering directions are shown in
Figs. 5 and 6 at an expanded scale. To interpret these data, let us
come back to Fig. 1(b) where the scattering or diffraction pattern is
shown without averaging over the azimuth angle φ. As known
[29,30], any Fraunhofer diffraction pattern consists of diffraction
fringes of different orders. Numbering the fringes from the center,
let us attribute the first order to the central bright fringe of Fig. 1
(b), the second order to the next bright fringe, and so on. Com-
paring Figs. 1(b) and 4 we see that the bright fringes in Fig. 4 are



Fig. 4. The differential scattering cross section obtained by the DGTD method and
the PO for the plate of the diameter D¼10 mm.

Fig. 5. The differential scattering cross section in the vicinity of the forward di-
rections for the plate of the diameter D¼10 mm.

Fig. 6. The same differential scattering cross section as in Fig. 5 in the vicinity of
the backward direction.

Fig. 7. The same data as in Fig. 4 for the plate of the diameter D¼5 mm.
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formed just by the bright fringes of Fig. 1(b) of the same order.
Thus, Fig. 5 proves that the PO and the exact methods agree

very closely within 5 diffraction fringes near the forward direction.
As for the backward direction shown in Fig. 6, the data coincide
within 3 diffraction fringes.
This coincidence can be easily explained [36]. Indeed, the PO
assumes that the scattered field in the near zone is the step-like
function due to the shape function of Eq. (11). The same shape
function is used in the classical theory of diffraction dealing with
penetration of light through a hole in a screen [29,30]. As known
in the diffraction theory, the main difference between the incident
and the exact fields inside the hole is that the step of the incident
field at the edge of the hole should be replaced by a narrow strip of
thickness of a few wavelengths smoothing this step. In the far
zone, this strip does not practically correct the diffraction fringes
of the low orders shifting the corrections to the fringes of the
higher orders. Since the strip thickness weakly depends on the
hole diameter, the border of corrections depends, mainly, on the
size parameter. In particular, when the size parameter is larger, the
border of corrections is shifted to higher fringe orders.

It is obvious that in the light scattering problem, the strip also
should appear in the exact field formed on an exit crystal facet. As
a result, the diffraction fringes of low orders obtained by the PO
agree well with the data obtained by the exact methods. The
border of corrections of the diffraction fringes depends on the
crystal size parameters. This statement is supported by the com-
parison of the data in Figs. 4 and 7 obtained for the crystals of the
diameters of 10 mm and 5 mm with size parameters =s 120 and

=s 60, respectively. We see in Fig. 7 that in the case of the dia-
meter of 5 mm that the corrections become essential in the third
fringe near the forward direction and in the second fringe near the
backward one.

In addition to the distortions of the Fraunhofer diffraction
fringes near the forward and backward directions, the exact so-
lutions in Figs. 4 and 7 also demonstrate two hills at large scat-
tering angles of about 60 and 120°. These hills cannot be explained
by the strips. They should be associated with some transverse
structure of the exact scattered field on the exit facets which is
unknown. However, these hills are obtained for the fixed crystal
orientation, which is hardly interesting for practice. Moreover,
their magnitudes decrease with the crystal size parameter as
shown in Figs. 4 and 7. Therefore, the main result of this section is
that the PO and the exact methods coincide in the vicinity of the
scattering directions corresponding to the geometric-optics pro-
pagation directions of the plane-parallel beams of the near zone.
The minimal limit of applicability of PO is about ≈s 100.

In addition to the normalized scattering cross sections shown
in the above figures, all elements of the Mueller matrices were
calculated using both the exact and the PO methods as well. These
elements reveal similar regularities. As an example, Figs. 8 and 9
present the normalized quantity θ θ′ ( ) = ( ) ( )M M M/ 033 33 11 in the



Fig. 8. The same data as in Fig. 5 for the normalized element M33.

Fig. 9. The same data as in Fig. 6 for the normalized element M33.
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vicinity of the forward and backward scattering directions. As in
Figs. 5 and 6, we obtain close agreement between the PO and the
numerically exact quantities within 5 diffraction fringes in the
forward direction and 3 diffraction fringes in the backward one. In
Fig. 9, the value θ′ ( )M33 is negative in the PO while the exact
methods at θ < °165 give small positive quantities of about −10 6.
This discrepancy could be caused by either inaccuracy of the PO or
by round-off errors of the exact methods for the small quantities.
The other diagonal elements of the Mueller matrix show the same
regularities as in Figs. 8 and 9. As for the off-diagonal elements,
they are small (10-4) and dispersed. Therefore, they are not
presented.

Thus, we have shown that the accuracy of the PO depends on
the size parameter of a crystal particle, with the accuracy in-
creasing with the size parameter. In particular, for the hexagonal
ice plate of the diameter of 10 mm and the wavelength of 0.532 mm,
the PO gives reliable data within, at least, 3 diffraction fringes.
Fig. 10. The typical dependence of the differential scattering cross section in the
backscattering direction after averaging over γ angle for 10 mm particle.
4. Averaging over crystal orientations

In Section 3, we have considered the case of a crystal with a
fixed spatial orientation. This case is of no practical interest since
orientations of the ice crystals occurring in the atmosphere are
always statistically distributed according to some laws. These laws
are changed from the preferably horizontal orientation, on the one
side, to the random orientation, on the other side.
The drawback of any exact numerical method solving the
problem of light scattering by the ice crystals is its computational
cost for a given crystal orientation. Therefore, averaging of the
Mueller matrix over crystal orientations using the exact methods
becomes a challenging problem. On the contrary, it can be solved
at moderate computational costs by the PO.

To begin with, let us answer the question: how many orienta-
tions are needed to make an appropriate averaging? The geometric
optics solutions for randomly oriented particles usually average
over thousands or billions orientations [43], i.e. Macke used 30000
orientations [22]. Some exact numerical solutions take into ac-
count few orientations, i.e. Liu takes 48 orientations [44], Collier
takes 6 orientations [45].

Averaging over particle orientations means averaging over
three Euler angles: α, β, γ[46]. For the exact backscattering di-
rection, which is important for lidar studies, averaging over α
angle can be done analytically. Moreover, it has no effect on the
differential scattering cross section. Taking into account the sym-
metry of a hexagonal particle, the number of orientations for the γ
angle decreases 6 times, and for the β angle it is twice as little.

Now let us have a look at the typical dependence of the dif-
ferential scattering cross section in the backscattering direction on
the slope angle β after averaging over γ angle (Fig. 10). Here we can
see three different parts: the first one (0–10°) is the oscillations
caused by the diffraction on the hexagonal facet of the crystal; the
second one (10–87°) is the corner reflection predomination
[46,47]; the third one (87–90°) is the oscillations caused by the
diffraction on the rectangular facets of the crystal. We can see that
appropriate averaging requires, at least, 3 points on each diffrac-
tion fringe.

Now let us show the dependence of the averaged differential
scattering cross section in the exact backscattering direction on
the number of particle orientations, see Fig. 11. Here, for simplicity,
we let the same number of orientations for both β and γ angle
intervals. One can suppose that the solution converges at 576
(24x24) orientations. To refute this assumption, Fig. 12 shows the
profile for 4624 (68x68) orientations (blue line). We can see in
Fig. 11 that only two points fall on the first diffraction fringe and
the differential scattering cross section cannot be integrated
properly. Appropriate averaging for the 10 mm particle, in this case,
has to be done over more than 17161 (131x131) orientations. Our
calculations show that the same is true for all the Mueller matrix
elements. In spite of the fact that the above mentioned results
were obtained within the PO, any exact numerical solution re-
quires no fewer orientations for spatial averaging.



Fig. 11. The averaged differential scattering cross section in the exact back-
scattering direction depending on the number of particle orientations.

Fig. 12. The approximation of the real (black) differential scattering cross section
by 4624 orientations (blue).
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Our calculations show that for a hexagonal ice plate, the an-
gular size of the first diffraction fringe ξ depends on the particle
diameter (D) through the simple relation

ξ λ
π

= ⋅ °
( )D

0.69
180

15

which is in good agreement with the classical solution of the an-
gular size of diffraction on a circular aperture [48].

Therefore, taking into account the symmetry of a hexagonal
particle one can easily estimate the number of the orientations
needed for appropriate averaging in the case of a uniform angular
step:

ξ ξ
≈ ° ⋅ °

( )
N

90
0.3

60
0.3 16orient

which makes 13,600 orientations for a 10 mm particle and
1,360,000 orientations for a 100 mm particle at the wavelength of
0.532 mm. Since the exact numerical solution of light scattering for
one particle orientation is a problem of hours [49,50], averaging
over 13,600 orientations for a randomly oriented particle is a
problem of years. At the same time, we have averaged more than
106 orientations within the PO for less than 3 hours on a desktop
Core i3-3.7Ghz.

Since there is no available matrix that has been calculated by
the exact methods for randomly oriented particle with appropriate
averaging, we cannot compare the numerical data for the ran-
domly oriented particle as it was done in Section 2. Nevertheless,
some estimation can be obtained within the framework of the PO.

In Section 2 we show that the PO gives reliable results only
within a finite domain of the scattering directions. Therefore, one
might suppose that the accuracy of the PO for the averaged
Mueller matrices is low. In reality, the situation is the opposite.
Indeed, consider, for example, the case of random crystal or-
ientations. Here any scattered field of Eq. (11) moves on the
scattering direction sphere more or less uniformly because of the
random orientations. As a result, an observer detects some in-
tegrated value rather than the values for a fixed crystal orientation.

In this section, we show that the accuracy of the PO is rather
high for the averaged backscattering Mueller matrices because of
the integration of the diffraction patterns.

Let us consider the following scheme often used in practice. A
vertically pointing lidar sounds the hexagonal ice plates whose
orientations can be continuously varied from the horizontal to
random ones [51,52]. The probability distribution function over
orientations is assumed as follows. Denote the plate tilt as
β = ( ⋅ )z Narccos , where z is the vertical directed upward and N is
the normal to a hexagonal facet. Assume that the plate orienta-
tions are uniformly distributed relative to the rotations about both
the normal N and the vertical z, γ and α angles respectively. As for
the particle tilts, we assume the truncated Gaussian probability
distribution with the effective tilt angle βeff

∫

α β γ
π π

β β β β β β

( ) = ⋅

⋅ ( − ) ( − ) ( )
π

p

d

, ,
1

2
1

2

exp /2 / exp /2 sin , 17eff eff
2 2

0

/2
2 2

where the limit cases β = 0eff and β π= /2eff correspond to either
horizontal or quasi-random orientations, respectively.

Lidars detect only the backscattering described by the Mueller
matrix π( )M . As known [40,41], for the given orientation dis-
tribution, the symmetry reduces the averaged Mueller matrix for
vertically pointed lidars to the diagonal view

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
π σ( ) = −

−
− ( )

d
d

d

M

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2 1

.
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Here only two quantities, the backscattering cross section s and
the depolarization parameter d, can be obtained from measure-
ments. The linear δl and circular δc depolarization ratios are simply
connected with the depolarization parameter:

δ
δ

= ( − )
= ( − ) ( )

d d

d d

/ 2 ,

/ 1 . 19
l

c

In our PO code, we first calculate 16 elements of the back-
scattering Mueller matrix for all crystal orientations. Then these
matrices are averaged numerically according to the given or-
ientation probability distribution of Eq. (17). Finally, we obtain the
quantities s and d of Eq. (18) that are detected in lidar research.

Our estimation of the accuracy of the PO is based on the fol-
lowing physical arguments. When one considers any integral of
the Fraunhofer diffraction pattern like Fig. 1(b), this integral is
formed predominantly by the contributions from a few fringes of a
low order. The diffraction fringes of high orders give usually neg-
ligible contribution. In the case of a circle, for example, three first
fringes give 84%, 7%, and 3% of the exact magnitude of the integral,
respectively, while about 5% are contributed by the other fringes.

We have calculated the quantities s and d using our PO code
with three different scattering amplitudes of Eq. (11): F, F3 and F5



Fig. 13. The backscattering cross section (mm2/ster) for the arbitrary oriented
hexagonal ice plate of the diameter D¼10 mm; F (solid), F5(dashed) and F3(dotted)
depending on the effective tilt angle βeff .

Fig. 15. The same data as in Fig. 13 for D ¼100 mm.

Fig. 16. The same data as in Fig. 14 for D ¼100 mm.
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where F is the exact function while F3 and F5 are the functions
truncated by the diffraction fringes of more than the 3-d and 5-th
orders, respectively. The order of the fringes is easily found using
our code as an integer part of the ratio λρ( − )n n /j j in the integrand
of Eq. (11). Here, for example, the function F5 includes the dif-
fraction fringes up to the 5-th order and discards the fringes of
higher orders.

The results are presented in Figs. 13–16. We see that the con-
tribution of the fringes of more than the 3-d order is less than
about 2% of the quantities calculated with the exact function F.
Consequently, the quantities s and d obtained are the results of
integration mainly of the diffraction fringes of no more than the
3-d order. As known for the circular beams, the integral of three
diffraction fringes approach the total integral with the accuracy of
95%. Though the near-zone beams for the crystals are not circular,
averaging over orientations should smooth the dependence on the
beam shapes. Consequently, similarly, we can suppose that the
accuracy of the data shown in Figs. 13–16 should be no worse than
95% of the data that could be obtained by the exact methods. This
conclusion is valid for the crystals with the size parameter more
than 20 according to the discussion in Section 2.
Fig. 14. The depolarization parameter for the arbitrary oriented hexagonal ice plate
of the diameter D¼10 mm depending on the effective tilt angle βeff .
5. Conclusion

The exact numerical methods solving the problem of light
scattering by ice crystals of cirrus clouds using the Maxwell
equations are effective only if the size parameter is less than 150.
The physical-optics approximation, on the contrary, is effective for
large values of the size parameter. In this paper we have succeeded
in comparing these methods for the size parameters of about 120,
where both approaches overlap.

We show, that the exact and physical-optics solutions agree
very closely within several first diffraction fringes about the cen-
ters of the diffraction patterns. In particular, for the size parameter
of 120 the diffraction fringes of the physical-optics approximation
deviate from the exact counterparts beginning from the fourth
diffraction fringe. As a result, the accuracy of the physical-optics
approximation for the backscattering Mueller matrix averaged
over crystal orientation is estimated as 95% for the crystals with
the size parameter larger than 120. We also showed that the PO
should not be applied to the particle with the size parameter less
than 100 because of the accuracy issue.

We have derived a simple expression that allows one to esti-
mate the minimal number of particle orientations required for
appropriate spatial averaging. We have also showed that for a
typical particle of cirrus cloud, which is a 100 mm (the size para-
meter is about 1200) randomly oriented hexagonal ice crystal,
over a billion orientations are needed for appropriate averaging in
the case of uniform spatial grid. This makes the exact numerical
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methods inapplicable to solve the problem of visible light scat-
tering by crystals of cirrus clouds because of their computational
cost. In this situation, the physical optics approximation looks a
very promising tool.
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