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Abstract Simulations indicate that Fourier coefficients of mode coupling and total DGD describe natural PMD 
much more accurately than a Taylor expansion of the PMD vector. This is important for optimal choice and control 
of PMD compensators.   
 
Introduction 
Poole’s definition of 1st-order polarization mode 
dispersion (PMD) [1] is undisputed. The principal 
states-of-polarization (PSPs) and their differential 
group delay (DGD) are found from the frequency 
dependence of output polarization [1] or the 
polarization-dependent small-signal intensity 
modulation transfer function [2].  
Higher-order PMD is usually expressed by Foschini’s 
truncated Taylor expansion of the PMD vector 
(TEPV) [3]. Heismann has calculated the Jones 
matrix of a given TEPV [4]. The true frequency-
dependent trajectory of the PMD vector in the Stokes 
space would be described by sums of sinusoids with 
arguments that depend linearly on frequency. But 
sinusoids are not well approximated by a Taylor 
series. Inevitably, an unphysical, infinite DGD will be 
predicted far off the optical carrier frequency. 
A competing approach is the EMTY method, an 
exponential expansion of the Jones matrix by Eyal, 
Marshall, Tur and Yariv [5].  
A direct relation to physical fiber parameters exists 
neither for TEPV nor for EMTY.  
Most PMD simulations are carried out by assuming a 
sequence of cascaded DGD sections (SDGD), 
because it is widely accepted that an infinite number 
of randomly cascaded sections produces “natural” 
PMD. A finite SDGD can also be used for PMD 
description [2, 6]. It can be graphically displayed by a 
DGD profile (“reference” in Fig. 1) [2, 6], and it 
emulates what a real fiber typically does.  
Here a Fourier expansion of mode coupling 
(FEMC) is proposed. It is similar to SDGD but avoids 
the discretization by a finite number of sections. 
Simulations indicate that it can describe natural PMD 
much more accurately than TEPV and EMTY. 

Definition and DGD profiles 
The direction change in the normalized Stokes space 
between adjacent DGD sections is the retardation of 
a mode converter between them. Seen by an 
observer who looks in the direction of the preceding 
DGD section this direction change occurs up/down or 
right/left. This amounts to discrete in-phase or 
quadrature mode coupling between local PSPs. If the 
number of sections in a SDGD approaches infinity, 
mode coupling becomes continuous. An FEMC can 
now describe PMD as follows: 
• A frequency-independent mode conversion at the 

fiber input. This is described by 2 parameters, for 

example a retardation and an orientation.  
• A total DGD of the DGD profile. 
• A frequency-independent elliptical retarder (3 

parameters) at the output of the medium. 
• Complex spatial Fourier coefficients kF  of mode 

coupling [6] along the birefringent medium. The 
above-mentioned total DGD is that which can be 
measured when mode coupling is removed and the 
DGD profile is straightened out. 

The first 3 items simply describe 1st-order PMD, and 
the 4th adds mode coupling to complete a higher-
order FEMC. Mode coupling bends the DGD profile 
[6]. Bends at discrete positions would correspond to a 
SDGD. The FEMC Fourier coefficients describe DGD 
profile bending in a continuous manner (Fig. 1).  
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Fig. 1: DGD profile of reference (exemplary PMD 
medium) cascaded with inverted FEMC structure 
(which thereby forms a PMD equalizer). Scaling unit 
is 1 DGD section length of the reference structure. 

No mode coupling occurs in the 1st-order case. In a 
2nd-order FEMC, the zero-order coefficient 0F  is 

specified by 2 real parameters and coils the DGD 
profile. Whether coiling occurs up/down or right/left or 
in a mix of these cases depends on the phase angle 
of 0F . The coiling radius is inversely proportional to 

0F . Other kF  will wind spirals if they occur alone. 

kF  combined with kF−  can result in a forth-and-

back bending of the DGD profile. Each higher order of 
FEMC requires two extra Fourier coefficients kF± , 

which amounts to 4 more real parameters.  
The required number of real parameters is listed in 
Table 1. All methods need 3 more parameters to 
specify a frequency-independent elliptical retarder at 
the fiber output. For SDGD the method order tells 
how many DGD sections there are.   



 

 

Table  1: Number of real parameters 
Method (below) and its order (right) 1 2 3 4 
TEPV and EMTY  6 9 12
SDGD 3 5 7 9 
FEMC  5 9 13

Cross polarization suppression 
We give an FEMC example for method order 3 (|k| ≤ 
1). A random PMD medium has been taken as a 
reference. It is composed of 16 DGD sections with 
equal lengths. The length of one DGD section defines 
the normalized unit length in Fig. 1. The 1st-order 
PMD vector is [–4.98, –1.24, –0.42]T, the DGD is 5.1 
units. The reference is cascaded with a smoother 
DGD profile that is an inversion of the FEMC 
structure. It follows the reference profile with gentle 
bends and more or less cuts through the “messy” left 
part of the reference. For convenience the FEMC 
structure was represented by 16 sections (instead of 
an infinite number) of equal but variable length.  
The FEMC coefficients were determined as follows: A 
Gaussian input pulse was assumed, with a width 
equal to the total DGD of the DGD profile used in the 
FEMC (assuming no mode conversion). This is not 
the only possible pulse shape and duration. But it 
makes sense to chose the total DGD rather than the 
1st-order DGD because the former is related to the 
overall complexity of the PMD situation while the 
latter may even vanish. Pulse width and the identical 
total DGD were varied during the optimization. The 
PMD medium (reference) and the inverse of the 
structure defined by the FEMC were concatenated. 
The various parameters were adjusted so that the 
output signal was – as far as possible – in only one 
(co-)polarization mode, and that the impulse in the 
other (cross-)polarization had its residual amplitude 
maximum near the time origin – not elsewhere like in 
the case of 1st-order PMD. Fig. 2 shows the 
magnitudes of the electric fields in co- and cross-
polarized output pulses. The unwanted polarization is 
≥37.2 dB down. 
For comparison, the TEPV was calculated up to 3rd 
order from the Jones matrix of the reference (PMD 
medium). Then the Jones matrix corresponding to this 
truncated TEPV was built [4]. The inverse of that 
matrix was cascaded with the reference. The same 
was also done for EMTY. For all methods the input 
pulse width was chosen identical to that after 
convergence of the FEMC. Table 2 shows orthogonal 
polarization suppression vs. method and its order. 
The FEMC holds an advantage over the TEPV and 
the EMTY method. The extinction improvement in dB 
by the addition of higher-order terms is several times 
larger for FEMC than for TEPV and EMTY. In a few 
more tested PMD examples the FEMC also held an 
advantage. This is not surprising, because FEMC and 
SDGD models are closely related to natural PMD. 
The simulations indicate that a PMD compensator 

(PMDC) that could, for example, compensate the 
TEPV PMD orders 1 to 3 (cf. [7]) may not be the most 
efficient equalizer. Rather, a distributed PMDC [2, 6] 
could be preferable, with as sharp as possible a 
polarization transformation at its input, and controlled 
amounts of mode coupling along its length, for 
example defined by Fourier coefficients.  
Note that for the calculations of Table 2, 3 more 
parameters were chosen than shown in Table 1, 
because the “equalizer” needed to be aligned to the 
reference to separate the output polarizations. 
A drawback of FEMC is that an analytical solution is 
not known. Finding a straightforward solution might 
help in the control of distributed PMDCs – this is a 
question of not getting trapped in local optima during 
the PMD control process. 
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Fig. 2: Magnitudes of Gaussian input pulse, and of 
output pulses resulting from cascaded reference and 
inverted FEMC structure (order 3). Time scale is the 
same as in Fig. 1. Input pulse width is 8.1 DGD units. 

Table 2: Suppression of cross polarization, using 
example of Fig. 1. Bold-faced case is plotted in Fig. 2. 
Method order 1 2 3 
Input pulse width and 
total DGD [DGD units]

5.1 5.3 8.1 

TEPV   –15.7 dB –15.2 dB 
EMTY –9.6 dB –11.6 dB –16.2 dB 
FEMC  –21.3 dB –37.2 dB 

Conclusion 
The proposed Fourier expansion of mode coupling 
seems to describe natural PMD much more 
accurately than competing higher-order PMD 
description methods. This indicates that distributed 
PMD compensators are more efficient than other 
types. Further work should concentrate on an efficient 
search of the FEMC coefficients. 
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