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SUMMARY We present the recovery of 2.5 Gb/s synchronous 16-point
quadrature amplitude modulation data in real-time for an linewidth-times-
symbol-duration ratio of 0.00048 after transmission over 1.6 km standard
single mode fiber.
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1. Introduction

Coherent optical transmission allows for improved band-
width utilization and impairment compensation of existing
optical fiber links and is a key for future communication sys-
tems with transmission rates of 112 Gb/s and above. In re-
cent years quadrature phase shift keying (QPSK) was the
preferred modulation format because of its robustness on
long-haul links [1]–[3]. However, for metropolitan area
networks, higher-order quadrature amplitude modulation is
permissible namely 16-QAM, which doubles spectral effi-
ciency. Simulations and offline experiments have recently
been published [4]–[10], but real-time investigations are es-
sential for progress towards commercial applications [11],
[12]. Field programmable gate arrays (FPGA) enable eval-
uating digital receiver algorithms in real-time experiments
before being implemented as CMOS circuits.

Within this paper, we present a 2.5 Gb/s real-time 16-
QAM transmission experiment with FPGA-based digital
signal processing (DSP) that contains our phase noise tol-
erant QAM carrier recovery algorithm [13]. This paper is
organized as follows:

Section 2 explains the general principles of 16-QAM
transmission and coherent detection. Coherent transmission
is usually employed for all higher modulation formats be-
cause it delivers magnitude and phase information to the
electronic part of the receiver. An important element of
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the digital receiver is the phase estimator also referred to
as intermediate frequency (IF) carrier recovery which is de-
scribed in detail within Sect. 3. The phase estimator works
in a feedforward structure which allows data recovery based
on an estimation not delayed by a feedback loop. Section 4
describes the experimental setup, and Sect. 5 presents and
discusses the measurement results.

2. Coherent 16-QAM Transmission

16-QAM modulation combined with polarization multiplex
(PM) doubles the capacity of existing PM-QPSK transmis-
sion systems, as shown in Fig. 1, but requires transmitters
and receivers with increased complexity. The following sub-
sections describe the general implementation strategies for
both.

2.1 16-QAM Transmitter

There are several possible implementations for an optical
square 16-QAM transmitter [14], [15]. The common struc-
tures are presented in Fig. 2. The serial square 16-QAM
transmitter contains a Mach-Zehnder modulator (MZM) and
a phase modulator (PM) in series shown in Fig. 2(a). This
structure features a simple optical part, but phase modula-
tion requires a 12-ary electrical driving signal. High-speed
digital-to-analog converters (DAC) with high-resolution are
required to perform electro-optical (E/O) interfacing. Using
separate serial structures for I and Q modulation displayed
in Fig. 2(b) leads to a higher optical complexity and neces-
sitating integration, but allows binary input levels. Phase
modulators in the 16-QAM transmitter structure temporarily
yield to high optical power, where phasors with amplitudes

Fig. 1 QPSK (a) and square 16-QAM (b) constellation diagrams.
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Fig. 2 Optical square 16-QAM transmitters; serial MZM with PM(a),
IQ-setup with MZM and PM (b), conventional IQ setup (c), and quad-
parallel MZM setup (d).

greater than one are possible during the symbol transitions
[14]. In contrast pure IQ transmitters shown in Fig. 2(c) are
composed of two arms, leading also to a bigger optical com-
plexity, but the electrical driving signals manage with four
levels. Combining two IQ transmitters to a quad-parallel
MZM proposed in [15] and presented in Fig. 2(d) allows
again binary driving signals at the costs of the highest op-
tical complexity of all four structures but provides the best
performance for high baud rates with respect to E/O inter-
facing. In pure IQ transmitters there will be symbol tran-
sitions through zero in the constellation diagrams. If we
consider chirp, the best transmission setup will be equipped
with a conventional IQ transmitter, where chirp and normal-
ized intensity is comparatively small. The chirp character-
istic of the other transmitters is more disadvantageous be-
cause chirp appears simultaneously with high power levels.
For that reason the common IQ transmitter is used in our
experiments.

2.2 Coherent Receiver

Coherent receivers usually consist of a frontend with po-
larization diversity, optical 90◦ hybrids, O/E conversion,
analog-to-digital converters (ADCs) and a digital signal pro-
cessing unit (DSPU). ADCs and DSPU will be integrated
in a single chip to ease interfacing, reduce footprint size
and energy consumption. Field programmable gate arrays
(FPGAs) can be employed to verify and evaluate DSP al-
gorithms in realtime experiments, but they are insufficient
for commercial implementation in terms of available perfor-
mance and energy efficiency.

Figure 3 shows a simplified block diagram of an opti-
cal transmission system with coherent detection and polar-
ization multiplex. The intradyne receiver signal is produced
by an unmodulated LO laser and two 90◦ hybrids for the
optical demodulation and separation. After photodetection,
in-phase and quadrature (I&Q) portions of the electric fields

Fig. 3 Simplified block diagram of an optical transmission system with
coherent detection and digital signal processing.

are sampled by the ADCs and fed into the DSPU.
The DSPU contains several subsystems to overcome

static and dynamic channel impairments as well as laser
phase noise and inadequate receiver setups in the digital do-
main [16]. After CD equalization and clock recovery PMD
can be compensated within separating both polarizations.
Frequency and phase estimations are performed on both
channels before the transmitted symbols are finally decoded.
High baud rates of optical transmission links require M-fold
parallelization of the digital signal processing to meet tech-
nology parameters. This results in several constraints for
algorithm structure and computational complexity [11].

3. Feedforward Carrier Recovery

Even the unmodulated IF signal contains phase noise corre-
sponding to the sum linewidth of TX and LO lasers. If there
is no automatic LO frequency control the IF generally dif-
fers from zero. A non-zero IF leads to a deterministic phase
slope on adjacent samples which can be employed for fre-
quency estimation [17]. The random phase noise has to be
tracked by a phase estimation stage that also removes resid-
ual frequency offsets due to imperfect frequency estimation
or LO frequency control. The effort for phase estimation
(calculation of a time series of angles, real numbers within
a limited range) depends on the modulation format.

For star constellations (BPSK, QPSK, 8-PSK and cer-
tain QAM formats) it is obviously advantageous to convert
the received symbols to polar coordinates and to demodu-
late them by a simple subtraction of signal and carrier phase
angles [18]. In contrast, the more common square con-
stellation QAM formats require a rotation in the complex
plane for demodulation, to adjust them to non-radial de-
cision boundaries. Feedforward phase estimators (PE) us-
ing the QPSK Partitioning scheme [19], [20], require less
computational effort in comparison to minimum distance PE
concepts [21], [22], but are more sensitive against noise ef-
fects, especially for higher order QAM constellations. Due
to the laser linewidth tolerance and limited computational
resources, [13] was chosen for this experiment. The algo-
rithm and its implementation is described in the following
subsections.



1796
IEICE TRANS. COMMUN., VOL.E94–B, NO.7 JULY 2011

Fig. 4 Feedforward recovery using B test phase values ϕb. ( c© 2009
IEEE)

3.1 Algorithm

Figure 4 shows a block diagram of the employed carrier re-
covery module. The input signal Zk of the coherent receiver
is sampled at the symbol rate. For the theoretical description
perfect clock recovery and equalization are assumed [13].
In order to recover the carrier phase the received signal Zk is
rotated by B test carrier phase angles ϕb which are equally
spaced:

ϕb =
b
B
· π

2
, b ∈ {0, 1, . . . , B − 1} . (1)

Afterwards, all rotated symbols are fed into a decision

circuit and the squared distance
∣∣∣dk,b

∣∣∣2 to the closest constel-
lation point is calculated in the complex plane:
∣∣∣dk,b

∣∣∣2 =
∣∣∣Zk exp { jϕb} − ⌊Zk exp { jϕb}⌋D

∣∣∣2

=
∣∣∣Zk exp { jϕb} − X̂k,b

∣∣∣2 (2)

In order to reduce the influence of channel noise distor-
tions, the distances of 2N + 1 consecutive symbols rotated
by the same carrier phase angle ϕb are summed up to a mean
square error quantity S k,b:

sk,b =

N∑

n=−N

∣∣∣dk−n,b

∣∣∣2 (3)

The optimum value of the filter half width N depends
on the laser linewidth times symbol rate product. N =

6, . . . , 10 turned out to be a fairly good choice in simulation
[13].

After filtering, the optimum phase angle is determined
by searching the minimum sum of distance values. As the
decoding was already executed in (2), the decoded output
symbol X̂k can be selected from the X̂k,b by a switch con-
trolled by the index mk,min of the minimum distance sum.

Due to the 4-fold ambiguity of the recovered phase in
the square M-QAM constellation the first two bits which de-
termine the quadrant of the complex plane should be differ-

Fig. 5 Partial differential encoding for a square 16-QAM constellation.
( c© 2009 IEEE)

entially Gray-encoded. The differential encoding and de-
coding process is the same as for QPSK and is presented in
detail in [23]. It can be described by the following formula

no,k =
(
nr,k − nr,k−1 + nj,k

)
mod 4

no,k, nr,k, nj,k ∈ {0, 1, 2, 3} (4)

where no,k is the differentially decoded quadrant number, nr,k

is the received quadrant number and nj,k is the jump num-
ber. The only required modification of the decoding process
compared to [23] is that quadrant jumps are detected accord-
ing to the following formula:

nj,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if mk,min − mk−1,min > M/2
3 if mk,min − mk−1,min < −M/2
0 otherwise

(5)

For all other bits that determine the symbol within
the quadrant of the complex plane, normal Gray-coding
is sufficient and no differential encoding/decoding is re-
quired. Figure 5 illustrates the bit to symbol assignment in-
cluding differential encoding/decoding for square 16-QAM.
The resulting constellation diagram is not any longer Gray-
encoded. This multplies the BER by a factor of 2 for 4-
QAM (QPSK), 1.67 for 16-QAM, and less (approaching 1)
for high order QAM constellations [24].

3.2 Hardware Efficient Carrier Recovery Implementation

The rotation of a symbol in the complex plane normally
requires a complex multiplication, consisting of four real-
valued multiplications with subsequent summation. This
would lead to a large number of multiplications to be ex-
ecuted, while achieving a sufficient resolution B for the car-
rier phase values ϕb. The hardware effort would therefore
become prohibitive. Applying the CORDIC (coordinate ro-
tation digital computer) algorithm [25] can dramatically re-
duce the necessary hardware effort to calculate the B rotated
test symbols. This algorithm can compute vector rotations
simply by summation and shift operations. As for the calcu-
lation of the B rotated copies of the input vector intermediate
results can be reused for different rotation angles, the num-
ber of shift and add operations required to generate the B
test symbols is given by



AL-BERMANI et al.: SYNCHRONOUS DEMODULATION OF COHERENT 16-QAM
1797

nop =

log2 B∑

b=1

2b+1 (6)

For B = 16, the CORDIC algorithm requires only 60
shift and add operations whereas complex multiplication of
Zk with 16 test phasors would require 64 real multipliers
and 32 adders. To determine the closest constellation point
X̂k,b the rotated symbols are fed into a decision circuit. The
square distance (2) can be written as
∣∣∣dk,b

∣∣∣2 = (Re
[
dk,b
])2
+
(
Im
[
dk,b
])2

=
(
Re
[
Zk exp { jϕb}] − Re

[
X̂k,b

])2

+
(
Im
[
Zk exp { jϕb}] − Im

[
X̂k,b

])2
(7)

Implementing this formula literally into hardware
would lead to two multipliers and three adders, but a closer
examination of (2) and (7) reveals that the results of the
subtractions are relatively small because the distance to the
closest constellation point is calculated. Therefore, the most
significant bits (MSBs) of the subtraction result will always
be zero and can be discarded to reduce the hardware effort.
Due to the moderate resolution required for d2, the squared
distance (3) can be determined by a look-up table or basic
logic functions more efficiently than by multipliers.

Parallel systems allow a very efficient implementation
of the summation of 2N+1 consecutive values. The adders
can be arranged in a binary tree structure where intermedi-
ate results from different modules are reused in neighboring
modules leading to a moderate hardware effort.

4. Experimental Setup

Figure 6 shows the experimental setup of an optical
2.5 Gbit/s realtime 16-QAM transmission system, based on
our earlier QPSK transmission setup [1]. To resolve the
fourfold ambiguity of the estimated optical phase within
the receiver, the quadrant numbers of the in-phase (I) and
quadrature (Q) data streams are modulo 4 differentially en-
coded, cf. Fig. 5. For 16-QAM data supply, two uncorre-
lated 625 Mbaud quaternary data streams are generated by
an FPGA, modulator drivers, attenuators, and resistive sum-
mers. These drive a dual-parallel Mach-Zehnder modula-
tor (DPMZM) consisting of two Mach-Zehnder interferom-
eters, cf. Fig. 2(c). An external cavity laser (ECL) is em-
ployed in a self-homodyne arrangement (150 kHz specified
linewidth, 1.5 dBm output power).

The ECL signal passes an Erbium-doped fiber ampli-
fier (EDFA) and is split. One signal portion is fed into the
DPMZM for transmission (TX) while the other portion re-
places the local oscillator (LO) laser for coherent reception.
Fiber launch power at the TX-EDFA output is −1.5 dBm.
After transmission through 1.6 km of SMF, the signal is
fed into a variable optical attenuator (VOA), followed by
an EDFA and a ∼20 GHz wide bandpass filter for noise fil-
tering. In Fig. 7 the optical signal before (a) and after (b)
transmission is plotted, as measured in an oscilloscope at

Fig. 6 16-QAM transmission setup with real-time synchronous coherent
digital I&Q receiver.

Fig. 7 Intensity patterns of 625 Mbaud 16-QAM after DPMZM (a), after
1,6 km for −20 dBm (b).

the marked positions in Fig. 6.
Polarization is controlled manually. TX and LO sig-

nals are superimposed in a LiNbO3 90◦ optical hybrid and
detected in two differential photodiode pairs.

The electrical I&Q signal components are amplified
before being sampled in two 6-bit analog-digital converters
(ADCs) at the symbol rate of 625 MHz. The ADCs inter-
face with a Xilinx Virtex 4 FPGA where carrier and data is
recovered electronically.

The received input samples I and Q are combined as a
symbol pointer in the complex plane. Signals are digitally
processed in M = 8 demultiplexed parallel streams, thereby
reducing the internal clock frequency to 78.125 MHz. As
mentioned in Sect. 3 the carrier recovery does not contain
any feedback loop, so it can be adapted to any transmis-
sion rate by increasing M. The optimum response halfwidth
N of the squared-distance filter depends on the laser-sum-
linewidth-times-symbol-interval-product; we chose N = 6
for this experiment, which worked best. For bit-error-ratio
(BER) measurement, appropriate patterns are programmed
into the BER tester.

While the hardware effort for carrier recovery is on the
order of B = 16 times larger than for QPSK, capacity is all
the same doubled.

The designed digital carrier recovery is performance
constrained due to ADC resolution and linewidth-times-
symbol-duration product values as it is presented in Fig. 8.
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Fig. 8 Receiver sensitivity penalty vs. analog-to-digital converter reso-
lution (left) and receiver tolerance against phase noise (right) for square16-
QAM constellation.

Based on simulation results, an effective converter resolu-
tion of at least 7 bit and a Δ f · T ≤ 10−4 is required for
optimal performance. Limited resolution and sample rate of
the employed ADCs result in a suboptimal operating point,
which leads to an expected overall sensitivity penalty of
0.9 dB for a BER of 10−3 in simulation.

5. Measurement Results

Electrical 16-QAM data transmission was error-free. Fig-
ure 9 shows the electrical constellation diagram in the
transmitter (a) and after optical transmission over 1.6 km
of SMF for −20 dBm (b) preamplifier input power. Fig-
ure 9(b) shows severe distortion with high noise compared
to Fig. 9(a), mainly due to the low ECL transmission power
used (1.5 dBm). Two EDFAs and the high attenuation of the
VOA also contribute to the noise. An SNR of 35 dB was
measured at one ADC input, using electrical noise power in
a 312.5 MHz band and total electrical signal power. Corre-
sponding spectra are shown in Fig. 10.

Figure 11 shows the BER versus received power for
2.5 Gbit/s transmission back-to-back and over a distance of
1.6 km of SMF, using 27 − 1, 215 − 1 and 223 − 1 PRBS data.
The best measured BERs were at 2.85 · 10−4 and 4 · 10−4 for
27 − 1, 3.8 · 10−4 and 5.4 · 10−4 for 215 − 1, and 4.05 · 10−4

and 5.9 · 10−4 for 223 − 1 PRBS data, for back-to-back and
1.6 km, respectively. All PRBS could be detected until the
preamplifier input power was set below −45 dBm.

All measurements were repeated several times and
turned out to be stable.

Figure 12 shows measured BERs versus preamplifier
input power of all I&Q subchannels for various PRBS
lengths over 1.6 km SMF. The curves are averaged over I&Q
but separated for the inter-quadrant bits (IQ1) and intra-
quadrant bits (IQ2) because of the different encoding meth-
ods.

Intra-quadrant decoding is limited more strongly than
inter-quadrant decoding, presumably by intersymbol inter-
ference (ISI) in the non-ideal electrical transmitter. This is
seen from the fact that the BER of I2 and Q2 (inside quad-
rant) is higher than the BER of the quadrant numbers I1 and
Q1. Based on simulations without ISI we estimated the BER
floor to be ideally at 10−4 for our Δ f · T = 0.00048. Aver-
aged over all 4 subchannels (I1, Q1, I2 and Q2) at received

Fig. 9 16-QAM constellation in the transmitter (a) and after optical
transmission for −20 dBm(b).

Fig. 10 Electrical spectra in one quadrature with either aligned (top) or
orthogonal (bottom) polarizations, showing signal and noise, for −20 dBm
(a) and −40 dBm (b) preamplifier input power.

Fig. 11 Measured BER vs. optical power at the preamplifier input, aver-
aged over all 4 subchannels (I1, Q1, I2 and Q2) at 2.5 Gbit/s data rate.

powers larger than −30 dBm, the measured BER was all
the same less than the forward-error corrections (FEC) limit
(2 ·10−3). An appropriate FEC code (which was actually not
employed within this experiment) would cause 7% overhead
and decrease the net data rate. As mentioned above, N = 6
of the carrier recovery is optimum for a single-polarization
16-QAM system in our experimental setup. Note that with
a higher received power, the phase noise tolerance could be
improved simply by lowering N. The implemented carrier
recovery algorithm is compatible with all kinds of equaliz-
ers for polarization control, chromatic dispersion (CD) and
polarization mode dispersion (PMD).
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Fig. 12 Measured BERs of 16-QAM bits 1 and 2, each averaged over
I&Q, vs. optical power at preamplifier input. Fiber length was 1.6 km.

6. Conclusions

A 2.5 Gb/s realtime transmission of 16-QAM with coher-
ent detection and digital phase estimation and data recovery
was presented. The averaged BER results reached the FEC
threshold for a receiver input power below −30 dBm.
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