

Unsupervised Language Acquisition Learning the Components of a Language

Dipl.-Ing. Oliver Walter

Department of Communications Engineering - University of Paderborn

June 24, 2014

Computer Science, Electrical Engineering and Mathematics

Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umbach

Table of contents

1 Unsupervised Language Acquisition

2 Exemplar based Pattern Discovery

- Dynamic Time Warping
- Exemplar Clustering

3 Hierarchical System for Unsupervised Word Discovery

- Acoustic Unit Discovery
- Word Discovery
- Semi-Supervised Learning

4 Conclusion, further Research and Outlook

Unsupervised Language Acquisition

Unsupervised Learning

- Only speech features available: Zero resource setup
- No transcription of speech signal in terms of words and acoustic units available

Unsupervised Language Acquisition

Unsupervised Learning

- Only speech features available: Zero resource setup
- No transcription of speech signal in terms of words and acoustic units available

Objective

- Unsupervised language acquisition
- "Learn a language like a child"
- Different approaches:
 - Exemplar based pattern discovery
 - Statistical model based pattern discovery
 - Flat and hierarchical approaches

Unsupervised Language Acquisition

Unsupervised Learning

- Only speech features available: Zero resource setup
- No transcription of speech signal in terms of words and acoustic units available

Objective

- Unsupervised language acquisition
- "Learn a language like a child"
- Different approaches:
 - Exemplar based pattern discovery
 - Statistical model based pattern discovery
 - Flat and hierarchical approaches
- \Rightarrow Use discovered word sequence for unsupervised speech recognizer training

Exemplar based Pattern Discovery

Goal: automatically find recurring acoustical patterns in audio recordings

- Given: continuous audio stream
- Exemplar based method: Find similarities by comparing sequences
- $\Rightarrow\,$ Number and segmentation of audio patterns unknown

Exemplar based Pattern Discovery

Goal: automatically find recurring acoustical patterns in audio recordings

- Given: continuous audio stream
- Exemplar based method: Find similarities by comparing sequences
- \Rightarrow Number and segmentation of audio patterns unknown

Dynamic Time Warping

Dynamic Time Warping (DTW) based pattern search

- Goal: find similar exemplars in two sequences
- Calculate distance between each pair of feature vectors of two sequences
- Each region of low distance maps two similar exemplars
- $\Rightarrow\,$ Find connected regions with low distance

Clustering Algorithm

- Goal: Form clusters of similar exemplars in multiple sequences
- Input: Comparison of sequences A, B and C only delivers exemplar pairs

Clustering Algorithm

- Goal: Form clusters of similar exemplars in multiple sequences
- Input: Comparison of sequences A, B and C only delivers exemplar pairs
 - Links are formed between groups across sequences based on DTW distance

Clustering Algorithm

- Goal: Form clusters of similar exemplars in multiple sequences
- Input: Comparison of sequences A, B and C only delivers exemplar pairs
 - Links are formed between groups across sequences based on DTW distance
 - Exemplars in one sequence at the same position can be grouped

Clustering Algorithm

- Goal: Form clusters of similar exemplars in multiple sequences
- Input: Comparison of sequences A, B and C only delivers exemplar pairs
 - Links are formed between groups across sequences based on DTW distance
 - Exemplars in one sequence at the same position can be grouped
 - The resulting graph is clustered using an unsupervised graph clustering algorithm

Example results

Example results

• Detection of single digits in Sequences of digits

Some conclusions

- Simple to implement
- Computationally expensive
- No statistical modeling

Hierarchical System for Unsupervised Word Discovery

Hierarchy

- Two-level hierarchical approach:
 - 1. Model speech signal as sequence of acoustic units
 - 2. Model recurring sequences of acoustic units as words

Hierarchical System for Unsupervised Word Discovery

Hierarchy

- Two-level hierarchical approach:
 - 1. Model speech signal as sequence of acoustic units
 - 2. Model recurring sequences of acoustic units as words

Statistical Model based approach

- Learning of different statistical models:
 - Acoustic model
 - Probabilistic pronunciation lexicon
 - Language model

speech signal

acoustic units

speech signal

acoustic units

speech signal

acoustic units

Three steps to acoustic unit discovery Speech Init Goal: Learn acoustic units representing repeating sequences of speech features Segmentation (1) Audio · Key Idea: Speech signal consist of small number of Segments building blocks, e.g. phones Clustering (2) • Three steps: Segment Labels . 1. Segmentation of speech signal into distinct segments 2. Clustering of segments into acoustic units AUD Discoverv

speech signal

acoustic units

Three steps to acoustic unit discovery

- Goal: Learn acoustic units representing repeating sequences of speech features
- Key Idea: Speech signal consist of small number of building blocks, e.g. phones
- Three steps:
 - ▶ 1. Segmentation of speech signal into distinct segments
 - 2. Clustering of segments into acoustic units
 - 3. Iterative HMM training for each acoustic unit

speech signal

acoustic units

Three steps to acoustic unit discovery

- Goal: Learn acoustic units representing repeating sequences of speech features
- Key Idea: Speech signal consist of small number of building blocks, e.g. phones
- Three steps:
 - 1. Segmentation of speech signal into distinct segments
 - 2. Clustering of segments into acoustic units
 - 3. Iterative HMM training for each acoustic unit
- Output: transcription of speech signal in terms of a sequence of acoustic units

Segmentation

Step 1: Segmentation

Spectrogram ("one, one, oh, oh, seven")

Segmentation

Step 1: Segmentation

• Use Voice Activity Detection (VAD) to support segmentation

Spectrogram ("one, one, oh, oh, seven")

• VAD: black line, low: inactive, high: active

Segmentation

Step 1: Segmentation

- Use Voice Activity Detection (VAD) to support segmentation
- · Segment the input signal according to the distance between feature vectors
- · Join feature vectors and form a segment if they are similar

- VAD: black line, low: inactive, high: active
- Segmentation: magenta line, indicating segment borders

Step 1: Segmentation

- Use Voice Activity Detection (VAD) to support segmentation
- · Segment the input signal according to the distance between feature vectors
- · Join feature vectors and form a segment if they are similar
- \Rightarrow **Output**: Initial transcriptions in terms of segment numbers

Spectrogram ("one, one, oh, oh, seven")

- VAD: black line, low: inactive, high: active
- Segmentation: magenta line, indicating segment borders

Clustering

Step 2: Clustering

- Goal: Find clusters of similar segments
- Each cluster is assigned to an acoustic unit
- Output: Initial transcription of speech signal in terms of acoustic units

Step 2: Clustering

- Goal: Find clusters of similar segments
- · Each cluster is assigned to an acoustic unit
- Output: Initial transcription of speech signal in terms of acoustic units

Cluster on sparse distance matrix

- Build adjacency matrix according to DTW distances between segments
- Calculation of all distances too costly
- Calculate distances only between seeds and all segments
- Use kmeans++ like seed selection
- Use unsupervised graph clustering algorithm to cluster the graph

Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

- Train HMM for each acoustic unit
- Left to right 3-state HMM
- Gaussian Mixture Model emission distributions
- Iterate between model estimation and decoding until convergence

Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

- Train HMM for each acoustic unit
- Left to right 3-state HMM
- Gaussian Mixture Model emission distributions
- Iterate between model estimation and decoding until convergence

Training Algorithm

• Iterative HMM training using the resulting sequence of cluster labels from the clustering step as an initial transcription for the input signal:

$$\begin{array}{l} \text{Aodel estimation: } \Lambda^{(\kappa+1)} = \mathop{\mathrm{argmax}}_{\Lambda} \prod_{d=1}^{D} \mathsf{p}\left(\mathbf{X}_{d} | \mathcal{T}_{d}^{(\kappa)}; \Lambda^{(\kappa)}\right) \\ \text{Decoding: } \mathcal{T}_{d}^{(\kappa+1)} = \mathop{\mathrm{argmax}}_{T} \mathsf{P}\left(\mathcal{T} | \mathbf{X}_{d}; \Lambda^{(\kappa+1)}\right) \end{array} \end{array}$$

(iteration index κ , HMM parameters Λ and transcriptions T)

Iterative Hidden Markov Model (HMM) Training

Step 3: Acoustic unit model training and refinement

- Train HMM for each acoustic unit
- Left to right 3-state HMM
- Gaussian Mixture Model emission distributions
- Iterate between model estimation and decoding until convergence

Training Algorithm

• Iterative HMM training using the resulting sequence of cluster labels from the clustering step as an initial transcription for the input signal:

$$\begin{array}{l} \text{Aodel estimation: } \Lambda^{(\kappa+1)} = \mathop{\mathrm{argmax}}_{\Lambda} \prod_{d=1}^{D} \mathsf{p}\left(\mathbf{X}_{d} | T_{d}^{(\kappa)}; \Lambda^{(\kappa)}\right) \\ \text{Decoding: } T_{d}^{(\kappa+1)} = \mathop{\mathrm{argmax}}_{T} \mathsf{P}\left(T | \mathbf{X}_{d}; \Lambda^{(\kappa+1)}\right) \end{array} \end{array}$$

(iteration index κ , HMM parameters Λ and transcriptions T)

 \Rightarrow **Output:** Refined transcription in terms of acoustic units

Experimental Results

Example transcriptions: TiDigits - Digit Sequences

33o31: sil F CF BB G sil C CF BB C sil AA B D I sil C CF BB D DC EG EJ BD I sil 3533: sil C CF BB G AE AA DE FA AH sil C CF BB I G C CF BB I sil

Example transcriptions: Domotica 3 - Dysarthric Speech

- Two Repetitions of the sentence: ALADIN hoofdeinde op stand 1
- Repetition 1:
 - AJ AE AA AC B AF F BJ C H H AH AB AF AC AD BJ C AC F F AD E I AC H AH AB AF F
- Repetition 2:
 - AJ AE AA AC B AF F BJ C H AH AB AF AC AD E C H BB F AD E I AC H AH AB AF F

Word Discovery (Overview)

acoustic units

discovered words

Unsupervised Word discovery

- Input: Acoustic unit sequence
- Goal: Learn word models representing repeating sequences of acoustic units
- Key Idea: Segmentation of input sequence

Word Discovery (Overview)

acoustic units

discovered words

Unsupervised Word discovery

- Input: Acoustic unit sequence
- Goal: Learn word models representing repeating sequences of acoustic units
- Key Idea: Segmentation of input sequence
- Three main parts:
 - Words: Probabilistic pronunciation lexicon
 - Language Model: Power Law distribution
 - Semi-Supervised learning: Initialization of pronunciation lexicon

Word Discovery (Overview)

acoustic units

discovered words

Unsupervised Word discovery

- Input: Acoustic unit sequence
- Goal: Learn word models representing repeating sequences of acoustic units
- Key Idea: Segmentation of input sequence
- Three main parts:
 - Words: Probabilistic pronunciation lexicon
 - Language Model: Power Law distribution
 - Semi-Supervised learning: Initialization of pronunciation lexicon
- \Rightarrow **Output:** Sequence of words

Pronunciation Lexicon / Word Model

Word Model: Probabilistic Pronunciation Lexicon

- One HMM with discrete emission distributions per word
- Length modeling: product of transition probabilities delivers probability for length

Example Sequences: One ightarrow (w ah n|uw ax m|. . .)

- Parametric: How many HMMs?
- Parameter space grows with each HMM: $N \times N_{AUD}$ for emission distributions

Language Model connects Words to ergodic Markov chain

 Word models connected by language model to form ergodic HMM

Language Model connects Words to ergodic Markov chain

- Word models connected by language model to form ergodic HMM
- Language model: power law distribution over words \rightarrow Zipf's Law

$$P(w_k;s) = \frac{k^{-s}}{\sum_{i=1}^{K} i^{-s}}$$

Language Model connects Words to ergodic Markov chain

- Word models connected by language model to form ergodic HMM
- Language model: power law distribution over words → Zipf's Law

$$P(w_k;s) = \frac{k^{-s}}{\sum_{i=1}^{K} i^{-s}}$$

- EM algorithm to estimate parameters
- Iterate between decoding and parameter estimation

Language Model connects Words to ergodic Markov chain

- Word models connected by language model to form ergodic HMM
- Language model: power law distribution over words \rightarrow Zipf's Law

$$P(w_k;s) = \frac{k^{-s}}{\sum_{i=1}^{K} i^{-s}}$$

- EM algorithm to estimate parameters
- Iterate between decoding and parameter estimation
- \Rightarrow Output: Sequence of Words.

Semi-Supervised Learning

Semi-Supervised Initialization of word models

- EM Algorithm is sensitive to local maxima and requires initialization
- Initialization without knowledge: Draw parameters randomly
- Semi-Supervised initialization:
 - DTW-based pattern discovery algorithm delivers clusters of patterns in the input signal
 - $\Rightarrow~$ Run DTW algorithm on subset of input data to find words (9% of data \rightarrow 3.5% coverage)

- Labels can be assigned to discovered clusters by listening to exemplars
- For each discovered cluster initialize the emission distributions of a word HMM

Experimental Results

Experimental Results

- Input: Acoustic unit sequence learned from TiDigits
- Performance measure: Word Accuracy in %
- Random initialization of 11 word HMMs: 67.9%
- DTW-based initialization: 8 of the 11 word HMMs initialized: 81.9%
- Unsupervised speech recognizer training: iterative training of GMM-HMM speech recognizer using discovered word sequence as initial transcription:

Iteration	0	1	3	5	7
Random initialization	67.9	80.8	82.9	84.4	84.7
DTW-based initialization	81.9	96.6	98.4	98.5	98.5

 \Rightarrow The performance of semi-supervised training is close to the supervised training

Some Conclusions

- Delivers good results on small databases when number of words known
- Standard HMM training algorithms can be used for parameter estimation
- · Parametric in terms of the number of words
- Parameter space (e.g. for pronunciation lexicon) grows with number of words

17 / 18

Conclusion, further Research and Outlook

Conclusion

- Exemplar based pattern discovery
- Statistical model based pattern discovery
- Hierarchical structure of language
- Learning of Acoustic Units, Words and Language Models

Conclusion, further Research and Outlook

Conclusion

- Exemplar based pattern discovery
- Statistical model based pattern discovery
- Hierarchical structure of language
- Learning of Acoustic Units, Words and Language Models

Further Research

- Nonparametric Models in terms of words (Nested Pitman-Yor Language Model)
- Unsupervised Segmentation of error free text and noisy input (lattices)
- Joint learning of higher order phoneme/word language models and segmentation

Conclusion, further Research and Outlook

Conclusion

- Exemplar based pattern discovery
- Statistical model based pattern discovery
- Hierarchical structure of language
- Learning of Acoustic Units, Words and Language Models

Further Research

- Nonparametric Models in terms of words (Nested Pitman-Yor Language Model)
- Unsupervised Segmentation of error free text and noisy input (lattices)
- Joint learning of higher order phoneme/word language models and segmentation

Outlook

- Model variation in pronunciation and errors/noise in segmentation algorithm
- Nonparametric acoustic model discovery
- Integration of acoustic model, word and language model discovery

Thank you for your attention!

Questions ?

Dipl.-Ing Oliver Walter

University of Paderborn Department of Communications Engineering

walter@nt.uni-paderborn.de nt.uni-paderborn.de

Computer Science, Electrical Engineering and Mathematics

Communications Engineering Prof. Dr.-Ing. Reinhold Häb-Umbach