
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 16, NO. 5, SEPTEMBER/OCTOBER 2010 1193

Electronic Polarization Control Algorithms for
Coherent Optical Transmission
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Abstract—In this paper, we review the nondata-aided constant-
modulus algorithm (CMA) and a data-aided decision-directed al-
gorithm (DDA) for polarization control and propose different ex-
tensions to both algorithms to improve their performance. The first
extension to the CMA enables a common carrier recovery (CCR)
through differential phase compensation (DPC-CMA). The second
extension adapts the CMA for quadrature amplitude modulation
signals (CMA-QAM). Both extensions can be combined to form a
DPC-CMA for QAM signals (DPC-CMA-QAM). A new, modified
DDA (MDDA) considerably increases polarization tracking speeds
compared to the original DDA (ODDA). It is also usable for QAM
signals. The algorithms are compared in simulations of QPSK and
16-QAM transmission systems. The results show that the DPC
extension for the CMA in combination with CCR doubles laser
linewidth tolerance and also the CMA-QAM triples polarization
control speed compared to the standard CMA for QAM signals.
The MDDA is ∼1.6–4 times faster than the CMA variants and is, at
least when QAM signals are transmitted, more hardware-efficient.

Index Terms—Coherent detection, digital signal processing, op-
tical fiber communication, polarization.

I. INTRODUCTION

COHERENT digital receivers for polarization-multiplexed
QPSK are a main contender for future 100 GbE trans-

mission. This paper deals with one key part of these: electronic
polarization control. High control speed, low complexity, phase
noise, and modulation format tolerance are desirable and shall
be discussed. New, more powerful algorithms will be presented
in this context.

The phase noise tolerance of a polarization-multiplexed re-
ceiver can be improved by a common carrier recovery (CCR)
for both polarizations [1], [2]. But this is possible only if the pre-
ceding polarization control compensates for the possible phase
offset between the two polarizations. While this functionality is
inherent in decision-directed polarization controllers, nondata-
aided (NDA) algorithms, like the standard constant-modulus
algorithm (CMA), do not compensate for this offset [3], [4].
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In Section II, we review the standard CMA and then present
an extended version, i.e., differential phase compensation CMA
(DPC-CMA), which additionally compensates the phase dif-
ference between the two polarization channels to allow for a
CCR [5].

If the transmission distance is not extreme, 16-quadrature
amplitude modulation (QAM) is more rewarding than QPSK
because it doubles spectral efficiency or even channel bit rate.
A phase-noise-tolerant carrier recovery algorithm for QAM sig-
nals has been published recently [6]. In Section III, we, there-
fore, extend standard CMA and DPC-CMA for QAM signals
also [7]. This allows the implementation of phase-noise-tolerant
QAM receivers, because one CCR may be used, with fast po-
larization control. Important earlier works in this field include
a CMA for 8-QAM signals [8] and a decision-directed CMA
for QAM [9]. Our CMA-QAM variant is closely related to the
radiant directed algorithm [10].

Another class of algorithms is data-aided. This class includes
the original decision-directed algorithm (ODDA) for electronic
polarization control that was presented in [1] and tested at up
to 40 krad/s polarization tracking speed [11]. In Section III, we
review the ODDA and then present a modified DDA (MDDA).

Section IV starts with Monte Carlo simulations of a QPSK
system. The differentially phase-compensated CMA (DPC-
CMA) is compared with the standard CMA [4]. ODDA and
MDDA are compared with the CMA. The penalty as a function
of control gain is calculated for all four algorithms.

While ODDA and MDDA also work straightforward for 16-
QAM, this needs to be proved for the CMA-QAM variant. The
DPC feature proves superior because in a 16-QAM system, a
CCR is needed to increase linewidth tolerance and minimize
hardware effort.

In Section V, the hardware efforts for implementation of the
various algorithms are briefly compared. Due to the superior
performance and low complexity, we recommend the MDDA,
especially for QAM transmission.

Section VI concludes this paper.

II. CONSTANT-MODULUS ALGORITHM AND ITS EXTENSIONS

A. Standard Constant-Modulus Algorithm

The standard CMA works as follows (see Fig. 1): let

c =
[

c1
c2

]
(1)

be the transmitted complex signal (Jones) vector. The fiber
Jones matrix J is invertible, and therefore, has only a finite
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Fig. 1. Block diagram of CMA, including its extensions for DPC and QAM
(not visible).

polarization-dependent loss. Now

R =
[

R1
R2

]
= ejϕI F Jc (2)

is the complex signal (Jones) vector in a coherent polarization
diversity receiver, where ϕIF is the phase difference between
the transmitter and local oscillator lasers. Let M be the electronic
polarization control matrix; then

X =
[

X1
X2

]
= MR = ejϕI F MJc (3)

is the corrected signal vector, ready for carrier and data recovery.
The signals are sampled at the symbol rate, and a perfect clock
recovery is assumed. The error signal matrix is defined and
determined as

T =
[

1 − |X1 |2 0
0 1 − |X2 |2

]
XR+ (4)

in an NDA approach. The + sign means Hermitian conjugation.
In the standard CMA [3], M is incrementally updated as

M := M + gT (0 < g � 1) . (5)

This algorithm will generally make the error signal matrix
T vanish. This is achieved as soon as the conditions |X1 | = 1
and |X2 | = 1 are fulfilled. In this process, no phase condition
is imposed on X1 and X2 . Therefore, MJ need not be the unity
matrix, but can more generally be

MJ =
[

ejϕ1 0
0 ejϕ2

]
(6)

because this results in a corrected signal vector

X =
[

ej (ϕ1 +ϕI F )c1
ej (ϕ2 +ϕI F )c2

]
(7)

with arbitrary phases. The angles ϕp of the polarizations p = 1,
2 are recovered together with ϕIF in separate carrier recoveries
(SCRs), one for each polarization. This is uneconomical. If there
is a lot of phase noise, as in QAM transmission, SCRs may even
fail to work.

It is worth noting that a mixture between SCRs and CCRs is
advantageous for nonlinear transmission [12].

B. Differentially Phase-Compensated Constant-Modulus
Algorithm

We extended the CMA to compensate the phase difference
ϕ1 − ϕ2 , and, of course, modulo 2π/q, where q is the number
of ambiguous phase states. For QPSK and normal QAM, q = 4
holds. This enables the use of one carrier for demodulation of
both polarizations, which is generated in a CCR. In this DPC-
CMA, M is updated according to (3) and (4), and

M := M + g (T + U) (8)

U =
[−j 0

0 j

]
M

1
2
Δϕ (9)

Δϕ = (arg X1 − arg X2)] = (ϕ1 − ϕ2)] (10)

with the definition

α] = ((α + π/q) mod (2π/q)) − π/q (11)

Thus, Δϕ is an angle given modulo 2π/q (=π/2 for QPSK)
in the interval [−π/q, π/q[(=[−π/4, π/4[ for QPSK). The left-
hand side of (8) is the new, updated polarization control matrix.
On the right-hand side, old, available quantities are used for its
calculation.

For a perturbation Δϕ alone (i.e., T = 0), (8) and (9) mean
that in the modified M, the first and the second line will be
multiplied by 1 ∓ jgΔϕ/2 ≈ e∓jgΔϕ/2 , thereby diminishing
the unwanted differential phase shift.

C. Constant-Modulus Algorithm Extended for Quadrature
Amplitude Modulation (CMA-QAM, DPC-CMA-QAM)

If this standard CMA is applied to M-ary QAM signals, then
the control gain g has to be chosen very small. This is because
QAM signals assume different powers, and not unit powers like
QPSK. Therefore, the terms 1 − |Xp |2 in (4) become extremely
noisy. We solve this problem by what we call CMA-QAM: (4)
is modified to become

T =
[

ΔP1,min 0
0 ΔP2,min

]
XR+ (12)

ΔPp,min =
[
ΔPp,hp

]
min
∀h p

|ΔPp , h p | (13)

ΔPp,hp
= P̂p,hp

− |Xp |2 . (14)

Index p = 1, 2 always stands for the two polarizations. hp =
1, 2, . . . , H is the index of the power of a distortion-free signal
in the respective polarization. ΔPp,hp

is the power difference

between all H possible expected values P̂p,hp
of signal powers

in case of zero-polarization crosstalk and the observed signal
powers |Xp |2 in both polarizations: p = 1, 2. ΔPp,min is the
value of ΔPp,hp

among all power indexes hp of a polarization
that has the smallest magnitude, and hence, the most likely
power difference. Once the algorithm has converged, all power
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differences ΔPp,min would be zero in the absence of noise.
The number H of distortion-free signal powers P̂p,hp

equals the
number of circles around the origin that are needed to touch all
symbols in the chosen QAM constellation. The value is H = 1,
3, 6, 9 for QPSK, 16-, 64-, and 256-QAM, respectively.

Now, we add the DPC feature to the CMA-QAM: a number
of test phases

0 ≤ ϕc < 2π/q (15)

is subtracted from the observed phase difference (10). The test
phases needed depend on the values of hp that have been esti-
mated in the minimization process [see (13)]. Depending on the
estimated powers P̂1,h1 and P̂2,h2 , there are different numbers
of test phases.

Then, one selects the following to be used in (9):

Δϕ = [Δϕc ]min
∀ϕ c

|Δϕc | (16)

Δϕc = (arg X1 − arg X2 − ϕc + ϕf )] . (17)

The various phase differences Δϕc are found for the appli-
cable set of test phases ϕc and are mapped modulo 2 (π/q) into
the interval [−π/q, π/q[. Angle Δϕ is the value of Δϕc that
has the lowest magnitude |Δϕc |. For the time being, let ϕf =
0. If there is no noise and the differential phase shift is already
compensated, then, ideally, Δϕ becomes zero. In order to im-
prove accuracy in the presence of noise, the phase difference
can be weighted according to the available or estimated powers,
for example, by using

Δϕ = [Δϕc ]min
∀ϕ c

|Δϕc | P̂1,h1 P̂2,h2 . (18)

Consider 16-QAM (with q = 4) as an example. If each quadra-
ture can assume the values −3, −1, 1, and 3, then the combined
power, defined as the squared magnitude, is one of 2, 10, and 18.
We assume normalization with respect to the mean power 10.
This brings the expected powers in the individual polarization
channels to

P̂p,hp
= 0.2, 1, 1.8 for hp = 1, 2, 3. (19)

The needed test phases are

ϕc =

⎧⎨
⎩

0, for h1 , h2 ∈ {1, 3}
0,±0.64, for h1 = h2 = 2
±0.46, otherwise

. (20)

The value 0.46 rad is the phase angle between the numbers
(3 + j) and (1 + j), which are proportional to QPSK symbols.
The value 0.64 rad is the one between the numbers (3 + j) and
(3 − j). By taking modulo π/2, the value 0.64 is identical to
−2×0.46. The best suitable among the possible test phases ϕc

is subtracted from the observed value, arg X1 − arg X2 .
The CMA with DPC can, in this configuration, track a once-

acquired optimum. However, we have observed occasional false
initial locking. But only one locking point yields a product MJ
proportional to the unity matrix, while at other possible locking
points, there is a static phase shift between the two polarization
channels. In order to quit a false optimum, one can calculate Δϕ

[see (16)] not only for ϕf = 0 but also for F equidistant phase
offsets

ϕf = (f/F ) (2π/q) , f ∈ {0, 1, . . . , F − 1} . (21)

A good choice is F = 8
√

M , i.e., F = 32 for 16-QAM. The
squares of the various Δϕ = Δϕ (f, k) are added up over K
subsequent symbols

Wf =
K∑

k=1

(Δϕ (f, k))2 . (22)

One determines the integer f that corresponds to the smallest
W f . This value of f indicates that a better optimum is avail-
able if one introduces a differential phase shift ϕf between the
polarizations. Thus, after K symbols, one sets

M :=
[

ejϕf /2 0
0 e−jϕf /2

]
M. (23)

Thereafter, the summation process (22) may start anew. But
this is usually not needed because a single application of (23)
generally yields a differential phase very close to the optimum,
which is subsequently improved and tracked. As a consequence,
the full set (17), (21) for all f, and (23) may be executed far less
frequently than the tracking calculation for ϕf = 0. This reduces
hardware effort.

A simpler way to avoid false locking is the following: behind
the decision circuits, a framing information is detected, which
indicates whether data are being received correctly in both po-
larization channels. If not, then (23) is executed with a suitably
chosen ϕf , or with all values given in (21), until data recovery
is correct. This does not slow down normal polarization control,
since it occurs only at initial signal acquisition.

III. DECISION-DIRECTED ALGORITHMS: ORIGINAL (ODDA)
AND MODIFIED (MDDA)

A. Original Decision-Directed Algorithm

In the original decision-directed polarization control algo-
rithm [1], the recovered symbol

ĉ =
[

ĉ1
ĉ2

]
(24)

is correlated with the output signal of the polarization demulti-
plexer. The correlation matrix Q is given by

Q = Xe−j ϕ̂ ĉ+ . (25)

where ϕ̂ is the estimated carrier phase. It is made available
by the carrier recovery. The expectation 〈Q〉 of the matrix Q
is a perfect estimate of the matrix product MJ. Therefore, by
calculating and assigning

M := 〈Q〉−1 M = J−1M−1M = J−1 (26)

the polarization can be controlled penalty-free. Fig. 2 visualizes
the structure of the algorithm.

The literal implementation of (26) in hardware poses a huge
challenge, because the calculation of the inverse of a matrix
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Fig. 2. Original (ODDA, using 1−Q) or modified (MDDA, using E) decision-
directed algorithm for polarization control.

in a digital circuit is very complex. But the calculation can be
simplified, using the Taylor series

Q−1 =
∞∑

i=0

(−1)i (Q − 1)i . (27)

If Q approaches the unity matrix 1, which is the goal of
the polarization control, the Taylor series is dominated by its
first-order element and the calculation of M reduces to

M := (1 + 1 − 〈Q〉)M = M + (1 − 〈Q〉)M. (28)

In general, as 〈Q〉 �= Q applies, either several correlation
results must be averaged to determine 〈Q〉 or M must be updated
incrementally with small control gain (0 < g � 1)

M := M + g (1 − Q)M. (29)

This equation describes the update of the polarization control
matrix coefficients, with Q, X, and ĉ given by (25), (3), and
(24), respectively. For convenience, both possibilities can be
combined in practice.

B. Modified Decision-Directed Algorithm

Now, consider the case MJ = 1 and neglect noise and bit
errors. Then, the equation |X1,2 |2 = 1 holds, and (4) yields
a vanishing correction matrix T = 0. Matrix M is, therefore,
left unchanged, as it should be. In contrast, the ODDA has the
following weakness: on average, it achieves a vanishing average
〈1 − Q〉 = 0. MJ becomes proportional to the unity matrix
and there are no decision errors (in the absence of noise). The
corrected signal vector is, with exception of the phase rotation
to be undone in the carrier recovery, already identical with the
recovered symbol input ĉ. It holds that ĉ = Xe−j ϕ̂ . For QPSK,
the elements of ĉ are ĉ1,2 = (±1 ± j)

/√
2. According to (25),

the momentary correlation matrices Q, therefore, assume the
following values:

Q = ĉĉ+ =
[

1 j−m

jm 1

]
(30)

where m is an integer that specifies by how many quadrants
the QPSK symbols are separated in the complex plane. This
means that the term 1 − Q is very disturbed by data; only the
average 〈1 − Q〉 vanishes. The same problem also exists for
other formats such as 16-QAM.

Therefore, it is better to replace 1 − Q by an error matrix

E = ĉĉ+ − Xe−j ϕ̂ ĉ+ =
(
ĉ − Xe−j ϕ̂

)
ĉ+ . (31)

Fig. 3. BER versus OSNR for standard CMA and DPC-CMA with g = 2−6 at
different filter widths for common (CCR) and separate (SCR) carrier recoveries.
The three lower curves are also approximately valid for ODDA and MDDA,
which can always operate with CCR.

As desired, it vanishes for MJ = 1 and ĉ = Xe−j ϕ̂ . The
calculation becomes

M := M + gT, T = EM =
(
ĉ − Xe−j ϕ̂

)
ĉ+M. (32)

This holds for QPSK as well as for other formats such as 16-
QAM. We call this new approach the modified DDA or MDDA,
as opposed to the ODDA outlined in [1]. Equation (32) and
the auxiliary equations (3) and (24) describe the update of the
polarization control matrix coefficients.

IV. SIMULATION RESULTS

A. QPSK Simulations

All polarization control algorithms were initially tested in ex-
tensive QPSK simulations without added white Gaussian noise
and without phase noise. Function, convergence, and DPC (for
DPC-CMA and ODDA/MDDA) were verified in all cases.

Next, the polarization control algorithms were compared in
Monte Carlo simulations of a polarization-multiplexed QPSK
transmission system. Random unitary Jones matrices were set
by a random number generator and each data point was based
on the simulation of (1–15)×106 symbols. The sum linewidth
times the symbol duration equaled Δf · T =10−3 . Bit error rate
(BER) was evaluated only after initial convergence.

In all cases, we have used a carrier recovery according to [13],
similar to the one described in [1].

Fig. 3 shows BER versus OSNR for the standard CMA and the
DPC-CMA in combination with three different carrier recovery
setups. In combination with SCRs, the filter half-widths for the
two independent phase estimators are set to N = 3 and N =
6, i.e., 7 and 13 symbols are used for carrier phase estimation,
respectively. These setups are compared with the one with CCR
and N = 3, which uses 14 symbols for phase estimation. In the
setups with SCR, the standard CMA and the DPC-CMA have
the same efficiency. However, for N = 6 and high OSNR values,
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Fig. 4. Sensitivity penalty at BER = 10−3 for different linewidth times symbol
duration products for CCR/SCR. This applies for CMA (with SCR), DPC-CMA
(with CCR), and (approximately) for ODDA/MDDA (with CCR), all at small
control gains g.

the sensitivity is affected by phase noise due to the lower filter
bandwidth. For N = 3, there is a general sensitivity penalty of
∼0.2 dB due to a lower phase estimator efficiency.

With one CCR for both polarization channels, DPC-CMA
achieves the same sensitivity as for SCR with N = 6, but with
the same phase noise tolerance as SCR with N = 3. However, by
design, the standard CMA fails with CCR, given that it does not
compensate the phase difference between the two polarizations.
Thus, the DPC-CMA is required to allow for a CCR. Note that
the lower three curves in Fig. 3 also hold (approximately) for
ODDA/MDDA with small control gains.

Fig. 4 points out the improved performance due to a CCR
enabled by the DPC-CMA. It doubles the phase noise tolerance
compared to an SCR that uses the same number of symbols for
phase estimation, or it improves the sensitivity by >0.2 dB com-
pared to an SCR with the same filter halfwidth. The penalty is
incurred due to phase noise while polarization recovery is close
to perfect. Therefore, the curves also hold approximately when
ODDA and MDDA are used, though only CCR makes sense for
ODDA/MDDA (whereas SCR is more hardware-intensive).

To give a direct impression, the algorithms were also com-
pared in the time domain for three different gains, with noise.
Fig. 5 shows exemplary polarization locking processes for
CMA, ODDA, and MDDA. The Jones matrix to be compen-
sated was chosen as

J =
[

0.9808 + 0.1951j 0.4619 − 0.1913j
−0.2079 − 0.1389j 0.7846 − 0.1561j

]
(33)

with some polarization-dependent loss (PDL). The compensa-
tion matrix was preset as M = 1. For all algorithms, the control
time constants are on the rough order T/g, where T is the sym-
bol duration. From top to bottom in Fig. 5, g is stepped in
factors of 4. The higher the g is, the noisier is the behavior of
the polarization control matrix elements, and the faster is the
convergence.

With CMA as a reference, the ODDA performs worse while
the MDDA is better, as can be seen from the smaller noise
superimposed on the temporal behavior of the matrix element
magnitudes.

In order to quantify this, the sensitivity penalty at a BER of
10−3 was evaluated for all four algorithms (Fig. 6). Reference
is the sensitivity of a system with very low polarization control
gain (g = 0). Linewidth is set to ΔfT = 10−4 , matrices are
unity, and MJ = 1. As expected, CMA and DPC-CMA exhibit
medium performance. The CMA may be slightly worse than
the DPC-CMA due to the need of SCR. A 0.5 dB penalty is
reached approximately for g ≈ 2−4 . Above that gain, carrier
and data recovery soon becomes impossible. This may be due
to the nonlinear nature of (4).

The ODDA performs worst, yielding 0.5 dB of penalty al-
ready for g ≈ 2−6.4 . Best of all is the MDDA, which supports
g ≈ 2−3.3 at the same penalty.

Thus, for a given penalty of 0.5 dB, CMA/DPC-CMA can
control polarization about six times faster than the ODDA, while
the MDDA is about 1.6 times faster than CMA/DPC-CMA. The
performance gain of MDDA over CMA/DPC-CMA becomes
more pronounced if a larger penalty is permissible.

B. 16-QAM Simulations

All polarization control algorithms were also tested without
noise for 4-, 16-, 64-, and 256-QAM, again with their function
verified as expected.

The ODDA cannot be recommended for 16- or higher QAM
schemes because its gain must be set very low in order to provide
adequate averaging. In contrast, the MDDA is unproblematic
because the varying signals are correctly taken into account as
ĉ in (32).

Subsequently, we added noise and compared standard CMA
[see (4) and (5)], CMA-QAM [see (5), (12), and (13)], and
DPC-CMA-QAM [see (8), (9), (12), (13), (17), and (18)] for 16-
QAM. For carrier recovery, we took the feedforward algorithm
described in [6]. Fig. 7 shows the sensitivity degradation at
BER = 10−3 as a function of control gain g. Each data point
corresponds to 200 000 symbols. A large g is good for a low
small-signal polarization control time constant. The total penalty
reaches 2 dB for the standard CMA at g ≈ 2−6.5 , while the
CMA-QAM can control polarization about three times faster
at the same penalty, with g = 2−5 . For both, the two carrier
recoveries processed 19 symbols in parallel. The DPC-CMA-
QAM with one CCR for both polarizations processes only nine
temporal samples, and therefore, either increases sensitivity by
∼0.5 dB at the chosen sum linewidth times symbol duration
product of ΔfT = 2×10−4 , or maintains the same sensitivity at
a doubled ΔfT = 4×10−4 . Other than in [7], the 0 dB reference
of Fig. 7 is not the theoretical sensitivity but the (slightly worse)
sensitivity that is achieved with ΔfT = 0, g = 0, and MJ = 1.

For the scenario ΔfT = 0 and MJ = 1, reference g = 0, three
CMAs, ODDA, and MDDA are compared in Fig. 8. Penalty
traces for CMA-QAM and DPC-CMA-QAM are fairly identi-
cal, as ΔfT = 0. At 0.5 dB penalty, the MDDA is ∼15 times
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Fig. 5. Example for the start-up development of the element magnitudes of matrix M = [mij ] . Horizontal axis: 0–5000 symbol durations. Vertical axis: 0–1.2.
Traces (from to bottom): — |m22 |, — |m11 |, — |m12 |, — |m21 |.

Fig. 6. Influence of polarization control gain g on QPSK receiver sensitivity.
DPC-CMA, ODDA, and MDDA are with common, CMA with SCRs.

faster than the standard CMA and ∼4 times faster than the
DPC-CMA-QAM.

V. HARDWARE EFFORT COMPARISON

We compare the hardware implementation effort by the num-
ber of multiplications to be carried out.

The multiplication MR means four complex multiply-and-
accumulate operations (CMAC) for each of the algorithms. One

Fig. 7. Sensitivity of various CMAs applied to polarization-multiplexed 16-
QAM signals versus control gain g. Unlike the others, DPC-CMA-QAM nul-
lifies the phase difference between the x and y constellation diagrams, and
therefore, tolerates one CCR for both polarizations.

CMAC contains four real multiplications. For QPSK, (25) and
(26) contain only two CMAC each, since the multiplication
by ĉ+ can be trivialized into additions/subtractions/quadrant
changes. The multiplication by M in the alternative matrix up-
dating equations (29) or (32) needs another four CMAC, yield-
ing a total of 12 CMAC for ODDA and MDDA.
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Fig. 8. Influence of polarization control gain g on 16-QAM receiver sensitivity
for ΔfT = 0 and MJ = 1. MDDA outperforms all other algorithms.

Equation (4) can be cast into eight CMAC, which also re-
sults in the total number of 12 CMAC as for the standard CMA.
In order to avoid doubled carrier recovery effort, DPC is rec-
ommended. The DPC equation (9) requires the multiplication
of M by a scalar. This amounts to eight real multiplications,
equivalent to two extra CMACs for DPC-CMA.

The use of 16-QAM instead of QPSK causes moderate extra
effort for MDDA and CMA-QAM, due to the fact that the larger
quantization of recovered symbols must be taken into account.
But for 16-QAM, the carrier recovery is relatively complicated.
In order to avoid doubled effort due to SCRs, it is even more
advised to supplement the CMA-QAM by DPC. This needs
quite some hardware effort.

Summarizing the hardware efforts, ODDA, MDDA, and the
CMAs are of similar complexity, but for 16-QAM, the recom-
mended DPC effort makes the CMA-QAM less attractive than
MDDA.

Performance-wise, the MDDA is better than the CMA, which,
in turn, is better than ODDA.

Altogether, usage of the MDDA is recommended.

VI. CONCLUSION

In a polarization-multiplexed coherent QPSK transmission
system, the standard CMA can be used only with SCRs. But the
DPC-CMA compensates the phase difference between the po-
larization channels. This allows to work with a simpler CCR
in the receiver, and thus, to improve phase noise tolerance
or sensitivity. Both CMAs tolerate high control gains up to
g ≈ 2−4 . When extended to QAM with additional DPC, the re-
sulting DPC-CMA-QAM permits QAM transmission with dou-
bled laser linewidth tolerance, due to the use of a CCR for both
polarizations. Polarization control speed is tripled.

Decision-directed polarization recovery in its original fashion
(ODDA) is about six times slower than CMA. But in a modified
version of the MDDA, it is about 1.6 times faster than the CMA
and tolerates QAM modulation formats, with higher speed gain.

Due to its superior performance and moderate implementa-
tion effort, we recommend using the MDDA.
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