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Properties of synchronous optical QPSK

4 bit/symbol (with added polarization division multiplex)
► lower cost per bit
Symbol rate: 40 Gbaud may suffer from nonlinear phase noise. 10 Gbaud     
(= 4 x 10 Gbit/s) is perfect for evolutionary retrofitting of 40 Gbit/s 
transponders into existing 10 Gbit/s WDM systems.
Electrical received signals are proportional to optical fields: „Optical
equalization of CD and PMD in the electrical domain“ becomes possible.
DFB lasers are a must, since external cavity lasers are too costly and space-
consuming.
► Possible for synchronous QPSK with feed-forward carrier recovery
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Mathematical description
Demodulation of the QPSK signal
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Automatic frequency control & carrier recovery needed!
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Mathematical description
Analog carrier recovery
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All signals are complex!
General complex multiplier requires 4 real multipliers (Gilbert cells) and 2 
adders/subtractors
Frequency multiplication by a factor of 4 removes QPSK modulation
Lowpass filtering of frequency-quadrupled carrier
Frequency division of baseband intradyne signals by a factor of 4, using two 
regenerative frequency dividers: ejωt = ej2ωt ⋅ e−jωt
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Mathematical description
Digital carrier recovery
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Laser linewidth tolerance of QPSK feedforward carrier recovery

For single/dual polarization QPSK, ∆f⋅T ≈ 0.0005 or 0.001 is tolerable. Dual polarizations 
double carrier recovery SNR and allow to double filter bandwidth.
Distribution of residual phase error ∆ϕ is determined by simulation of 5⋅105 symbols. 
Resulting decision errors are found by evaluating an analytical BER(∆ϕ) formula. Decision 
errors yield double bit errors due to differential encoding.
Additional cycle slips of frequency divider contribute single bit errors due to differential angle 
encoding/decoding.
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Signal processing component development

10 Gsps analog digital converter
0.25µm SiGe technology
5 bit Gray coded differential outputs

Development of advanced carrier recovery algorithms
System level component simulation

Carrier & data recovery realized in CMOS
1:16 Demultiplexer
CMOS clock:
625 MHz

Sebastian Hoffmann, Timo Pfau, Olaf 
Adamczyk, Ralf Peveling, Mario 
Porrmann, Reinhold Noé:
Hardware Efficient and Phase 
Noise Tolerant Digital 
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Canada.
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Realtime digital synchronous intradyne QPSK transmission setup

Data rate:
800 Mbaud (1.6 Gb/s)
Manual polarization control
Commercial 5 bit ADCs, clocked at 800 MHz
Clock recovery in the receiver
Automatic LO frequency control implemented
Noisy optical front ends, much too wide optical filter (~20 GHz)
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Results obtained with unmodulated DFB lasers

5 dB

10 MHz

4 MHz

due to 
reflections?

Intradyne (I & Q) phasor in the 
complex plane, measured after 
90° hybrid and photodetection

IF spectrum, here stabilized at 400 
MHz rather than 0 MHz. 
Spectrum looks the same when the 
IF was stabilized at 0 MHz.
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Intradyne transmission results, using DFB lasers

800 Mbaud BER floors: 2.7·10−4 (27−1, 2 km), 3.4·10−4 (231−1, 2 km).
Increased BER over 63 km may be due to lack of clock recovery combined with 
a noisy clock source.
All BER floors within capability of FEC (7%) ⇒ 1.5 Gb/s net data rate
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Bit error ratio floor vs. linewidth times symbol duration product

Unproblematic operation is expected at 10 Gbaud.
Additional phase noise tolerance (factor 2) applies 
for polarization division multiplex.
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Conclusions

First realtime synchronous QPSK transmission with DFB lasers
FEC-compatible performance at 800 Mbaud (1.6 Gb/s)
Phase noise should be unproblematic at 10 Gbaud.
4×10 Gb/s synchronous QPSK transmission systems with polarization division 
multiplex can be developed, using DFB lasers.
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