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Phase-Noise-Tolerant Two-Stage Carrier Recovery
Concept for Higher Order QAM Formats

Timo Pfau, Member, IEEE, and Reinhold Noé, Member, IEEE

Abstract—In this paper, a phase-noise-tolerant two-stage car-
rier recovery concept for arbitrary quadrature amplitude modula-
tion (QAM) constellations is presented. Possible implementations
are evaluated in simulations of square 16-QAM, 64-QAM, and
256-QAM transmission systems, considering fourth-power and
decision-directed carrier recovery for the first stage. The second
stage uses QAM feedforward carrier recovery. It is shown that the
two-stage concept achieves the same phase noise tolerance as the
original QAM feedforward carrier recovery concept, but reduces
the required hardware effort by factors of 1.5–3 depending on the
order of the QAM constellation.

Index Terms—Optical fiber communication, phase estimation,
phase noise, phase-shift keying (PSK), quadrature amplitude mod-
ulation (QAM).

I. INTRODUCTION

THE NEED to increase the channel data rate in fiber optic
networks without increasing the signal bandwidth drives

the development toward more spectrally efficient modulation
formats. Optical coherent communication systems have, there-
fore, been subject of intense research activities, as they have
the ability to access the full information of the optical field
in the electrical domain and allow to receive complex mod-
ulation formats like M -array phase-shift keying (M -PSK) or
M -quadrature amplitude modulation (QAM) [1]. Today’s co-
herent receivers rely on digital signal processing to compensate
for distortions like chromatic dispersion (CD) and polarization-
mode dispersion (PMD) [2], [3], nonzero intermediate fre-
quency (IF), and phase noise [4]. For quadrature PSK (QPSK)
or general M-PSK schemes, a multitude of carrier recovery al-
gorithms exist that provide a high phase noise tolerance [4], [5].
However, these algorithms fail when applied to most higher or-
der QAM constellations, because these do not have equidistant
phases. Additionally, it has been shown that decision-directed
carrier recovery is also not an option for higher order QAM
constellations due to the inevitable feedback delay in practical
systems [6].

In this paper, we review a feedforward carrier recovery algo-
rithm for arbitrary QAM constellations that promises a phase
noise tolerance sufficient to realize coherent higher order QAM
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Fig. 1. QAM feedforward carrier recovery.

receivers with DFB lasers [7]. In addition, we propose a novel
extension of the algorithm to a two-stage carrier recovery con-
cept that allows to significantly reduce the required hardware
effort, while preserving the phase noise tolerance [8], [9].

II. QAM FEEDFORWARD CARRIER RECOVERY

Fig. 1 shows the block diagram of the QAM feedforward
carrier recovery scheme [7]. The input signal Yk of the coher-
ent receiver is sampled at the symbol rate, and perfect clock
recovery, equalization, and IF compensation are assumed.

The general idea of the algorithm is to simultaneously try
different carrier phase angles and determine the most likely
among these. Therefore, the received signal Yk is rotated by B
equidistant test carrier phase angles ϕb with

ϕb =
(

b

B
− 1

2

)
γ, b ∈ {0, 1, . . . , B − 1} (1)

where γ is the angular size of the interval, in which the carrier
phase is searched for. Hence, the difference between two neigh-
bor test angles is Δϕ = γ/B. If the input data into the carrier
recovery is not preprocessed, γ has to be equal to the sym-
metry angle of the QAM constellation, i.e., for square QAM
constellations, γ = π/2.

After rotation, all symbols are fed into decision circuits, and
the squared distance |dk, b |2

|dk,b |2 = |Yke−jϕb − X̂k,b |2 , X̂k,b = �Yke−jϕb �D (2)
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PFAU AND NOÉ: PHASE-NOISE-TOLERANT TWO-STAGE CARRIER RECOVERY CONCEPT FOR HIGHER ORDER QAM FORMATS 1211

to the closest constellation point is calculated in the complex
plane. �.�D denotes the output signal of the decision device.

In order to remove noise, the distances of 2N + 1 consecutive
symbols rotated by the same test carrier phase angle ϕb are
summed up for each b

sk,b =
N∑

n=−N

|dk−n,b |2 . (3)

The optimum value of the filter halfwidth N depends on the
optical SNR (OSNR) and the laser linewidth times symbol rate
product.

After filtering, the optimum phase angle for symbol k is de-
termined by searching that b = bk,min , which provides the mini-
mum sum sk,b of distance squares. As the decoding was already
executed in (2), the decoded output symbol X̂k can be selected
from the X̂k,b by a switch, which is controlled by the index
bk,min of the minimum distance sum.

Due to the possible rotational symmetry of the QAM constel-
lation and the resulting m-fold ambiguity of the recovered phase
with m = 2π/γ, the receiver may not be able to uniquely assign
the recovered symbol to the corresponding bits. This problem
can be resolved either by using framing information [10] or by
applying differential coding [11].

III. TWO-STAGE CARRIER RECOVERY CONCEPT

It has been shown in [7] that for a sensitivity penalty be-
low 1 dB at bit error rate (BER) = 10−3 , square 16-, 64-, and
256-QAM require ≥24 ,≥25 , and ≥26 test carrier phase angles,
respectively. Although a hardware-efficient implementation has
been proposed to realize the algorithm, this still translates into
a considerable computation effort, which could become pro-
hibitive, especially for higher order constellations.

A possibility to further reduce the hardware effort is to pre-
process the data in a first carrier recovery stage that provides a
rough estimate of the carrier phase [9]. This allows to reduce
the test interval γ, and hence, the number of required test car-
rier phase angles B for the QAM feedforward carrier recovery
used in the second stage. Since only a rough estimate of the
carrier phase is required after the first stage, hardware-efficient
algorithms can be applied that normally fail to be sufficiently
accurate in real-time higher order QAM systems, such as the
fourth-power or decision-directed carrier recovery.

A. Decision-Directed Carrier Recovery

The structure of the two-stage carrier recovery using decision-
directed preprocessing in the first stage is shown in Fig. 2 [12].
The input signal is derotated by the carrier phase recovered
from earlier received symbols. As the second carrier recovery
stage provides an accurate carrier phase estimate, no additional
filter is required for the first-stage processing. The increase in
complexity for the overall system due to the two-stage setup is,
hence, minimal.

The critical parameter in this setup is the feedback delay Δk
for the decision-directed preprocessing. The longer this delay

Fig. 2. Two-stage carrier recovery with decision-directed preprocessing in the
first stage.

Fig. 3. Two-stage carrier recovery using fourth power phase estimation in the
first carrier recovery stage.

becomes, the less accurate is the preprocessing and the larger
has to be the test interval in the second stage.

B. Fourth-Power Carrier Recovery

To avoid any feedback in the design, the fourth-power carrier
recovery algorithm can be used for the first stage, as shown in
Fig. 3 [4].

In order to minimize the required computational effort, block
phase estimation can be used, i.e., one carrier phase angle is
calculated for a block of L consecutive symbols.

The performance of the fourth-power algorithm in combi-
nation with square QAM constellations is limited by two di-
rectly opposing properties. The fourth-power operation does not
fully cancel out the modulation. Therefore, residual modulation,
which can be considered as additional noise, must be mitigated
by the filter. This enforces much longer filter block lengths than
the ones usually required for M -PSK modulation schemes. But
the longer the block length, the lower becomes the phase noise
tolerance. For this reason, the fourth-power algorithm is alone
suited, only to a very limited extent, for higher order QAM
constellations. But a rough carrier estimation is possible with
relatively low computational effort.

IV. SIMULATION RESULTS

The two-stage carrier recovery is tested in MATLAB simula-
tions for coherent square 16-, 64-, and 256-QAM transmission
systems. As first carrier recovery stage, decision-directed pre-
processing with a variable feedback delay of Δk symbols and
fourth-power carrier recovery with variable block length L are
considered. For simplicity, the second carrier recovery stage is
the same for all constellations, and implemented as QAM feed-
forward carrier recovery with N = 9 and Δϕ = π/128. These
settings give close to optimum performance in all considered
scenarios [7].

In first simulations using 100 000 symbols per data point,
the accuracy of the first carrier recovery stage depending on the
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Fig. 4. Probability density functions of carrier phase error for various block
lengths L of fourth-power carrier recovery, valid for square 16-QAM and
ES /N0 = 18 dB.

Fig. 5. Probability density functions of carrier phase error for various feedback
delays Δk of decision-directed preprocessing, valid for square 16-QAM and
ES /N0 = 18 dB.

applied concept and variable parameters is investigated to deter-
mine the required test interval for the second stage. The results
allow to adjust the test interval in such a way that after prepro-
cessing, the actual carrier phase is lying within this interval at a
probability close to 1 (e.g., 99.999%). Then, for exemplary pa-
rameter sets, the overall receiver sensitivity is determined with
107 simulated symbols.

A. Square 16-QAM Carrier Recovery

Figs. 4 and 5 show the probability density functions of
the carrier phase error for the two considered first estima-
tor stages, fourth-power carrier recovery, and decision-directed
preprocessing, for different feedback delays Δk and differ-
ent block lengths L, respectively. Two different linewidth
times symbol rate products were considered in the simulations
(Δf × T ∈ {10−4 , 2 × 10−5}). The normalized signal to noise
ratio ES /N0 = 18 dB is selected to generate a BER close to the
forward error correction (FEC) limit.

For better comparison, Fig. 6 additionally shows the carrier
phase error variance as a function of the block length L of fourth-
power carrier recovery and feedback delay Δk of decision-
directed preprocessing, respectively.

The optimum block length for the fourth-power estimator
depends on the linewidth times symbol rate product and is L =
64 for Δf × T = 10−4 and L = 128 for Δf × T = 2 × 10−5 ,
respectively. It allows to reduce the test interval of the second-
stage estimator roughly by a factor of 2 to [−π/8, π/8], as the
probability that the actual carrier phase is outside this interval
is negligible.

For small feedback delays, the decision-directed preprocess-
ing achieves a very high accuracy and could work even without
a second carrier recovery stage. But the estimator efficiency
reduces rapidly with increasing feedback delay, and for Δk >
30 (Δf × T = 10−4) and Δk > 60 (Δf × T = 2 × 10−5), the

accuracy of the fourth-power algorithm outperforms decision-
directed preprocessing. As feedback delays below these values
are almost impossible to achieve in practical systems, decision-
directed preprocessing is only suitable to a very limited extent
for the first carrier recovery stage in combination with 16-QAM.

For comparison, Fig. 7 shows the carrier phase error dis-
tribution using QAM feedforward carrier recovery. It can be
seen that the accuracy is significantly improved compared to
fourth-power or decision-directed carrier recovery with realistic
feedback delay. The carrier phase error variances are reduced by
a factor of 10 compared to fourth-power carrier recovery with
optimum block length. Hence, the second carrier recovery stage
is inevitable if a high phase noise tolerance is required.

B. Square 64-QAM Carrier Recovery

For the investigation of square 64-QAM, linewidth times
symbol rate products Δf × T ∈ {2 × 10−5 , 5 × 10−6} were
considered in the simulations. The normalized SNR ES /N0 =
24 dB generates a BER close to the FEC limit. Figs. 8 and 9
show the probability density functions of the carrier phase error
that were achieved with the two different first estimator stages.
Fig. 10 depicts corresponding carrier phase error variances.

The optimum block lengths for the fourth-power estimator are
L ≈ 224 and L ≈ 384 for Δf × T = 2 × 10−5 and Δf × T =
5 × 10−6 , respectively. In both cases, the performance is roughly
constant for block lengths within±128 symbols of the optimum.
The lower linewidth inherently required for a 64-QAM system
compared to 16-QAM allows to use longer block lengths, which
improves accuracy. The potential reduction of the test interval
for the second-stage estimator is increased to a factor of 3 for
Δf × T = 5 × 10−6 .

For the same reason, the estimator efficiency for decision-
directed carrier recovery improved and outperforms the fourth-
power algorithm as long as the feedback delay is Δk < 90
symbols for Δf × T = 2 × 10−5 and Δk < 140 for Δf × T =
5 × 10−6 , respectively.

Fig. 11 serves as a reference and shows the carrier phase
error distribution using QAM feedforward carrier recovery. Al-
though the accuracy of the fourth-power algorithm and decision-
directed carrier recovery improved for 64-QAM, the QAM feed-
forward algorithm still has a significantly higher accuracy. Its
carrier phase error variance is more than a decade below the
minimum variance of fourth-power carrier recovery.

C. Square 256-QAM Carrier Recovery

Figs. 12 and 13 show the probability density functions of the
carrier phase error of the two considered first carrier recovery
stages for square 256-QAM, Δf × T ∈ {5 × 10−6 , 10−6} and
ES /N0 = 30 dB. The corresponding carrier phase error vari-
ances are depicted in Fig. 14.

The results continue the trend seen from 16-QAM to 64-
QAM. The optimum block length for the fourth-power carrier
recovery further increases for decreasing linewidth times sym-
bol rate products and is L ≈ 448 for Δf × T = 2 × 10−5 and
L > 512 for Δf × T = 10−6 , respectively. Accordingly,
the precision of the phase estimation increases, allowing a
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Fig. 6. Carrier phase error variance versus (left) block length L of fourth-power carrier recovery and (right) feedback delay Δk of decision-directed preprocessing,
valid for square 16-QAM and ES /N0 = 18 dB.

Fig. 7. Probability density function of carrier phase error for QAM feedfor-
ward carrier recovery with square 16-QAM and ES /N0 = 18 dB.

Fig. 8. Probability density functions of carrier phase error for various block
lengths L of fourth-power carrier recovery, valid for square 64-QAM and
ES /N0 = 24 dB.

Fig. 9. Probability density functions of carrier phase error for various feedback
delays Δk of decision-directed preprocessing, valid for square 64-QAM and
ES /N0 = 24 dB.

reduction of the test interval for the second phase estimation
stage by a factor of 3–4.

Due to the low linewidth times symbol duration products,
the tolerance of the decision-directed carrier recovery against
feedback delays also increased significantly. Although the per-
formance of the fourth-power algorithm improved, it is out-
performed by the decision-directed algorithm for Δk < 192
(Δf × T = 5 × 10−6) and Δk < 480 (Δf × T = 10−6).

However, the QAM feedforward carrier recovery in the sec-
ond stage (see Fig. 15) outperforms the decision-directed car-
rier recovery of the first stage for Δk ≥ 8, achieving a car-
rier phase error variance of σ2 = 1.7 × 10−4 rad2 for Δf ×
T = 5 × 10−6 and σ2 = 1.3 × 10−4 rad2 for Δf × T = 10−6 ,
respectively.

D. Sensitivity of Two-Stage Carrier Recovery for Square 16-,
64-, and 256-QAM Transmission

Fig. 16 shows the achievable sensitivity for square 16-, 64-,
and 256-QAM receivers using the two-stage carrier recovery
concept proposed in this paper. For the 16-QAM simulations,
fourth-power carrier recovery was chosen with a block length
of L = 32 symbols and the second-stage test interval was re-
duced to γ = π/3. The 64-QAM receiver also uses fourth-power
phase estimation in the first stage with L = 192 symbols and a
second-stage test interval of γ = π/4. The 256-QAM receiver
consists of a decision-directed carrier recovery in the first stage
with feedback delay Δk ≥ 200 and QAM feedforward carrier
recovery in the second stage with γ = π/6. The reduced val-
ues of γ in the three investigated QAM constellations make it
apparent that the two-stage carrier recovery concept allows for
the highest reduction in required hardware for high-order QAM
constellation schemes. Only B = 22 test carrier phase angles
are required in the two-stage algorithm for 256-QAM instead of
B = 64 in the single-stage algorithm.

As a reference, the theoretically optimum receiver sensitivity
given by

BER = 1 −
(
1 − 2

log2{M}
(
1 − 1√

M

)
Q

[√
3

M − 1
ES

N0

])2

(4)
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Fig. 10. Carrier phase error variance versus (left) block length L of fourth-power carrier recovery and (right) feedback delay Δk of decision-directed preprocessing,
valid for square 64-QAM and ES /N0 = 24 dB.

Fig. 11. Carrier phase error distribution for QAM feedforward carrier recovery
with square 64-QAM and ES /N0 = 24 dB.

Fig. 12. Probability density functions of carrier phase error for various block
lengths L of fourth power carrier recovery, valid for square 256-QAM and
ES /N0 = 30 dB.

Fig. 13. Probability density functions of carrier phase error for various feed-
back delays Δk of decision-directed preprocessing, valid for square 256-QAM
and ES /N0 = 30 dB.

where M is the number of constellation points and ES /N0 is the
normalized measure of the energy per symbol per noise power
spectral density is also plotted for the three QAM constellations
[13]. The equation assumes one bit error per symbol error, which
is a reasonable assumption for low BERs [14]. Note that the
penalties of the simulated systems also contain a differential
coding penalty.

It can be seen that the penalties for all simulated receivers are
below 1 dB at BER = 10−3 for the considered linewidth times
symbol duration products and stay roughly constant down to
BER = 10−6 . The only exception is 256-QAM, for which the
penalty slightly increases. This can be related to Δϕ = π/128,
which is the same for all considered constellations. While this
value leaves plenty of margin for 16-QAM and 64-QAM, it is
the minimum resolution required for 256-QAM to achieve a
penalty <1 dB at BER = 10−3 [7].

The sensitivity curves clearly show that the required hard-
ware effort for the QAM feedforward carrier recovery can be
significantly reduced by applying the two-stage carrier recov-
ery concept without sacrificing the high phase noise tolerance
provided by the original concept.

V. CONSIDERATIONS FOR PRACTICAL IMPLEMENTATION

The large possible filter block lengths in the fourth-power car-
rier recovery, as well as the large feedback delay for decision-
directed preprocessing, make the two-stage carrier recovery very
susceptible to a residual IF. Therefore, in a practical implementa-
tion, an accurate IF compensation is required. But, it is possible
to increase the IF tolerance of the algorithm by a small modifica-
tion. A nonzero IF does not alter the carrier phase error variance
of the first carrier recovery stage, but only causes a nonzero
mean. This can be detected by monitoring the histogram of the
recovered carrier angles in the second stage, and compensated
by centering the test interval for the second stage at the max-
imum of the histogram. The size of the test interval thereby
remains unchanged, which keeps the additional hardware effort
for residual IF compensation very low.
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Fig. 14. Carrier phase error variance versus (left) block length L of fourth-power carrier recovery and (right) feedback delay Δk of decision-directed preprocessing,
valid for square 256-QAM and ES /N0 = 30 dB.

Fig. 15. Carrier phase error distribution for QAM feedforward carrier recovery
with square 256-QAM and ES /N0 = 30 dB.

Fig. 16. Receiver sensitivity for different square QAM receivers with two-
stage carrier recovery.

Another point that must be considered in a practical imple-
mentation is the startup behavior of the algorithms. The feed-
forward algorithms reliably recover the carrier phase as soon
as their filters have been filled with samples. Using decision-
directed preprocessing, this is not the case, as the initial feed-

back can strongly defer from the actual carrier phase. This can
cause permanent errors in the decision circuits and prevent the
feedback loop from locking to the correct carrier phase. There-
fore, an initial training pattern might be required to guarantee
locking of the decision-directed feedback loop at start up.

VI. DISCUSSION

The proposed two-stage carrier recovery concept is highly
flexible. The algorithms chosen for simulation for the first car-
rier recovery stage, as well as the investigated constellation di-
agrams, only represent examples of possible implementations.
Especially for square 16-QAM, a multitude of carrier recovery
algorithms have been proposed based on the fourth-power al-
gorithm that improves its performance [15], [16]. These could
further reduce the required test interval in the second carrier
recovery stage, and hence, reduce the overall hardware effort of
the two-stage 16-QAM carrier recovery.

In general, the proposed two-stage carrier recovery concept
can be applied to any constellation diagram and can use any
suitable carrier recovery concept in the first carrier recovery
stage. The optimum configuration thereby varies depending on
the properties of the target system.

VII. SUMMARY

A novel two-stage carrier recovery concept has been proposed
for arbitrary QAM constellations that allows to significantly
reduce the hardware effort compared to the QAM feedforward
carrier recovery proposed in [6], while preserving its phase noise
tolerance. The concept has been verified in simulations of square
16-, 64-, and 256-QAM transmission systems, where fourth-
power carrier recovery and decision-directed preprocessing have
been considered as first-stage algorithms. A reduction of the
required hardware by a factor of 1.5, 2, and 3 has been achieved
for 16-, 64-, and 256-QAM, respectively.
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