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Optical amplifier performance in digital optical communication systems

Reinhold Noé

Contents Optical amplifiers are important building blocks
in nowaday’s optical communication system. Their noise
behavior differs considerably from that of electrical
amplifiers. Theory is reviewed and supplemented by
examples that allow to estimate the performance of optical
transmission systems. In particular, a correct optical noise
figure definition is explained.

1

Introduction

Optical communication via glass fibers is growing at
extraordinary rates. Traditional electrical data regenera-
tors are replaced, where possible, by optical amplifiers. At
some place, however, the optical signal has to be detected
and regenerated electrically. Optical amplification has
been originally described more than 40 years ago [1].
Photoelectron statistics are also described in [2] but these
excellent treatments seem to be not widely known today.
In particular, a noise figure definition exists [3] which does
not permit exact calculation of the resulting receiver sen-
sitivity. In a recent publication [4] this was corrected. This
has prompted the author, who has used part of this
manuscript since 1996 in lectures at the Univ. Paderborn,
Germany, to review this subject. Practical examples are
also given.

2

Photon number distribution

All random variables (RVs) in this paper are nonnegative,
except for Gaussian RVs. The interaction of photons with
matter is governed by stimulated emission, absorption,
and spontaneous emission. For infinitesimal time incre-
ments dt the probability P(n, t + dt) to find n photons in a
medium at time ¢ + d¢ depends on the probabilities to find
n—1, n, or n+ 1 photons at time ¢, and the conditional
transition probabilities from one of these numbers to #:

P(n,t+ dt) = P(n|n)P(n,t) + P(njn — 1)P(n — 1,t)
+P(njn+1)P(n+1,t) . (1)
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Other photon numbers need not be considered because for
dt — 0 the probability of multiple emission/absorption
events tends towards zero faster than that of single events.
This master equation of photon statistics can be written in
differential form as

% = —(n(a+b)+)P(n,t) + (n—1)a+0)
XP(n—l,t)‘i‘(n—Fl)bP(n_ﬂ'_l’t) , (2)

where a is the stimulated emission rate, b the absorption
rate and ¢ the spontaneous emission rate. If a particular
photon statistic is to persist it must fulfill (2) but statistical
parameters such as its (n) may be time-variable. For
example, if there is only attenuation (b >0, a=c¢=0), a
Poisson distribution

Py = et o)
n!

is a solution of (2) if its expectation value (n) = 1, (¢)
decays exponentially with time, p,(t) = 11,(0)e . This
means a Poisson distribution is conserved under pure
attenuation.

The moment generating function (MGF) of a discrete
RV nis
o.¢]
> P(me™ (4)

n=—oo

My(e™) = (") =
for a continuous random variable x it is

My(e7) = (e7™) = / Px(x)e"dx . ()

The lower summation index/integration boundary is 0 for
nonnegative RVs. With e =z, Eq. (4) can be inverted
by inverse z, while (5) is inverted by inverse Laplace
transformation.

Adding statistically independent RVs requires convo-
lution of the corresponding PDFs, or multiplication of the
corresponding MGFs.

As suggested by the name moment generating function,
the MGF allows to obtain all moments via

pdfM(es)

(ds)F (6)

(&) = (1)

5=0

Distributions, MGFs, mean values and variances of some
discrete and continuous RVs are given in Table 1.
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When a signal passes an optical amplifier the proba-
bilities P(n, t) of the discrete number of photons 7 is time-
variable. We determine the temporal derivative of the
corresponding time-variable MGF M, (e, t) [6].

0 s N dP(n,t)
5, Ma(e ,t)—;e T (7)

Using (2) we obtain
0
aM,,(e_S, t)=cle —1)M,(e*,t) — (a—b¢e’)

x (e7F — l)a%Mn(efs, t) . (8)

The signal reaches the amplifier input at t = 0, with a
photon distribution P(n,0) and an MGF M, (e *,0). The
solution of (8) is

a—b /e
M, _57 t) =
(e7:0) <a—b+a(G— 1)(1 —e‘s)>

a—b+ (bG—a)(1—e°)
XM"(a—b—l—a(G—l)(l—es)’

0) )
with a time-variable (power) gain
G =G(t) =el@ bt (10)

This means we know the MGF inside or at the output of an
optical amplifier as a function of the MGF at its input, if
the term e is replaced by a more complicated one.

For a transmitted zero there are no photons at the input,

P(n,O)z{(l, o

At time ¢ the signal has passed the amplifier and
G = e@%" holds. According to (9) the output photon
MGEF is

Mye0) = (142 (G- ) - ) 7
(12)

M,(e*,0)=1 .

(11)

Table 1. Some discrete and continuous distributions

The dependence on t can now be dropped. If there is just
one optical mode stimulated emission is just n times larger
than spontaneous emission, hence ¢ = a. For N noisy
modes

Cc
N=Z
a

(13)

holds. The spontaneous emission factor is

a
nsp = m . (14)
The expectation value of the photons in one mode is
1= ngp(G—1) . (15)

With above substitutions the MGF is
My(e™) = (1+ (1 —e) ™ . (16)

According to Table 1, the quotient between variance and

mean value equals u + 1 and is larger than for the Poisson
distribution where it is 1. This is due to the quantum noise
of the optical amplifier. It surpasses the quantum noise of
a Poisson distribution which is just shot noise. Inverse z

transformation of M, (z!) results in a (central) negative

Binomial distribution

P(n):<n+lr\ll—1)(1+,u;)n+N .

A sufficiently attenuated signal is always Poisson distrib-
uted, as will be seen later. For a transmitted one we
therefore assume a Poisson distribution at the amplifier
input. With M, (e*,0) = efo(¢"~1) and (9) we find

(17)

—pp(1—e™5)
My(e™, 1) = (1+ p(1 — &) Nerie | (18)
at the amplifier output with y;, = ji,G. The corresponding
photon distribution is a noncentral negative binomial or

Laguerre distribution

_ M o Ho .N-1 Ho
P(n)_(1+u)”+N 14pu " (u(1+u)>’ (19)

n

Discrete distributions P(n)(n > 0)
. n
Poisson e—Ho o
n!
Central negative n+N-—1 u"
binomial n (1 +,u)"+N
Noncentral negative H

binomial, Laguerre

__tHo
u'e 1+'uLN1< —to )
1+ e+ p)

Continuous distributions px(%)(x > 0)

Constant o(x — fiy)

Central y2,, Gamma 1 NN /R

['(N)
Noncentral y? N1 gt X _
7N X2 e 7 24/x1

1 In =
e

My (e™) (n) a,
e—ﬂo(l —e”) Ho Ho
1 Ny Nu(p+1)
(14 p(1 —e=)¥
oMol —e™) Mo + Ny Nu(p+1) + (2u+ 1)pg
1+p(1—e™)

M,"Cgeis) <~J~C> 0'32?
e HoS Ko 0
v Nji N2
(1+ as)V
— s [y + Nu N + 2ijz,
el +us
(1+ fas)"
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with Laguerre polynomials defined as
1 d"

o T X0
Li(x) = o e*x o
n

_3 l)m<n+oc)x”‘
— n—m) m!

There is an important adding property: two statistically
independent RVs 1y, n, with the same noise y and (central
or noncentral) negative binomial distributions are added
to form a new RV n. It obeys a new negative binomial
distribution with py = ptg; + pg > N = N1 + N,. This

can be verified by convolving the PDFs or multiplying
the MGFs.

(efxanroc)

(20)

3

Noise figure

It is useful to divide the output noise photon number y per
mode by the amplification G. Thereby one obtains ficti-
cious input-referred noise which would be amplified by a
noise-free amplifier to become the observed output noise.

This is the additional noise figure
FZ:%: (1-G6 Mg . (21)

The noise figure itself is
F=1+4+F,=14+(1-G ")ng . (22)

This noise figure can be called Fygsg [4, 5], where ASE
stands for amplified spontaneous emission. Due to ng, > 1
one finds F > 1 for amplifiers. An ideal amplifier with
ngp = 1 and amplification G — oo possesses F = 2, which
can be understood from the following:

e Without amplifier just the amplitude but not the phase
of an optical signal can be measured.

e With ideal amplifier and a subsequent power splitter
both these quantities can be measured simultaneously.

Let us cascade two optical amplifiers. For a Poisson
distribution with mean f, at its input the MGF after the
first amplifier (index 1) is

—to,1(1-¢"%)
Mya(e7,01) = (14 (1 —e™)) e (23)
with iy, = [iyG;. Under the assumption that there is only
one optical filter, behind all amplifiers and directly in front
of the receiver, the mode number N is identical for both
amplifiers. The second amplifier carries the index 2. The
MGF at its output is

Mpr(et, + 1) = (14 uy(1 — e_s))fN
1 —Gy)(1—¢e"°
(G e )
1+ (1 —e™s)

(24)
with N = ¢;/a;, nep; = ai/(a; — b;), G; = elai=biti 9pd
H; = nsp.i(Gi — 1), i= 1,2.

This can be rewritten as (18) with t = ¢, + 11,
Uo = Uo1G2 = [1iG1G, and an expectation value

U=, + 111G, for the output noise in one mode. In the
cascade

G F
My 2+M2_F1+_22 (25)

F = =
z GG, el

holds. Recursion allows to obtain Friis’ well known cas-
cading formula

F,—-1 F-—-1
2 +23 T (26)

F=F
Lt G, GG,

for a larger cascade. This is important because optical
trunk lines consist alternatively of amplifiers and attenu-
ating fibers. A pure attenuator with a =0, b > 0, ny, =0
has a noise figure F = 1 and a “gain” G = e % < 1. For
example, the cascade of an attenuator (index 1) and a
subsequent amplifier (index 2) has the noise figure
=1+ F2 L, If the amplifier (index 1) is in front of
the attenuator (index 2), 1, = 0 holds. For increasing
attenuation, G, — 0, we find

—Ho1Ga(1—e7%)

Mn,2(e757 h + tl) = (1 + /,thz(l — efs))fN el Gy(1—e™)

~~ e HoaGa(1-€7F) (27)
This means a Laguerre becomes a Poisson distribution if
attenuation is large. Since the Poisson distribution is also
conserved under attenuation it has a special importance.
An amplifier in which g, b and ¢ vary as a function of the
propagation coordinate may be subdivided into infinites-
imal sections and treated by (26) in which summation is
replaced by an integral

t
F(t) —1
F=1 +/ <M> G '(r)dr (28)
dt
0
with
d(F-1) 1 —G(t—dt)/G(1)
a - elt) dt
a 1— ef(afb)dt
“a-b  a " (29)
For constant coefficients, the integral
t
F=1 —|—/a(T)G1(r)dr
0
t
14 / a(t)e Jo @B 4o (30)

0

delivers just the known value F = 1 + (1 — G !)ngp. The
long1tud1na1 coordinate L inside the amplifier is found as
L= fo vg dt. If group velocity v, is constant, L = vgt,
dL = v, dt, the integration over time can be replaced by an
integration over the longitudinal coordinate.

As an example, consider Raman amplification with a
pump wavelength roughly 50-100 nm shorter than the
signal wavelength. It can be used to render fibers lossless,
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a= b. For a constant attenuation of 0.2 dB/km fiber
galn > without pumpln (a = 0) would be
G = —bv, 'L _ (1/10dB)0.2(dB/km)L .An L =50 km long
Raman ﬁber w1th a = b ideally has the noise figure
F=1+bv,'L = 3.3 (if we ignore the difficulty of
achieving a = b over such large lengths). For comparison,
an ideal amplifier (ng, = 1) with G = 10 has F = 1.9. If it is
placed at the input of a 50 km long fiber without Raman
gain (a = 0) the cascade has a noise figure of 1.9. If it is
placed at the fiber end the cascade noise figure is 10.

Noise figure measurement is easy The optical amplifier is
operated without input signal. Gain saturation effects can
be taken into account if the input signal is just switched off
during short measurement intervals. Usually G is nearly
polarization-insensitive, hence p = 2 polarization modes
of a monomode fiber have to be taken into account. The
output signal is passed through an optical filter with
bandwidth B,. Let the measured noise power be P. The
quotient P/B, equals the energy per mode in the frequency
domain. The photon number is obtained after division by
hf. The noise figure is therefore

F=1+

BTG (31)

If a polarizer is placed before the power meter only one
polarization mode is evaluated and p = 1 holds.

Caution The hitherto prevailing noise figure definition [3]
was based on photon number fluctuations (pnfs) in the
limit of large photon numbers, Fpyr = G 112

(1 — G )ngp. It is measured as Fpnr = & (1 + 2P/(pB hf)).
In an ideal amplifier it assumes the value 2, in an atten-
uator it has the value G!. It also fulfills the cascading
formula (26)! However, it does not describe the noise

of optical amplifiers exactly. By the way, it also differs
from the classical microwave noise figure. Of course we
can obtain our noise figure from the former one,
F=1+ (Fyut — G)/2

4

Intensity distribution

Assume the photon distribution can be written as the
so-called Poisson transform [2]

n) = /px(x)e_"j;—}: dx
0

of a PDF p,(x) that belongs to a nonnegative RV x. If we
vary the optical power, e.g., by changing the gain G of an
optical amplifier, P(n) and p,(x) will depend on G. Yet G
mainly scales the x range so that the PDF p;(x) of a nor-
malized variable X = x/G depends only weakly on G. From
equal probabilities p,(x)dx = pz(X)dx it follows

(32)

px(x) = G 'pz(x/G). This allows to write the photon dis-
tribution as

e KO
P(n) = / pe(@)e 0 L g (33)

The MGF of P(n) is M,(e”
the expression

. SS6) _ i N ~(5/G)
Jim (&) = fim 3 (e "

becomes

lim M, (e_S/G> = Mz(e™®) ,
G—oo

i.e., the MGF of the normalized variable x. Since MGFs
can be calculated from PDFs and vice versa it is indeed
possible to calculate pz(X) from P(n). For a Laguerre

%) = (e~*"). After inserting (33)

(34)

distribution MGF (18) we set fi = limg_.oo G~ = Nps
o = 4oG!, and find
Mi(e™*) = (14 is) Ve | (35)
The corresponding PDF is
N—1
1/x\ 7 _it= 24/ Xty
pz(x) == <—> e Iy |—= : (36)
* it \ iy fi

a noncentral z3y (chi-square) PDF with 2N degrees-
of-freedom (x > 0). For fi, = 0, or if one starts from the
central negative binomial distribution MGF (16), the MGF

—-N

Mi(e™) = (1+ fis) (37)
of a central 3, or Gamma PDF

- 1 o /i
) = gy e (39)
is obtained. It is also found if one inserts
limy, o I,(2) = ﬁ (2)" into (36). Similar to the addition

property of negative binomial distributions, the sum
x = %1 + x, of two statistically independent RVs x;, x;
with y*> PDFs and the same noise fi = ng, is a new y* PDF
with iy = i + [ty > N = Ny + N, as can be verified by
multiplying the corresponding MGFs.

For comparison and in order to apply again (34) we
assume a Poisson distribution with expectation value
Uy = Gfi, and find

Mz(e™S) = e Fo (39)
with corresponding PDF
px(%) = o(x — fip) - (40)

This is a constant ji,. These findings justify assumption
(32) and can be interpreted: when the light intensity is
subject to a detection process, shot noise is added which is
Poisson distributed for each value the intensity may as-
sume with a certain probability density. The light intensity
may carry just noise (central y?), signal and noise (non-
central y?), or just signal (constant distribution). The
detection, modeled by the Poisson transform, results in
central or noncentral negative binomial, or Poisson dis-
tributions, respectively. All these can be found in Table 1.
Central and noncentral negative binomial distributions
with 2N = 4 are plotted logarithmically for an ideal
amplifier (ng, = 1) in Fig. 1, but for easier comparison
normalized probabilities log GP(nG) are displayed instead
of log P(n). A value [i, = 81.4 was chosen. The higher the
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gain G = 1,2, 4, oo, the higher the noise. In the noise-free
case G = 1 Poisson distributions (o symbols) result. For
infinite G y; distributions result with a BER = 10°.

The intensity may be defined as the expectation value
with respect to the detection process of the photon num-
ber. This expectation value normally is an RV itself with
respect to ASE, which originates mainly from the amplifier
input. Since normalization is arbitrary we may likewise
understand the light intensity to be the expectation value
of the squared electrical field magnitude, (|E|*), including
ASE noise.

A noncentral y2, PDF (36) describes an RV
7oy = x = S x%, where x; are Gaussian RVs with
identical variances 62 = ng,/2. The square sum of the
expectation values (x;) = Vo, of zi is py = P to ;- The
electric field is therefore a carrier with constant amplitude,
accompanied by Gaussian zero-mean noise x; with

0% = ngp/2 in two quadratures,

E(t) = ﬁ((m + xl) cos(wt) + x, sin(wt))el .
(41)

Here e, is the unit vector of the signal polarization. For the
time being, let M = 1. The intensity equals the expectation
value of the photon number. One intensity sample is

(EOP) = (Vir/¥ +3) 4

and contains 2 degrees-of-freedom. If the amplifier is
polarization-independent, the orthogonal polarization e,
with ej’ez = 0 also has to be considered,

(42)

E(t) = \/5((\/;TO/M + x1) cos(wt) + x, sin(wt) ) ey

+ (x3 cos(wt) + x4 sin(wt))e; , (43)
(BOP) = (Vi + ) 44+ 8+, (44)

and there are 4 degrees-of-freedom.

0 50 100 150

n

Fig. 1. Transition of normalized central and noncentral
distributions from Poisson via negative binomial to >

5

Application

We consider now an optical receiver (Fig. 2). Behind the
optical receiver there is an optical filter with an impulse
response which is a cosine oscillation having the fre-
quency of the received signal and a rectangular envelope
of duration 1, = 1/B,. B, is the optical bandwidth of that
filter. For constant signal statistically independent fields
E(t + ity) are therefore obtained every time interval t;.
After photodetection, statistically independent intensity
samples (|E(t + it;)|?) result. In our model the electrical
part of the optical receiver should possess so little ther-
mal noise that it is possible to give it an impulse re-
sponse equal to a comb of M = 1,/1; Dirac pulses with
equal amplitudes, spaced by 7;. In that case the baseband
filter is not a lowpass filter but has infinite bandwidth!
The Dirac comb filter can in good approximation be
exchanged against a filter with a continuous impulse re-
sponse of length 7, or better /73 — 72, unless M is very
small. In order to avoid intersymbol interference 7, is of
course chosen smaller than one bit duration T, but not
much smaller since signal energy would otherwise be lost.
Suitably normalized, the signal at the decision circuit
input is therefore

M

x=> ([E(t+in)l)

i=1

(45)

with PDF (36). In the hypothetical, noise-free case (x) = fi,
holds. The decision variable has 2N = 2pM degrees-of-
freedom, where the number of polarizations is usually

p = 2. For [i, = 0 the PDF is given by (38).

Thermal noise in the electrical part of the optical
receiver must also be taken into account. Figure 3 shows
log P(n) for G = 16,64 and 256, i, = 100 and 2N = 8.
However, Gaussian thermal noise with ¢ = 523 has been
added which results in BER = 7-107%, 1-107,
2.5-1071%, respectively. It is taken into account by
convolving the probability distributions are convolved or
multiplying the corresponding MGFs. A high gain is
needed to make the relative thermal noise contribution
insignificant. The chosen thermal noise ¢ = 523
corresponds to a receiver with a bandwidth of 7 GHz
and a thermal noise of 10 pA/v/Hz, suitable to receive
106 bit/s.

BER vs. 10log(fi,/2), i.e., the mean photon number ex-
pressed in dB, has been calculated for ji = ng, = 1, G — oo,
i.e., x5y PDFs. Fairly moderate penalties occur for rising N
(Fig. 4). The BER curves become steeper as N increases.

photodetector
o
e El
inpu %>
optical optical ~
amplifier  bandpass lowpass filter
filter

Fig. 2. Optical receiver. A polarizer could, but normally is not,
placed behind the amplifier in order to block noise orthogonal to
the signal
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. G=256"

n/10000

Fig. 3. Photon distributions with thermal noise added
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Fig. 4. BER vs. mean photon number with degrees-of-freedom as

a parameter

With more detail this behavior is investigated in Fig. 5.

It shows 10log(fiy/2) vs. N for several constant BER. If

there is a finite power ratio between zeros and ones of the

optical signal, a transmitted zero will also have a non-
central binomial or 3y distribution. For the latter case
resulting penalties are displayed in Fig. 6.

6
Conclusion

Optical amplifiers are important building blocks in now-
aday’s optical communication system. The photons at the

amplifier output obey noncentral or central negative bi-

nomial distributions for transmitted one or zero, respec-

tively. If there is no gain, these become Poisson
distributions. If the gain is infinite, these become chi-
square distributions. The optical noise figure, correctly
defined, is a direct measure for the photon distribution.

Fairly moderate penalties occur if the optical filter band-
width is larger than twice the electrical receiver bandwidth.

0 1 2 3 4

22

Otog/2) |+ e

22

20F-- -

14}

10° 10 N 10°

Fig. 5. BER vs. mean photon number with degrees-of-freedom as
a parameter

8 ; T - .
. 'BER= 10718
B o A
penalty : . :
[AB] [ et 7 B
11076
4 .........................................
- 7S Y O
0 L N .
0 0.1 0.2 rel_power 0.3

of zeros

Fig. 6. Penalty of average signal power as a function of power
ratio between zeros and ones

Large penalties result if there is a bad extinction ratio
between zeros and ones.
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