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NT



Table of contents

1 Unsupervised Language Acquisition

2 Exemplar based Pattern Discovery
Dynamic Time Warping
Exemplar Clustering

3 Hierarchical System for Unsupervised Word Discovery
Acoustic Unit Discovery
Word Discovery
Semi-Supervised Learning

4 Conclusion, further Research and Outlook

Unsupervised Language Acquisition

O. Walter 1 / 18

NT



Unsupervised Language Acquisition

Unsupervised Learning

• Only speech features available: Zero resource setup

• No transcription of speech signal in terms of words and acoustic units available
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Unsupervised Learning

• Only speech features available: Zero resource setup

• No transcription of speech signal in terms of words and acoustic units available

Objective

• Unsupervised language acquisition

• ”Learn a language like a child”

• Different approaches:
◮ Exemplar based pattern discovery
◮ Statistical model based pattern discovery
◮ Flat and hierarchical approaches

⇒ Use discovered word sequence for unsupervised speech recognizer training
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Exemplar based Pattern Discovery

Goal: automatically find recurring acoustical patterns in audio recordings

• Given: continuous audio stream

• Exemplar based method: Find similarities by comparing sequences

⇒ Number and segmentation of audio patterns unknown
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Exemplar based Pattern Discovery

Goal: automatically find recurring acoustical patterns in audio recordings

• Given: continuous audio stream

• Exemplar based method: Find similarities by comparing sequences

⇒ Number and segmentation of audio patterns unknown

Example Sequences: Time and Spectral Domain Representation
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Dynamic Time Warping

Dynamic Time Warping (DTW) based pattern search

• Goal: find similar exemplars in two sequences

• Calculate distance between each pair of feature vectors of two sequences

• Each region of low distance maps two similar exemplars

⇒ Find connected regions with low distance
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Exemplar Clustering

Clustering Algorithm

• Goal: Form clusters of similar exemplars in multiple sequences

• Input: Comparison of sequences A, B and C only delivers exemplar pairs
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Clustering Algorithm

• Goal: Form clusters of similar exemplars in multiple sequences

• Input: Comparison of sequences A, B and C only delivers exemplar pairs
◮ Links are formed between groups across sequences based on DTW distance
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Exemplar Clustering

Clustering Algorithm

• Goal: Form clusters of similar exemplars in multiple sequences

• Input: Comparison of sequences A, B and C only delivers exemplar pairs
◮ Links are formed between groups across sequences based on DTW distance
◮ Exemplars in one sequence at the same position can be grouped
◮ The resulting graph is clustered using an unsupervised graph clustering algorithm
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Example results

Example results

• Detection of single digits in Sequences of digits

3 2 7 6 3 2 7 6

Some conclusions

• Simple to implement

• Computationally expensive

• No statistical modeling
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Hierarchical System for Unsupervised Word Discovery

Hierarchy

• Two-level hierarchical approach:
◮ 1. Model speech signal as sequence of acoustic units
◮ 2. Model recurring sequences of acoustic units as words
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Hierarchical System for Unsupervised Word Discovery

Hierarchy

• Two-level hierarchical approach:
◮ 1. Model speech signal as sequence of acoustic units
◮ 2. Model recurring sequences of acoustic units as words

Statistical Model based approach

• Learning of different statistical models:
◮ Acoustic model
◮ Probabilistic pronunciation lexicon
◮ Language model
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Acoustic Unit Discovery (Overview)

Three steps to acoustic unit discovery

• Goal: Learn acoustic units representing repeating
sequences of speech features

• Key Idea: Speech signal consist of small number of
building blocks, e.g. phones

Speech

AUD Discovery
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Three steps to acoustic unit discovery

• Goal: Learn acoustic units representing repeating
sequences of speech features

• Key Idea: Speech signal consist of small number of
building blocks, e.g. phones

• Three steps:
◮ 1. Segmentation of speech signal into distinct segments
◮ 2. Clustering of segments into acoustic units
◮ 3. Iterative HMM training for each acoustic unit

• Output: transcription of speech signal in terms of a
sequence of acoustic units
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Segmentation

Step 1: Segmentation

Spectrogram (
”
one, one, oh, oh, seven“)
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Segmentation

Step 1: Segmentation

• Use Voice Activity Detection (VAD) to support segmentation
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Segmentation

Step 1: Segmentation

• Use Voice Activity Detection (VAD) to support segmentation

• Segment the input signal according to the distance between feature vectors

• Join feature vectors and form a segment if they are similar
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”
one, one, oh, oh, seven“)
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Segmentation

Step 1: Segmentation

• Use Voice Activity Detection (VAD) to support segmentation

• Segment the input signal according to the distance between feature vectors

• Join feature vectors and form a segment if they are similar

⇒ Output: Initial transcriptions in terms of segment numbers

Spectrogram (
”
one, one, oh, oh, seven“)

• VAD: black line, low: inactive, high: active

• Segmentation: magenta line, indicating segment borders

Unsupervised Language Acquisition

O. Walter 9 / 18

NT



Clustering

Step 2: Clustering

• Goal: Find clusters of similar segments

• Each cluster is assigned to an acoustic unit

• Output: Initial transcription of speech signal in terms of acoustic units
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Clustering

Step 2: Clustering

• Goal: Find clusters of similar segments

• Each cluster is assigned to an acoustic unit

• Output: Initial transcription of speech signal in terms of acoustic units

Cluster on sparse distance matrix

• Build adjacency matrix according to
DTW distances between segments

• Calculation of all distances too costly

• Calculate distances only between
seeds and all segments

• Use kmeans++ like seed selection

• Use unsupervised graph clustering
algorithm to cluster the graph
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Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

• Train HMM for each acoustic unit

• Left to right 3-state HMM

• Gaussian Mixture Model emission distributions

• Iterate between model estimation and decoding until convergence
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Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

• Train HMM for each acoustic unit

• Left to right 3-state HMM

• Gaussian Mixture Model emission distributions

• Iterate between model estimation and decoding until convergence

Training Algorithm

• Iterative HMM training using the resulting sequence of cluster labels from the
clustering step as an initial transcription for the input signal:

Model estimation: Λ(κ+1) = argmax
Λ

D
∏

d=1

p
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Xd |T
(κ)
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; Λ(κ)
)

Decoding: T
(κ+1)
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T
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T |Xd ; Λ
(κ+1)

)

(iteration index κ, HMM parameters Λ and transcriptions T )
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Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

• Train HMM for each acoustic unit

• Left to right 3-state HMM

• Gaussian Mixture Model emission distributions

• Iterate between model estimation and decoding until convergence

Training Algorithm

• Iterative HMM training using the resulting sequence of cluster labels from the
clustering step as an initial transcription for the input signal:

Model estimation: Λ(κ+1) = argmax
Λ

D
∏

d=1

p
(

Xd |T
(κ)
d

; Λ(κ)
)

Decoding: T
(κ+1)
d

= argmax
T

P
(

T |Xd ; Λ
(κ+1)

)

(iteration index κ, HMM parameters Λ and transcriptions T )

⇒ Output: Refined transcription in terms of acoustic units
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Experimental Results

Example transcriptions: TiDigits - Digit Sequences

33o31: sil F CF BB G sil C CF BB C sil AA B D I sil C CF BB D DC EG EJ BD I sil
3533: sil C CF BB G AE AA DE FA AH sil C CF BB I G C CF BB I sil

Example transcriptions: Domotica 3 - Dysarthric Speech

• Two Repetitions of the sentence: ALADIN hoofdeinde op stand 1

• Repetition 1:
◮ AJ AE AA AC B AF F BJ C H H AH AB AF AC AD BJ C AC F

F AD E I AC H AH AB AF F

• Repetition 2:
◮ AJ AE AA AC B AF F BJ C H AH AB AF AC AD E C H BB

F AD E I AC H AH AB AF F
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Word Discovery (Overview)

Unsupervised Word discovery

• Input: Acoustic unit sequence

• Goal: Learn word models representing
repeating sequences of acoustic units

• Key Idea: Segmentation of input sequence
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Unsupervised Word discovery
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Word Discovery (Overview)

Unsupervised Word discovery

• Input: Acoustic unit sequence

• Goal: Learn word models representing
repeating sequences of acoustic units

• Key Idea: Segmentation of input sequence

• Three main parts:
◮ Words: Probabilistic pronunciation lexicon
◮ Language Model: Power Law distribution
◮ Semi-Supervised learning: Initialization of

pronunciation lexicon

⇒ Output: Sequence of words
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Pronunciation Lexicon / Word Model

Word Model: Probabilistic Pronunciation Lexicon

• One HMM with discrete emission distributions per word

• Length modeling: product of transition probabilities delivers probability for length

Example Sequences: One → (w ah n|uw ax m|. . .)

S1 S2 SN

a1,in a1,2

a1,out

a2,out

aN,outa2,3

↓ ↓ ↓

w: 0.6 ah: 0.5 n: 0.7
uw: 0.2 ax: 0.3 m: 0.1
aa: 0.1 ae: 0.1 em: 0.1

... ... ...

• Parametric: How many HMMs?

• Parameter space grows with each HMM: N × NAUD for emission distributions
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Language Model

Language Model connects Words to ergodic Markov chain

• Word models connected by language
model to form ergodic HMM

P(w1)

P(w2)

P(wK )

w1

w2

wK
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Language Model

Language Model connects Words to ergodic Markov chain

• Word models connected by language
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∑
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Language Model

Language Model connects Words to ergodic Markov chain

• Word models connected by language
model to form ergodic HMM

• Language model: power law
distribution over words → Zipf’s Law

P(wk ; s) =
k−s

∑

K

i=1 i
−s

• EM algorithm to estimate parameters

• Iterate between decoding and
parameter estimation

⇒ Output: Sequence of Words.
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Semi-Supervised Learning

Semi-Supervised Initialization of word models

• EM Algorithm is sensitive to local maxima and requires initialization

• Initialization without knowledge: Draw parameters randomly

• Semi-Supervised initialization:
◮ DTW-based pattern discovery algorithm delivers clusters of patterns in the input signal

⇒ Run DTW algorithm on subset of input data to find words (9% of data → 3.5% coverage)
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◮ Labels can be assigned to discovered clusters by listening to exemplars
◮ For each discovered cluster initialize the emission distributions of a word HMM
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Experimental Results

Experimental Results

• Input: Acoustic unit sequence learned from TiDigits

• Performance measure: Word Accuracy in %

• Random initialization of 11 word HMMs: 67.9%

• DTW-based initialization: 8 of the 11 word HMMs initialized: 81.9%

• Unsupervised speech recognizer training: iterative training of GMM-HMM
speech recognizer using discovered word sequence as initial transcription:

Iteration 0 1 3 5 7
Random initialization 67.9 80.8 82.9 84.4 84.7

DTW-based initialization 81.9 96.6 98.4 98.5 98.5

⇒ The performance of semi-supervised training is close to the supervised training

Some Conclusions

• Delivers good results on small databases when number of words known

• Standard HMM training algorithms can be used for parameter estimation

• Parametric in terms of the number of words

• Parameter space (e.g. for pronunciation lexicon) grows with number of words

Unsupervised Language Acquisition

O. Walter 17 / 18

NT



Conclusion, further Research and Outlook

Conclusion

• Exemplar based pattern discovery

• Statistical model based pattern discovery

• Hierarchical structure of language

• Learning of Acoustic Units, Words and Language Models
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• Nonparametric Models in terms of words (Nested Pitman-Yor Language Model)
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Conclusion, further Research and Outlook

Conclusion

• Exemplar based pattern discovery

• Statistical model based pattern discovery

• Hierarchical structure of language

• Learning of Acoustic Units, Words and Language Models

Further Research

• Nonparametric Models in terms of words (Nested Pitman-Yor Language Model)

• Unsupervised Segmentation of error free text and noisy input (lattices)

• Joint learning of higher order phoneme/word language models and segmentation

Outlook

• Model variation in pronunciation and errors/noise in segmentation algorithm

• Nonparametric acoustic model discovery

• Integration of acoustic model, word and language model discovery
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Thank you for your attention!
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