Flexible FPGA design for FDTD using OpenCL

Tobias Kenter*, Jens Forstner!, Christian Plessl
*IPaderborn Center for Parallel Computing and Department of Computer Science
TDepartment of Electrical Engineering
Paderborn University
Warburger Str. 100, 33098 Paderborn, Germany
Email: *kenter @uni-paderborn.de Tjens.foerstner@uni-paderborn.de ichristian.plessl@uni-paderborn.de

Abstract—Compared to classical HDL designs, generating
FPGA with high-level synthesis from an OpenCL specification
promises easier exploration of different design alternatives and,
through ready-to-use infrastructure and common abstractions
for host and memory interfaces, easier portability between
different FPGA families. In this work, we evaluate the extent
of this promise. To this end, we present a parameterized FDTD
implementation for photonic microcavity simulations. Our design
can trade-off different forms of parallelism and works for
two independent OpenCL-based FPGA design flows. Hence, we
can target FPGAs from different vendors and different FPGA
families. We describe how we used pre-processor macros to
achieve this flexibility and to work around different shortcomings
of the current tools. Choosing the right design configurations, we
are able to present two extremely competitive solutions for very
different FPGA targets, reaching up to 172 GFLOPS sustained
performance. With the portability and flexibility demonstrated,
code developers not only avoid vendor lock-in, but can even make
best use of real trade-offs between different architectures.

I. INTRODUCTION

To the reconfigurable computing community, FPGAs are
known for long as promising accelerators for a wide range of
problems. With recent large-scale adoption of FPGAs by man-
ufacturers and cloud providers [3], FPGAs are slowly moving
towards becoming a mainstream computing product. Design
flows starting from high-level specifications are an important
stepping stone to deliver the required productivity for such
usage. In particular synthesis from OpenCL specifications is
promising, because it builds upon an established standard and
promises easy portability between different FPGA families
and vendors. In this work, we investigate productivity and
portability of this approach in an extensive case study on
photonics simulation.

Simulation codes in computational sciences are often used
and refined over many years. Thus, in this domain, the utiliza-
tion of widely supported and hopefully long-living standards
is particularly important. The finite-difference time domain
(FDTD) method used in this work is a stencil computation
method for the simulation of electromagnetic fields based on
Maxwell’s equations. Because of the interleaved update steps
of electric E-field and magnetic H-field on staggered grids,
FDTD for a Maxwell solver is a bit more complex than the
widely used Laplace stencil. In this work, we present a 2D
FDTD implementation used for the simulation of photonic
effects in microcavities.

A predecessor of this design was presented in [5], im-
plementing deeply unrolled pipelines with Xilinx SDAccel
2016.1 on a Virtex-7 X690T-2 FPGA. In this work, we present
a number of extensions and improvements towards a more
flexible and more efficient design. First of all, we aimed at
portability to the Intel/Altera OpenCL SDK and targeted an
Arria 10 1150 GX FPGA. Along this way, we introduced a
configurable design of the memory interfaces and present a
design space exploration of selected alternatives. We secondly
enabled splitting unrolled pipeline stages into several decou-
pled kernels, which is particularly important when targeting
Kintex Ultrascale KU115-2 FPGAs with two to distinct so-
called super-logic regions (SLR). Thirdly, making use of
OpenCL vector data types, we allowed to explore trade-offs
between deep pipelining and wide data paths. Finally, overall
performance is also much improved by reducing the initiation
interval of the pipeline from two cycles in the previous work
to one cycle. With up to 10 Giga cell updates per second and
more than 170 Gflop/s sustained performance, our design is to
the best of our knowledge faster than any published reference
on FPGA.

In the remainder of this paper, we first present some more
details about the application. In Section III, we present our
design goals and approach and lay out our target platforms. In
Section IV, we describe the design of the compute pipeline,
which is interfaced with streaming kernels for memory ac-
cesses, discussed in Section V. Section VI contains results
of fully integrated designs aiming for the highest overall
performance. Before concluding in Section VIII, we discuss
related work in Section VII.

II. FDTD ALGORITHM AND MICRODISK CAVITY

Our application solves Maxwell’s equations to compute
the propagation of light in a microstructure using the FDTD

H

Fig. 1. Samples of simulation results: proper Whispering Gallery modes
in different cavity sizes and adapted stimulus frequency (left, center) and
superposition/interference pattern of modes (right).

method first introduced by Yee [9]. Listing 1 illustrates the
basic update kernel of 2D FDTD, with the E-field calculated
in x- and y-dimensions (ex, ey) and H-field in z-dimension
(hz). Per iteration and grid point, it uses 8 + 6 = 14 floating
point operations to compute an update step. With data reuse
inside each row, it uses 5 load and 3 store operations of the
simulated data type, in our experiments single precision floats
with 32 bit. When data from neighboring rows can be reused,
the loads can be reduced to 3, but even then the application
remains memory intensive.

The photonic device in our simulation is a so-called mi-
crocavity, that is a circular hole (vacuum) surrounded by
perfectly conducting metal. Figure 1 illustrates different sim-
ulation results for such devices. The microcavity is a well-
suited structure for a non-synthetic 2-dimensional benchmark
because it is used in actual photonic devices and the solution
of the problem can be analytically validated. Also, the use of
different materials, metal and vacuum, requires to handle dif-
ferent, material-dependent stencils or stencil coefficients (ca,
cb, da, db) for geometric domains, which complicates
vectorization. Besides the basic update step from Listing 1,
our actual implementation additionally injects a configurable
source impulse near the disk center. Additionally, in order to
get more meaningful results than the raw field strength at a
given end time, it integrates the energy of the H-field over time
(using 2 additional floating point operations and 2 additional
memory operations).

for(int
/!l Update E
for(int x=0; x<height; x++)
for(int y=0; y<width; y++)

t=0; t<timeSteps; 1
2
3
4
ca * ex[x,y] + cb 5
6
7
8
9

t++)

ex[x,y] =
(hZ[Xv}’] - hZ[X’y_l]);
ey[x,y] = ca * ey[x,y] + cb x
(hZ[X—le] - hZ[va]);
// Update H
for(int x=0; x<height; x++) 10
for(int y=0; y<width; y++) 1
hz[x,y] = da * hz[x,y] + db = 12
(ex[x,y+1] — ex[x,y] 13
+ eylx,yl — eylx+l.,y]); 14

Listing 1. Kernel loop for 2D FDTD

III. DESIGN GOALS AND APPROACH

As acceleration goal, we want to simulate in single pre-
cision floating point configurable grids of up to 4096 x
4096 elements, with configurable cavity sizes and a flexible
stimulation source that can be precomputed on the host. The
grid size is motivated from the application domain, but is
also important for a fair comparison of different computing
products because when grids are too small, they may fit
entirely into on-chip memory resources, be it FPGA block
memory or processor caches. In this section, we first present
the FPGA target platforms and OpenCL-based synthesis tools
used in this work and then proceed with general considerations
when approaching the target application with these tool flows.

TABLE I
OVERVIEW OF TARGET PLATFORMS. *ONLY 1 MEMORY BANK SUPPORTED
IN OPENCL CONFIGURATION.

Board Alpha Data Nallatech
ADM-PCIE-8K5 385A
Xilinx Intel/Altera
FPGA Kintex Ultrascale Arria 10
KU115-2 1150 GX
Note 2 regions (SLRs) floating-point DSPs
M 2 x 8GB DDR4 2 x 4GB DDR4
emory 2 x 2400MT/s 2 x 2333MT/s
Peak Bandwidth 2 x 19.2 GB/s 2 x 18.7 GB/s

A. Target Platforms and Tools

Starting from the earlier design in [5] that was developed
with Xilinx SDAccel 2016.1, all Xilinx results presented in
this publication are obtained with the SDx 2016.3 release that
integrates the OpenCL-based SDAccel and the C/C++-based
SDSoC tools. We also target the Intel/Altera SDK for OpenCL,
Version 16.0.2 Build 222 that uses the same version of Quartus
IT as synthesis backend. Both tool flows build upon the
embedded profile of the OpenCL 1.0 specification but differ by
selective support for more recent OpenCL features and vendor-
specific extensions, attributes and pragmas. Most notably,
both vendors adopt the OpenCL 2.0 pipe feature. Intel/Altera
also provides a vendor-specific cl_altera_channels extension.
Direct, on-chip connections between IP blocks, here kernels
are a well-known design feature of FPGAs. In contrast to the
OpenCL pipe feature, they are most effectively instantiated
statically at compile and synthesis time. Intel/Altera promotes
this through the channel extension and additionally allows
some standard-compliant pipe implementations, whereas Xil-
inx alters the pipe semantic itself. Table I gives an overview
of the two boards and FPGA platforms we target in this work
with the respective tool flows.

B. General Design Approach

When an OpenCL kernel is translated to an FPGA circuit,
for every operation a dedicated functional unit is instantiated.
There are two general approaches to reach a high utilization of
functional units inside a loop nest. The GPU-inspired, typical
OpenCL way is to process independent loop iterations as
individual work items and let the scheduler at compile time or
during runtime schedule these work items either in a pipelined
way or to parallel instances. The OpenCL-FPGA flows support
this mode, but can generate more efficient designs with the
alternative approach of single work item kernels. Here, loop
pipelining is performed at compile time and all elements are
processed statically in loop order. Thus, explicit data reuse
between neighboring spatial loop iterations is possible and
no overhead is required to determine work item IDs or for
synchronization between work items.

In this work, we decided to follow the more efficient single
work item approach, in particular because the memory inten-
sive nature of the FDTD algorithm requires to reuse data as ef-
fectively as possible. The first goal is thus to pipeline the inner

Off-chip global memory

16 KB 16 KB
burst burst
transfers transfers

Configurable
input kernel(s)

Configurable
output kernel(s)

Pipes | (width V) Pipes’(width V)

Compute Kernel 1 Compute
Stage 1 (width V) kez‘e'
Row buffers |
Stage 2 |
Row buffers |

Fig. 2. Opverall structure and configuration options that our design exposes.

kernel loop with a low initiation interval, ideally of one cycle.
Further parallelism can then be achieved by creating deeper
or wider pipelines. Replicated pipeline stages connected by
row buffers can work on consecutive time iterations at the
same spatial position [2], [5], [8]. A similar technique, time
skewing, is also widely employed when optimizing processor
cache utilization for stencil applications [4]. Wide pipelines
can be created with explicit loop unrolling or by using OpenCL
vector data types, combining up to 16 elements into a single
variable for example of type floatl6. As there is a trade-off
in our design — deep pipelines require more on-chip memory
resources, wide pipelines more off-chip memory bandwidth —
we decided to pursue both options and search the design space
for the fastest overall designs.

Large and tightly coupled pipelines can also make it difficult
for the place and route tools to achieve the desired frequency
targets, particularly for the distinct super-logic regions (SLR)
of the KU115-2 target. Thus, we additionally added the option
to decouple the pipeline into different kernels connected via
OpenCL pipes that serve as FIFO buffers. We furthermore
decided to decouple the compute pipeline from the off-chip
memory interfaces. While simple kernels can easily perform
computations and burst memory access in lockstep, we found
it difficult to achieve this for our design with variable grid size
and number of time steps. Also, it turned out that the optimal
interface configurations depend strongly on the considered
platforms as discussed in Section V. Figure 2 illustrates the
degrees of freedom that our flexible design opens up in
addition to the portability between different FPGA platforms.

IV. COMPUTE PIPELINE IMPLEMENTATION

As outlined in the previous section, the compute kernel
receives all input from off-chip global memory through pipes
(or channels) and forwards its results to output pipes. We use
blocking pipes that can read or write one element in each cycle

and stall when an input pipe is empty or an output pipe is full.
The syntax for these constructs is different between the two
tool flows, but the semantic is identical. Thus, we wrapped all
pipe functions into simple pre-processor macros like outlined
in Listing 2 for a portable interface to the compute pipeline.

#if defined (__xilinx__)
#define PIPE_READ (pipename, elem) \
read_pipe_block (pipename , &elem)
#elif defined (ALTERA_CL)
#define PIPE_READ (pipename, elem) \
elem = read_channel_altera (pipename)
#endif

e Y S e

Listing 2. Pre-processor macro to encapsulate pipe functionality.

The first scalar pipeline processes a pair of E-field and
H-field updates at a new position in every cycle. As can
be seen in Listing 1, the H-field update at position [x,y]
cannot simply take place directly together with the E-field
update at the same position, because H-field update accesses
values in the E-field with a positive offset (ex[x, y+1]
and ey [x+1,v]). Thus, together with the E-field update
at position [x,y], we perform instead the H-field update at
the position of the previous outer loop iteration [x-1, y].
It uses as most recent input value the just computed ey
value, but also values from all fields that were computed
up to width steps earlier. These are kept locally in line
buffers implemented as local arrays in OpenCL. The line
buffers cause both compilers to detect false read-after-
write dependencies for consecutive loop iterations, even
though all accesses are at least width positions apart. With
__attribute__ ((xcl_dependence (type="inter",
direction="RAW", dependent="false"))) and
#pragma ivdep respectively, these dependencies are
resolved and the compilers can lower the initiation intervals
from two to one cycle. This also requires, that no line buffer
is read twice per cycle, like naively happens for example to
process (ex[x,y+1] - ex[x,y]), but can be replaced
by an additional shift register. In addition to the four line
buffers for the H-field update (including one for the hz_sum
field used for result visualization), a fifth buffer is used in the
E-field update step for the H-field. Since the first valid H-field
update is produced only after width pipeline iterations,
its line buffers are at the same time used to hold back the
updated E-field values for the same time, so fields leave the
pipeline again in lockstep and can be written back to off-chip
memory.

Intermediate results do not need to be written back to
off-chip memory, host memory or ultimately the file system
after every time step, because we integrate an analysis in
the form of energy integration into the compute pipeline.
Thus, these results can instead also be forwarded into another,
replicated pipeline stage. Pipeline replication can conceptually
be realized through unrolling hints in the outer (time) loop
of the kernel. This requires extending the row buffers into a
second dimension and partitioning them in a way that each
row can be accessed independently. Also, inputs need to be
selected between either the previous pipeline stage or the pipe

interfaces. With such a design, we were no longer able to
achieve the desired low initiation interval, which is related to
a problem in the two-dimensional partitioning of the SDx tool
chain. Thus, we instead resorted back to pre-processor macros
to generate a configurable number of pipeline stages with
individually named row buffers. With this approach, we in turn
uncovered a problem in the Intel/Altera flow, that only allows
execution with at most 128 named local memory objects
per design, for example up to 24 pipeline stages with five
row buffers each. Since the designs with the highest overall
parallelism on this platform use a trade-off between deep
and wide pipelining, they are not affected by this problem.
Therefore, we did not invest the effort of finding a work-
around for deeper pipelines with fewer, partitioned buffers.

There are two approaches to realize wider pipelines that pro-
cess several spatially adjacent elements per pipeline iteration,
here of the innermost (y) loop. As mentioned unrolling hints
could be applied to this loop, or OpenCL native vector data
types like f1oat16. Given the chosen pipe interface for off-
chip inputs and outputs, only the latter variant is suitable, since
pipes can process an entire native data element like float16
with each invocation, but can’t process multiple smaller ele-
ments in a single cycle, which would be required to keep a
wide compute pipeline fed. Thus, we use vector data types,
again wrapped by some pre-processor code in order to keep
the required modifications to operations and iteration spaces
configurable. Both design flows can build functionally correct
hardware designs from all vectorized pipelines, however for
Intel/Altera the software emulation yields incorrect results for
vector sizes of 8 or 16, whereas for Xilinx, starting with 2-
element vectors the compiler frontend can no longer resolve
the false dependencies and thus increases the initiation interval
back to two.

Finally, for the mentioned separation of large monolithic
compute pipelines into several smaller kernels decoupled by
pipes, we again use pre-processor macros to generate indi-
vidually named kernels, compute_0, compute_1,
compute_K. In contrast to all the previously discussed design
options (including vector data types), this one requires an
explicit counter-part in the host code, discovering all available
compute kernels and calling them from separate OpenCL con-
texts (Altera/Xilinx) or a single, asynchronous context (only
Xilinx, slightly more efficient). For Xilinx SDx, besides the
kernels, also the connecting pipes must be individually named,
whereas Altera OpenCL also supports arrays of pipes. As
pipe accesses were already encapsulated by the pre-processor
macros shown in Listing 1 anyway, we just added another
indirection appending an ID to each name. Before reporting
on integration results for this configurable compute pipeline,
we first individually explored alternatives and performance of
the memory interface kernels feeding it.

V. MEMORY-INTERFACE KERNELS FOR DRAM ACCESS

In order to achieve high off-chip memory bandwidth, burst
transfers from or to many consecutive memory addresses
are required. There are two general approaches to achieve

this, firstly through compiler inference of bursts from loops
with sufficiently clear iteration space, and secondly by using
the OpenCL builtin-function async_work_group_copy
that is functionally supported by both tool flows. In our
experiments, we encountered two tool-specific limitations that
caused us to switch between the two variants depending on
the tool flow used, by inserting another pre-processor macro.
Xilinx SDx can correctly infer the simple burst patterns we
require, however in order to generate according designs the
memory port bitwidth needs to match that of the employed
data type, that is between 32 bit for f1oat and 512 bit for
float16. Such memory ports turned out inefficient for all but
the widest data types, thus we limited the further exploration
of interfaces for SDx to async_work_group_copy. This
requires additional local on-chip buffers to read into or write
from. We partitioned these buffers cyclically to allow for all
data types to access 512 consecutive bits in a single cycle.

The utilization of async_work_group_copy caused
the Intel/Altera OpenCL tool flow to synthesize the inter-
face kernels not as single work-item kernels, which in con-
junction with a single work-item compute kernel seriously
hampers performance without further modifications. Thus, we
here focused on burst inference from loops. In this case,
off-chip memory accesses can either go to a buffer like
with async_work_group_copy, or be directly connected
to the pipes. The latter could conceptually allow a better
overlap of memory access and pipe interaction, but stalls
from the pipeline can break its burst behavior. Listing 3
illustrates the parametrized generation of these alternatives
for an input kernel transferring data from off-chip array
ex_global into ex_pipe. The USE_AWGC variant uses
async_work_group_copy (used with Xilinx design flow),
INFER_EXTRA_BURST uses burst inference to transfer data
into a local buffer, and INFER_INLINE_BURST (both used
with Intel/Altera design flow) forwards burst reads directly
into a pipe.

#if (USE_AWGC > 0 ||
__local _VEC_DTYPE_ ex_local [BURSTSIZE];

#endif

#if (USE_AWGC > 0)

INFER_EXTRA_BURST > 0)
2
3
4
async_work_group_copy(ex_local[0], 5
6
;
8
9

ex_global+burstPos , BURSTSIZE, 0);
#elif (INFER_EXTRA_BURST > 0)
for(s=0; s<BURSTSIZE; s++)
ex_local [0][s] = ex_global[burstPos+s];
#endif 10
/!l Write to pipe 1
for (s=0; s<BURSTSIZE; s++){ 12
#if (INFER_INLINE_BURST > 0) 13
PIPE_WRITE (pipe_ex , ex_global[burstPos+s]);
#else 15
PIPE_WRITE (pipe_ex, ex_local[0][s]); 16
#endif 17

Listing 3. Code illustration of interface variants.

As final alternative, we either instantiated a single interface
kernel for each separate field (as illustrated by Listing 3, or

TABLE II
OVERVIEW OF EXPLORED INTERFACE ALTERNATIVES.

Xilinx SDx Altera OpenCL
async_work_group_copy used slow (ND-range kernels)
burst inference to buffer slow (port width) used
inline burst inference not tested bit slower, high variance

separate / joint kernels see results see results

2 : T T
@ 20000 F8K5-A1 1
> 8K5-A4 =——tt—
Z 385A-11
S 15000 | 385A-14 =—t— 4
=
2
S 10000 |
om
- ‘/
2 50008 1
=}
(2]
o
g 0 1 1 1
float float2 float4 float8 float16

Element size

Fig. 3. Memory throughput of 16KB bursts for different target platforms,
vector data types and streaming interfaces. A/l denote interface mode
(asyn_work_group_copy, infer bursts), final digit denotes number of interface
kernels per direction.

jointly transferred either a pair of two or all four fields within
each interface kernel. With the given structure, joint interface
kernels need to wait for the bursts of all fields to complete,
before proceeding to the pipe loop (in Listing 3 beginning in
Line 12). On the other hand, they can access memory in a
more regular order and also open up slots for more compute
kernels in the SDx design flow that is currently limited to a
total of ten kernels.

Table II summarizes the investigated interface alternatives.
After sorting out the less promising alternatives, we performed
detailed measurements for different pipeline widths and num-
ber of interface kernels. To this end, we integrated the interface
kernels with an empty compute kernel that in every cycle
tries to consume one element (of the vector data type in case
of pipeline width > 1) from each input pipe and write it to
the corresponding output pipe. Thus, our interface tests are
constrained by the real interplay of off-chip memory bursts
and internal pipe interfaces and just omit the latency of real
compute pipelines. The total achieved memory throughput for
selected alternatives is presented in Figure 3. For the presented
experiments, we fixed the burst size to 16KB regardless of the
data type and iterated 1440 times over 256KB of data. The
results contain explicit bank partitioning for the 8KS5 board
and automatic interleaving for the 385A board. We see that
four separate interface kernel always enable superior or equal
throughput to joint interface kernels. For one- and two-element
vector types with four interface kernels, the 8K5 and 385A

b=}

0.8 T T T
£ { 8k5-A1
2 o7 8K5-A4 —o— -
<} ! 385A-I1
£ 0.6 385A-14 ——
4. 05
g 04 |
2 o3t
T 02t
[} o
£ 01t X
_8 1 1 1
o float float2 float4 float8 float16

Element size

Fig. 4. Projected efficiency of memory interfaces when feeding a vectorized
compute pipeline with initiation interval (II) of 1 at default target frequency.

boards with their very similar physical memory configuration
perform similar, but the 5K8 board doesn’t scale further up.
This could either be caused by the different burst generation
methods, or by limits of the common AXI bus shared by all
kernels.

The goal of our interface design is not highest off-chip
memory bandwidth per-se, but the ability to feed a compute
pipeline with a given peak throughput as efficiently as pos-
sible. For example a scalar single-stage compute kernel at
200 MHz needs 6400 MB/s memory throughput to achieve
its peak throughput of 200 Mega cell updates per second
(short Mcells/s), an equally clocked 32-stage scalar compute
kernel can use the same off-chip bandwidth to compute 6400
Mcells/s, whereas a 16-wide single-stage compute kernel at
250 MHz requires for full throughput of 4000 Mcells/s an
off-chip memory bandwidth of 128 GB/s, which is beyond
reach for our utilized boards. In Figure 4, we illustrate how
efficiently compute pipelines of different widths can be utilized
with the respective memory interfaces. To this end, we divide
the bandwidth demands of each compute pipeline at the default
OpenCL target frequencies by the measured bandwidth of the
investigated interface configurations. We see that for any fixed
amount of total parallelism (pipeline depth * pipeline width),
deep scalar pipelines (element type £1oat) can be used more
efficiently than variants for wider vector data types. This is not
surprising due to their higher data reuse. However, when wider
pipelines are more resource efficient and thus allow more total
parallelism, the efficiency of the 385A interfaces decreases
slower than for the other boards.

VI. DESIGN INTEGRATION AND EVALUATION

In this section, we give an overview over a selection of
designs that are the result of a design space exploration process
for each of the target platforms. Following the findings of
the previous section, we started by scaling scalar pipelines as
deep as possible for both platforms. Both for the 8K5 and the
385A target, we initially reached a total pipeline depth of 40

stages. Synthesis details are summarized in the first columns
of Tables III and IV respectively. As indicated in Section IV,
currently our Intel/Altera designs with more than 24 pipeline
stages can not be executed and would require modifications
reducing the number of individually named buffers.

For the Xilinx Ultrascale design, we distributed the compute
pipeline to two kernels with 20 stages each in the hope of
achieving good utilization of both SLRs. The highest overall
resource usage is in logic (CLBs) at 76%, but with 90.14%
and 60.70% individual CLB utilization in the respective SLRs,
imbalance in the regions seem to have prevented us from
reaching deeper parallelism with two kernels. Notably, the
bipartition bandwidth between the SLRs is not an issue, using
only between 10% and 17% of the available connecting super
long lines (SLLs). We believe that more independent synthesis,
place and route attempts should be able to overcome the
partitioning limitation, but instead we proceeded by splitting
the pipeline to even more decoupled kernels to give the tools
more freedom to find a beneficial partitioning. To that end, we
derived another interface variant with two pairs of interface
kernels for input and output, that each stream two fields.
Its performance is indeed between that of four and of one
interface kernels, thus it is most suitable when between three
and six of the maximum ten kernel slots in the SDx design
flow are needed for compute kernels. This way we obtained
two designs with more total parallelism (see middle and right
column of Table III).

Due to the low interface efficiency for wider pipelines and
to the increased initiation intervals caused by the compiler
frontend, wider designs were not very promising. Initial tests
also seem to indicate that wide pipelines don’t help much
to reduce logic utilization. At this point it is unclear to us,
whether the free DSP resources could be put to better use
in floating point applications like ours. There are some spare
BRAM resources that would be very helpful when aiming for
larger row buffers or burst interface buffers.

Running two of these designs — the third one sadly hangs
at first kernel invocation when running on actual hardware
— we measure the effective throughput in MCells/s. With
more than 5 GCells/s, we were able to more than double
the 2 GCells/s our previous publication [5] on Virtex-7 and
approach the throughput of the simpler Altera Stratix V
design from [8]. Measured performance is very consistent over
different grid sizes. Due to timing problems, the design tools
reduced the clock frequency of the final designs below the
target of 250 MHz. Thus, the measured results are below the
extrapolation of multiplying the isolated interface throughput
from the previous section with the total pipeline depth. On
the other hand, with an ideal memory interface, the compute
pipelines could also achieve more throughput, as we see from
multiplying the clock frequency with the total parallelism.

The scalar Altera Arria 10 design (Table IV) is limited by
on-chip memory resources usage 96% of the available RAM
blocks. To mitigate this pressure, wider, but less deep pipelines
that thus require less row buffers are helpful. Additional
overall parallelism needs to make up for the less efficient

TABLE III
SELECTED DESIGNS ON 8K5 WITH KINTEX ULTRASCALE KU115-2.
FIRST AND SECOND DESIGN SUCCESSFULLY TESTED, THIRD DESIGN
HANGS AT HARDWARE EXECUTION, BUT IS FUNCTIONAL IN SIMULATION.

total parallelism 40 45 48
configuration 2x20x1 3x15x1 6x8x1
(kernels x stages x vector)
interface kernels (each dir.) 4 2 2
clock frequency [MHz] 160 170 150
CLB usage (SLR1, SLR2) 90%, 61% 77%, 94% 84%, 97%
BRAM usage 51% 57% 63%
DSP usage 24% 27% 29%
throughput MCells/s
measured 4961 5393 -
extrapolated from interface 7480 7110 7584
theoretical pipeline peak 6400 7650 7200
TABLE IV

SELECTED DESIGNS ON 385A WITH ARRIA 10 1150 GX. TWO FIRST
DESIGNS NOT RUN DUE TO LIMITATION TO EXECUTE DESIGNS WITH MORE
THAN 128 NAMED MEMORY BLOCKS, THIRD AND FOURTH DESIGN FULLY

FUNCTIONAL (USED TO PRODUCE SAMPLE RESULTS FOR SECTION II.)

total par. 40 64 80 96
configuration
(KxSxV) 1x40x1 1x32x2 1x20x4 1x24x4
i.f. kernels 4 4 4 4
freq. [MHz] 191 202 208 185
ALM usage 38% 34% 34% 37%
RAM usage 96% 88% 66% 74%
DSP usage 37% 60% 72% 86%
throughput
measured - - 10183 10722
if. x par. 6520 9606 9993 11991
theor. peak 7640 12928 16640 17706

interfaces for wider pipelines analyzed in the previous section.
With pipelines of float4 elements, we were able to more
than double the total amount of parallelism. The shift from
deep to wide Altera designs visibly shifts the resource pressure
from on-chip memory to DSP blocks, up to the point where
86% of the 1518 variable-precision DSP blocks are utilized.
Logic utilization is still relatively relaxed, probably because
of the extended functionality of the DSP blocks.

The measured performance of the fully functional vectorized
design reaches 10.7 GCells/s, higher than the simpler reference
from [8]. Measured performance with a 4-wide and 20-deep
design even slightly surpasses the projection based on the
isolated interface measurements. This is possible because the
compute pipeline latency can decouple the points in time
when input and output kernels initiate their burst transfers.
At 16 floating point operations per cell update, our fastest
design sustains 172 GFLOPS, to the best of our knowledge
the highest throughput published for a similar application on
a single FPGA. Without off-chip memory limitations, the raw
performance of the compute pipeline itself could even reach
283 GFLOPS.

VII. RELATED WORK

As most closely related work with regard to the design
and to performance numbers, Waidyasooriya and Hariyama [8]
report of two very similar OpenCL-based 2D FDTD designs
on Altera Stratix V GX. The faster design from [8] completes
a test setup of 1024 x 1024 grid and 15360 simulation steps
in 1.69 seconds, which corresponds to 8.876 Gcells/s. Our
own previous work [5] targeted Xilinx Virtex-7 and reached
around 2 Gcell/s on grids up to 4096 x 4096. Both designs [5],
[8] use only unrolling in time. In [5], we present 36 pipeline
stages, but only with an initiation interval of two. Targeting
the smaller grid and thus requiring 4x smaller row buffers, [8]
reaches a pipeline depth of 44 with initiation interval of one.
It performs only the basic field updates and lacks enhanced
evaluation options like the integration of H-field energy over
time. Such limited access to intermediate results is a typical
shortcoming of libraries that can force computational scientists
to write or modify code themselves. With an OpenCL-based
design, such modifications are now also within reach for FPGA
targets.

Cattaneoet et al. [1] investigate data reuse strategies for sim-
ple 2D and 3D stencil calculations on FPGA. Their approach
is more generic than the highly application-specific optimiza-
tions and configurable target platform-specific optimizations
we present. Absolute performance numbers in GFLOPS are
however an order of magnitude below our results. Sano et
al. [6] pipeline stencil computations over nine FPGAs and
this way obtain performance of up to 260 GFLOPS. With our
approach of splitting a deep compute pipeline into separate
kernels coupled through pipes, scaling over multiple devices
would be an interesting next step. We already cross the FPGA
family and design tool boundaries at the specification level. A
particular challenge could be to try to connect different target
FPGAs via pipes or — easier, but less exciting — by calls from
a common host code with MPI scaling.

Vasiljevic et al. [7] propose a library of OpenCL memory
streaming components that can be used to decouple compute
kernels from off-chip memory interface. In contrast to the
interface kernels employed in our work, this library does not
focus on portability, but on support for three different memory
access patterns.

VIII. CONCLUSION

We have presented a flexible FDTD design for microcavity
simulations that can be parametrized for different OpenCL
tool flows and FPGA targets. It allows to trade-off different
resource or platform limitations and overall achieves highly
competitive performance. To achieve this flexibility, we used
some straight-forward pre-processor macros and some that are
tedious to maintain. These drawbacks, as well as some tool-
induced performance limitations may easily be mitigated by
future tool releases. Overall we conclude that the OpenCL-
based FPGA design path can already produce fully functional
designs with promising performance. Since typical optimiza-
tions for FPGA targets seem to be well suited for FPGAs
from different vendors or device families of the same vendor,

OpenCL allows a comparable platform independence inside
the FPGA domain as inside the GPU domain, where invest-
ments into development of long-living simulation codes often
hinge on such portability. When selecting the best platform for
a specific problem, the FPGA domain offers interesting trade-
offs. We partially covered logic, DSP, and on-chip memory
resources, as well as off-chip memory bandwidths. Speed
grade and power consumption of employed FPGAs, as well
as off-chip memory technologies and sizes can offer further
alternatives.

In future work, we would like to explore such platform
alternatives like FPGA boards with hybrid memory cube
(HMC) or cache-coherent coupling of FPGAs to CPU host
memory. As the presented designs fit for grid sizes of up
to 4096 width present a compromise between flexibility and
highest efficiency, we also intend to study in more detail the
trade-offs between fixing simulation parameters at synthesis
time and leaving them open until program runtime.

ACKNOWLEDGMENT

This work was partially funded by the German Research
Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901) and within the project
“PerficienCC - Performance and Efficiency in HPC with
Custom Computing” (PL 595/2-1), by the German Federal
Ministry of Education and Research (BMBF) within the col-
laborative research project “HighPerMeshes” (011HI160054)
and supported by Xilinx under the Xilinx University Program
(XUP).

REFERENCES

[1]1 R. Cattaneo, G. Natale, C. Sicignano, D. Sciuto, and M. D. Santambrogio.
On how to accelerate iterative stencil loops: A scalable streaming-based
approach. ACM Transactions on Architecture and Code Optimizations
(TACO), 12(4):53:1-53:26, Dec. 2015.

[2] H. Giefers, C. Plessl, and J. Forstner. Accelerating finite difference time
domain simulations with reconfigurable dataflow computers. SIGARCH
Computer Architecture News, 41(5):65-70, June 2014.

[3] N. Hemsoth and T. P. Morgan. FPGA Frontiers — New Applications in
Reconfigurable Computing. Next Platform Press, 2017.

[4] S.Kamil, K. Datta, S. Williams, L. Oliker, J. Shalf, and K. Yelick. Implicit
and explicit optimizations for stencil computations. In Proc. Workshop
on Memory System Performance and Correctness (MSPC), pages 51-60,
New York, Oct. 2006. ACM.

[5] T. Kenter and C. Plessl. Microdisk cavity FDTD simulation on FPGA
using OpenCL. In Proc. Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC), held in conjuction with Int. Conf. on
High Performance Computing, Networking, Storage and Analysis (SC),
2016.

[6] K. Sano, Y. Hatsuda, and S. Yamamoto. Multi-fpga accelerator for
scalable stencil computation with constant memory bandwidth. [EEE
Transactions on Parallel and Distributed Systems (TPDS), 25(3):695—
705, Mar. 2014.

[7] J. Vasiljevic, R. Wittig, P. Schumacher, J. Fifield, F. M. Vallina, H. Styles,
and P. Chow. OpenCL library of stream memory components targeting
FPGAs. In Proc. Int. Conf. on Field Programmable Logic and Applica-
tions (FPL), pages 104-111, Dec. 2015.

[8] H. M. Waidyasooriya and M. Hariyama. FPGA-based deep-pipelined
architecture for FDTD acceleration using OpenCL. In Proc. IEEE/ACIS
Int. Conf. on Computer and Information Science (ICIS), pages 1-6, June
2016.

[9] K. Yee. Numerical solution of inital boundary value problems involving
maxwell’s equations in isotropic media. /EEE Transactions on Antennas
and Propagation, 14:302-307, May 1966.

