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Abstract This concept employs a novel digital baseband signal processing scheme after electronic demultiplexing. An IF 
linewidth tolerance of up to 10-3 times the QPSK symbol rate is predicted. Commercially available DFB lasers shall 
therefore suffice.  
 
Introduction 
Transmission systems with phase shift keying (PSK) are 
attractive to increase transmission lengths while keeping 
amplifier spacing fixed. Differential quaternary PSK receivers 
[1,2] suffer from a 2.3dB sensitivity penalty compared to 
synchronous quaternary PSK (QPSK) receivers and are only 
~1dB more sensitive than ideal ASK receivers. A PLL-based 
carrier recovery for synchronous QPSK transmission would fail 
in combination with DFB lasers because the product of laser 
linewidth times loop delay is too large [3,4]. An analog, phase 
noise tolerant feedforward carrier recovery concept has been 
presented in [5] for a coherent in-phase and quadrature (I&Q), 
synchronous QPSK receiver. A record IF linewidth tolerance of 
up to 10-3 times the symbol rate was predicted to be tolerable 
with additional polarization division multiplex. Digital 
processing of QPSK signals is expected to be very useful if the 
polarization tracking in a polarization diversity coherent 
receiver, or the equalization of PMD and CD distortions, is 
performed electronically. To the best of our knowledge, a 
digitally implementable, phase noise tolerant, synchronous 
QPSK receiver design has not been published yet. Here we show 
how the carrier can indeed be recovered digitally. Our concept 
allows for synchronous QPSK transmission using off-the-shelf 
DFB lasers and a digital coherent I&Q receiver. 

Operation principle 
In order to keep the overall electrical bandwidth as low as 
possible we assume an I&Q receiver (Fig. 1) with an 
intermediate frequency (IF) near or at zero. The in-phase and 
quadrature (I&Q) signals can be understood to be real and 
imaginary parts Re X, Im X of a complex IF signal ϕ′⋅∝ jecX . 

This is the case if the path length difference 
( ) ( )22122111 llll −−−  is a quarter wavelength. The transmitted 

data symbol c assumes the values ± 1 ± j, thereby transmitting 2 
bits. Angle ϕ′  is the difference phase between signal laser and 
local oscillator laser. It is not constant. 
The clock can be recovered in an extra intensity modulation 
direct detection receiver, especially for RZ-coded QPSK, or 
from the electrical I&Q signals. After clock recovery the I&Q 
signals are sampled, digitized and demultiplexed 1:M to a low 
symbol rate where complex digital functions can be 
implemented in CMOS. The M data streams are processed in M 
modules (Mod.). The modules also have to communicate among 
each other, as will be explained. The ith and (i−N)th complex 
samples X(i), X(i−N) of the digitized IF signal X enter the kth 
module (Fig. 2), where k = i mod M, and N is a delay. X(i) is 
raised to the 4th power. Due to 44 −=c  the modulation is 

thereby eliminated. The resulting frequency-quadrupled carrier 
ϕ′−∝ 44 jeX  must be filtered for SNR improvement. To do so, 

the I&Q signals 4Re X , 4Im X  are lowpass-filtered (LPF) 
because the IF is at or near zero. 
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Fig. 1: I&Q coherent receiver concept with digital feedforward 
carrier recovery scheme for synchronous QPSK 
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Fig. 2: Block diagram of kth digital signal processing module 
after demultiplexer. The inputs and outputs terminated by a 
circle may or must interface with other modules. 

The phase angles of the quantities ( )( )4mMiX −  with 

m = 0,1,2,..., which are available in the kth module, may differ a 
lot. Therefore it would not be appropriate to base the lowpass 
filtering only on them. Rather, a good filter may take the sum 

( ) ( )( )∑ =
−=

N

m
miXiY

2

0
4  of the 2N+1 most recent samples of 

the frequency-quadrupled carrier, most of which come from 
adjacent modules. The group delay in this filter equals N 
symbols. N = 3 or 4 is a fairly good choice. The summation 
requires more hardware than the equivalent recursive relation 

( ) ( ) ( ) ( )NiXiXiYiY 21 −−+−= . However, the recursive 

relation would need to be clocked at the symbol rate, which is 
practically impossible. 
The filter (LPF) also alters the phase angle. ϕ4jeY −∝  holds, 
where 4ϕ(i) would ideally be equal to 4 ( )Ni −′ϕ . The next step 
is to divide phase and frequency of Y by a factor of 4 in order to 
recover the carrier phase. The best choice is probably a 2D-
lookup table which calculates carrier phase samples 

( ) ( ) ( )( )iYi −= arg41ϕ . Using a similar lookup operation, the 
phase angle ( ) ( )NiXi −= argψ  of the received signal is 



obtained [3], with a delay equal to that experienced in the 
lowpass filter. For demodulation, an integer ( )inr  which fulfills 

( ) ( ) ( ) ( )( ) 212 πϕψπ +<−≤ iniiin rr  is simply determined. It 

may be called a received quadrant number because 
( ) ( ) ( ) 21 πijnrejNic +=−  holds for ( ) ( ) 4πϕϕ <−′− Nii . 

Unfortunately, there is a 4fold ambiguity in the calculation of 
ϕ(i), and ( )inr  does therefore not contain all needed 

information. Choosing ϕ(i) as close as possible to ϕ(i–1) could 
solve the problem but is practically impossible because the 
correct quadrant can not be selected within one symbol duration. 
Rather, we propose that ( ) 4πϕ ≤i  be always chosen. For 

compensation the kth module must detect whether ϕ has jumped 
by an integer multiple of π/2. It determines a quadrant jump 
number ( )in j  for this purpose. This is an integer which fulfills 

( ) ( ) ( ) 421 ππϕϕ <−−− inii j . All quadrant numbers and 

operations are understood to be valid modulo 4 because the 
angle functions are periodic. Fig. 3 shows a quadrant phase jump 
at 0ii =  and its detection. A value ( ) 00 ≠in j  indicates that all 

( )pnr  with 0ip ≥  carry an unwanted offset ( )0in j− . It is not 

possible to correct all ( )pnr  accordingly because this would 

have to be done at the symbol rate. 
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Fig. 3: Quadrant phase jump and its detection 

no(i) = 
nd(i−N)

nr(i)

i0i0−1 i

nc(i−N)

0

1

2

3

nr(i)−nr(i−1)0

1

2

3

nj(i)

 
Fig. 4: Successful correction of quadrant phase jump 

As a remedy, a data quadrant number nd is generated already at 
the transmitter side which represents two bipolar data bits d1, d2 
(Table 1). The data quadrant number is differentially encoded to 
form an encoded quadrant number nc with 

( ) ( ) ( )( ) 4mod1−+= ininin cdc . This number defines the 

quadrant of the transmitted complex symbol 
jcjcc ±±=+= 1ImRe  (Table 1). After transmission, one 

calculates an output quadrant number 
( ) ( ) ( ) ( )( ) ( )Nininininin djrro −=+−−= 4mod1 . It is identical 

to the delayed data quadrant number, and it yields the output 
data bits ( )io1 , ( )io2  (Table 1). These are equal to the delayed 
data bits ( )Nid −1 , ( )Nid −2 . The successful correction of the 

quadrant jump at 0ii =  is illustrated in Fig. 4.  

d1, Re c, o1 d2, Im c, o2 nd, nc, no 
1 1 0 
-1 1 1 
-1 -1 2 
1 -1 3 

Table 1: Bipolar bits vs. quadrant number 

Discussion and Summary 
While some parts of the scheme are not unique and can be 
replaced by functionally similar blocks, the differential encoding 
of the data quadrant number combined with the addition of the 
quadrant jump number during differential decoding is essential 
for a  completely parallelized signal processing in the digital 
receiver. Each module processes only signals which are already 
available, and each processing step may include an arbitrary 
delay which just adds to the overall transmission delay but does 
not impede realtime operation. 
Yet the phase noise tolerance is as good as if all processing took 
place at the symbol rate. The group delay matching between the 
signal phase ψ(i) and the recovered carrier phase ϕ(i) signifies 
that phase noise is introduced into the detection process only by 
the (relatively broad) lowpass filter. The function of the analog 
feedforward carrier recovery [5] is emulated this way, which 
indicates that the laser linewidth / symbol rate ratio can be up to 
5⋅10-4. If polarization division multiplex is included then the 
frequency-quadrupled carrier recovery signals can be added from 
both polarization branches. This doubles the SNR in the carrier 
recovery (which is common for both polarization branches), and 
a laser linewidth / symbol rate ratio of up to 10-3 becomes 
tolerable. At least 1/3 of this can be realized experimentally, as 
may be concluded from a comparison of [5] with the early 
experiment [6]. 
In summary, this digital feedforward carrier recovery scheme for 
QPSK is predicted to be extremely laser linewidth tolerant, just 
like its analog counterpart. As a consequence, synchronous 
QPSK becomes feasible even at 10Gsymbols/s with 
commercially available DFB lasers and a digital coherent I&Q 
receiver. 
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