

Part II. Noise Reduction – Beamforming

Reinhold Haeb-Umbach

Speech capture in noisy environments

• Forming a beam of increased sensitivity towards the desired speaker reduces noise and other distortions

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Table of contents in part II

- Some physics
- From physics to signal processing
- Optimal beamforming design criteria
- Speech presence probability (mask) estimation
 - Spatial mixture models
 - Neural networks
- Speaker-conditioned spectrogram masking

Some physics

 In free space, waveform at point *i* caused by a waveform emitted at point *j*

$$x_i[\tilde{t}] = \frac{1}{\sqrt{4\pi}l_{ij}} s_j \left[\tilde{t} - \frac{l_{ij}}{c}\right]$$

where l_{ij} is distance from position *i* to *j*

- Far-field: l_{ii} much larger than inter-microphone distance d
 - Plane wave
 - Attenuation factor $1/\sqrt{4\pi}l_{ij}$ the same for all mics
 - Signal delay between microphones $\tilde{\tau} = d/c$ where $c \approx 340 \, {\rm m/s}$
 - Example: for $d=10\,{\rm cm}\ \Rightarrow\ \tilde{\tau}=0.3\,{\rm ms}=4.7\,{\rm samples}$ @ 16 kHz

Basics of acoustic beamforming

$$= e^{j\omega_0 \tilde{t}} = e^{j\frac{2\pi c}{\lambda_0}\tilde{t}}$$

Signal at *m*th microphone:
$$x_m[\tilde{t}] = s[\tilde{t} - \tilde{\tau}_m] = e^{j\omega_0(\tilde{t} - \tilde{\tau}_m)}$$
$$\tilde{\tau}_m = \frac{(m-1)d\cos\theta}{c}; \ m = 1, \dots, M$$

Beamformer output:
$$z[\tilde{t}] = \sum_{m=1}^M w_m^* x_m[\tilde{t}]$$

Beamformer coeff.:

$$\mathbf{w} = [w_1, \dots, w_M]^\top$$

Steering vector:

$$\mathbf{v}(\theta,\lambda_0) = \begin{pmatrix} 1 & e^{-j2\pi\left(\frac{d}{\lambda_0}\right)\cos(\theta)} & \cdots & e^{-j2\pi\left(\frac{d}{\lambda_0}\right)\cos(\theta)(M-1)} \end{pmatrix}$$

 $= \mathrm{e}^{j\omega_0 \tilde{t}} \mathbf{w}^{\mathrm{H}} \mathbf{v}(\theta, \lambda_0)$

Delay-Sum Beamformer (DSB)

• Delay-Sum Beamformer: $\mathbf{w} = \frac{1}{M} \begin{pmatrix} 1 & e^{-j\phi_0} & \cdots & e^{-j(M-1)\phi_0} \end{pmatrix}^{\mathsf{T}}$

with phase term $\phi_0 = \omega_0 \tau_0 = \omega_0 \frac{d \cos \theta_0}{c} = 2\pi \frac{d}{\lambda_0} \cos(\theta_0)$

- DSB steered towards geometric angle θ_0
- Beampattern: $|z[\tilde{t}]| = \left| e^{j\omega_0 \tilde{t}} \cdot \mathbf{w}^{\mathrm{H}} \mathbf{v} \right|$

$$= \cdots$$
$$= \frac{1}{M} \left| \frac{\sin\left(\frac{M}{2}2\pi \frac{d}{\lambda_0}(\cos(\theta) - \cos(\theta_0))\right)}{\sin\left(\frac{1}{2}2\pi \frac{d}{\lambda_0}(\cos(\theta) - \cos(\theta_0))\right)} \right|$$

Example beampatterns

From physics to signal processing

Real acoustic environments:

- Reverberation
 - Time differences of arrival (TDOAs) inappropriate
- Wideband beamforming
 - Fourier transform domain processing
- Interferences
 - Need appropriate objective functions
- Unknown and time-varying acoustic environment
 - Estimation of beamformer coefficients

Most common model

• Signal at *m*-th microphone:

$$x_m[\tilde{t}] = s[\tilde{t} - \tilde{\tau}_m] \quad \to \quad y_m[\tilde{t}] = x_m[\tilde{t}] + n[\tilde{t}] = \sum_{\tilde{\tau}=0}^{L-1} a_m[\tilde{\tau}]s[\tilde{t} - \tilde{\tau}] + n[\tilde{t}]$$

- Short-Time Fourier Transform (STFT): $y_m[\tilde{t}] \rightarrow y_{m,t,f}$
- Narrowband assumption (multiplicative transfer function approx.): length of acoustic impulse response << STFT analysis window
 - convolution in time domain corresponds to multiplication in STFT domain
- Time-invariant Acoustic Transfer Function (ATF)

$$y_{m,t,f} = a_{m,f}s_{t,f} + n_{t,f}; \quad m = 1, \dots, M$$
$$\mathbf{y}_{t,f} = \mathbf{a}_f s_{t,f} + \mathbf{n}_{t,f} := \mathbf{x}_{t,f} + \mathbf{n}_{t,f}$$

ATF vs RTF

• Scale ambiguity of ATF

$$\mathbf{x}_{t,f} = \mathbf{a}_f s_{t,f} = (\mathbf{a}_f \cdot C) \cdot s_{t,f} / C; \quad C \in \mathbb{C}$$

• Fix ambiguity: Relative transfer function (RTF)

$$\tilde{\mathbf{a}}_{f} = \frac{\mathbf{a}_{f}}{a_{1,f}} = \left(1, \frac{a_{2,f}}{a_{1,f}}, \dots, \frac{a_{M,f}}{a_{1,f}}\right)^{\mathsf{T}}$$
$$\Rightarrow \mathbf{x}_{t,f} = \mathbf{a}_{f} s_{t,f} = \tilde{\mathbf{a}}_{f} a_{1,f} s_{t,f} = \tilde{\mathbf{a}}_{f} x_{1,t,f}$$

• Thus our goal is to estimate the *image* of the source at a reference microphone (e.g., mic. #1)

$$x_{1,t,f} = a_{1,f} s_{t,f}$$

- Thus, we do not attempt to dereverberate the signal!

Optimal beamforming design criteria: MMSE

- Beamformer output: $z_{t,f} = \mathbf{w}_f^{\mathsf{H}} \mathbf{y}_{t,f}$
- MMSE:

$$\min_{\mathbf{w}_{f}} \mathbb{E}\left[\left|\mathbf{w}_{f}^{\mathsf{H}}\mathbf{y}_{t,f}-x_{1,t,f}\right|^{2}\right] = \min_{\mathbf{w}_{f}} \mathbb{E}\left[\left|\mathbf{w}_{f}^{\mathsf{H}}\mathbf{x}_{t,f}-x_{1,t,f}\right|^{2}\right] + \mathbb{E}\left[\left|\mathbf{w}_{f}^{\mathsf{H}}\mathbf{n}_{t,f}\right|^{2}\right]$$

Add weight µ

II.11

Results in:
$$\mathbf{w}_{f}^{\text{SDW-MWF}} = (\Psi_{\mathbf{xx},f} + \mu \Psi_{\mathbf{nn},f})^{-1} \Psi_{\mathbf{xx},f} \mathbf{u}_{1}$$
where $\Psi_{\mathbf{xx},f} = \mathbb{E} \left[\mathbf{x}_{t,f} \mathbf{x}_{t,f}^{\mathsf{H}} \right]$ (spatial covar. matrix of speech) $\Psi_{\mathbf{nn},f} = \mathbb{E} \left[\mathbf{n}_{t,f} \mathbf{n}_{t,f}^{\mathsf{H}} \right]$ (spatial covar. matrix of noise) $\mathbf{u}_{1} = [1, 0, \dots, 0]^{\top}$ (points to reference microphone)

Speech Distortion Weighted Multi-channel Wiener Filter (SDW-MWF)

Optimal beamforming design criteria: M(P|V)DR

• MPDR: Minimum Power Distortionless Response:

$$\min_{\mathbf{w}_{f}} \mathbb{E} \left[\left| \mathbf{w}_{f}^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{y}\mathbf{y},f} \mathbf{w}_{f} \right|^{2} \right] \text{ subject to } \mathbf{w}_{f}^{\mathsf{H}} \tilde{\mathbf{a}}_{f} = 1$$

gives $\mathbf{w}_{f}^{\mathsf{MPDR}} = \frac{\boldsymbol{\Psi}_{\mathbf{y}\mathbf{y},f}^{-1} \tilde{\mathbf{a}}_{f}}{\tilde{\mathbf{a}}_{f}^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{y}\mathbf{y},f}^{-1} \tilde{\mathbf{a}}_{f}}$

• MVDR: Minimum Variance Distortionless Response:

$$\min_{\mathbf{w}_{f}} \mathbb{E} \left[\left| \mathbf{w}_{f}^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{nn},f} \mathbf{w}_{f} \right|^{2} \right] \text{ subject to } \mathbf{w}_{f}^{\mathsf{H}} \tilde{\mathbf{a}}_{f} = 1$$
gives
$$\mathbf{w}_{f}^{\mathsf{MVDR}} = \frac{\boldsymbol{\Psi}_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_{f}}{\tilde{\mathbf{a}}_{f}^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_{f}}$$

Optimal beamforming design criteria: maxSNR

• Maximize output SNR:

$$\max_{\mathbf{w}_f} \frac{\mathbf{w}_f^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{x}\mathbf{x},f} \mathbf{w}_f}{\mathbf{w}_f^{\mathsf{H}} \boldsymbol{\Psi}_{\mathbf{n}\mathbf{n},f} \mathbf{w}_f}$$

leads to generalized eigenvalue problem. $\Psi_{\mathbf{xx},f}\mathbf{w}_f = \lambda \Psi_{\mathbf{nn},f}\mathbf{w}_f$ which can be transformed to ordinary eigenvalue problem by Cholesky factorization: $\Psi_{\mathbf{nn},f} = \mathbf{L}_f \mathbf{L}_f^{\mathsf{H}}$

$$\left(\mathbf{L}_{f}^{-1}\boldsymbol{\Psi}_{\mathbf{x}\mathbf{x},f}\mathbf{L}_{f}^{-H}\right)\left(\mathbf{L}_{f}^{H}\mathbf{w}_{f}\right) = \lambda\left(\mathbf{L}_{f}^{H}\mathbf{w}_{f}\right)$$

Solution:

$$\mathbf{w}_{f}^{\text{maxSNR}} = \mathbf{L}_{f}^{-H} \mathcal{P} \left(\mathbf{L}_{f}^{-1} \boldsymbol{\Psi}_{\mathbf{xx}, f} \mathbf{L}_{f}^{-H} \right)$$

(Notation: $\mathcal{P}(\mathbf{A})$: Eigenvector corresponding to largest Eigenvalue of \mathbf{A})

Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming

Rank-1 Constraint

Narrowband (rank-1) assumption: $\mathbf{x}_{t,f} = \tilde{\mathbf{a}}_f x_{1,t,f} \Rightarrow \Psi_{\mathbf{xx},f} = \tilde{\mathbf{a}}_f \tilde{\mathbf{a}}_f^{\mathsf{H}} \sigma_{x_1,f}^2$ Use in SDW-MWF: gives¹: $\mathbf{w}_f^{r_1-\text{SDW-MWF}} = \frac{\Psi_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_f \tilde{\mathbf{a}}_f^{\mathsf{H}} \sigma_{x_1,f}^2}{\mu + \text{tr} \left\{ \Psi_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_f \tilde{\mathbf{a}}_f^{\mathsf{H}} \sigma_{x_1,f}^2 \right\}} \mathbf{u}_1$ With μ =0 we obtain $\mathbf{w}_f^{r_1-\text{SDW-MWF-0}} = \frac{\Psi_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_f}{\tilde{\mathbf{a}}_f^{\mathsf{H}} \Psi_{\mathbf{nn},f}^{-1} \tilde{\mathbf{a}}_f} = \mathbf{w}^{\text{MVDR}}$

Enforcing rank-1 constraint on maxSNR beamformer gives

$$\mathbf{w}_{f}^{\text{maxSNR}} = \mathbf{L}_{f}^{-H} \mathcal{P} \left(\mathbf{L}_{f}^{-1} \tilde{\mathbf{a}}_{f} \tilde{\mathbf{a}}_{f}^{\mathsf{H}} \sigma_{x_{1}, f}^{2} \mathbf{L}_{f}^{-H} \right) = \mathbf{L}_{f}^{-H} \mathbf{L}_{f}^{-1} \tilde{\mathbf{a}}_{f}$$
$$= \Psi_{\mathbf{nn}, f}^{-1} \tilde{\mathbf{a}}_{f}$$

All beamformers point in same direction and differ only in complex (freq.dep.) constant

¹ employ matrix inversion lemma

Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming

Beamforming Criteria: Discussion

- maxSNR beamformer introduces speech distortions, while MVDR does not
 - Can be compensated by postfilter [Warsitz and Haeb-Umbach, 2007]
- There is no unanimous opinion which of the beamformers performs best for enhancement for ASR
 - Advice: try out all of them
- A good estimate of the spatial covariance matrices is more important

How do we estimate the spatial covariance matrix?

• Spatial covariance estimation:

$$\hat{\boldsymbol{\Psi}}_{\boldsymbol{\nu}\boldsymbol{\nu},f} = \sum_{t=1}^{T} \gamma_{t,f}^{(\boldsymbol{\nu})} \mathbf{y}_{t,f} \mathbf{y}_{t,f}^{\mathsf{H}} / \sum_{t} \gamma_{tf}^{(\boldsymbol{\nu})}; \quad \boldsymbol{\nu} \in \{\mathbf{x}, \mathbf{n}\}$$

where: $\gamma_{t,f}^{(x)} = \hat{\Pr}(M_{t,f}^{(x)} = 1|\mathcal{Y})$ speech presence prob. (SPP), speech mask $\gamma_{t,f}^{(n)} = \hat{\Pr}(M_{t,f}^{(n)} = 1|\mathcal{Y})$ noise presence prob., noise mask

How do we estimate the RTF?

- Estimation of RTF $\tilde{\mathbf{a}}_f$:
 - Solve above (generalized) eigenvalue problem: $\tilde{\mathbf{a}}_f = \mathbf{\Psi}_{\mathbf{nn},f} \mathbf{w}_f^{\mathrm{maxSNR}}$
 - Exploit nonstationarity of speech [Gannot et al., 2001] not described here
- Advice: use beamformer formulation, which avoids explicit computation of RTF, e.g.,

$$\mathbf{w}_{f}^{\text{r1-SDW-MWF}} = \frac{\mathbf{\Psi}_{\mathbf{nn},f}^{-1} \mathbf{\Psi}_{\mathbf{xx},f}}{\mu + \text{tr} \left\{ \mathbf{\Psi}_{\mathbf{nn},f}^{-1} \mathbf{\Psi}_{\mathbf{xx},f} \right\}} \mathbf{u}_{1} \qquad \text{[Souden et al., 2010]}$$

Summary: processing steps

$$\hat{x}_{1,t,f} = \mathbf{w}_{f}^{\mathsf{H}} \mathbf{y}_{t,f}$$
e.g.: $\mathbf{w}_{f}^{\text{r1-SDW-MWF}} = \frac{\hat{\Psi}_{\mathbf{nn},f}^{-1} \hat{\Psi}_{\mathbf{xx},f}}{\mu + \text{tr} \left\{ \hat{\Psi}_{\mathbf{nn},f}^{-1} \hat{\Psi}_{\mathbf{xx},f} \right\}} \mathbf{u}_{1}$

$$\hat{\Psi}_{\mathbf{xx},f} = \sum_{t} \gamma_{t,f}^{(\mathbf{x})} \mathbf{y}_{tf} \mathbf{y}_{tf}^{\mathsf{H}} / \sum_{t} \gamma_{tf}^{(\mathbf{x})}$$

$$\hat{\Psi}_{\mathbf{nn},f} = \sum_{t} \gamma_{t,f}^{(\mathbf{n})} \mathbf{y}_{tf} \mathbf{y}_{tf}^{\mathsf{H}} / \sum_{t} \gamma_{tf}^{(\mathbf{n})}$$

$$\hat{\Psi}_{\mathbf{nn},f} = \sum_{t} \gamma_{t,f}^{(\mathbf{n})} \mathbf{y}_{tf} \mathbf{y}_{tf}^{\mathsf{H}} / \sum_{t} \gamma_{tf}^{(\mathbf{n})}$$

$$\hat{\nabla}_{t,f}, \gamma_{t,f}^{(\mathbf{n})}$$

$$\hat{\nabla}_{t,f}, \gamma_{t,f}^{(\mathbf{n})}$$

$$\hat{\mathbf{y}}_{t,f}$$

Speech Presence Probability (SPP) / mask estimation

- Estimate for each tf-bin, the probability that it contains speech and the probability that it contains noise, using
 - spatial information
 - or spectral information
 - or both

Options for SPP estimation

- Hand-crafted spectro-temporal smoothing
- Spatial mixture models
- Neural networks

Spatial mixture model

- Sparsity assumption [Yilmaz and Rickard, 2004]
 - 90% of the speech power is concentrated in 10% of the tf-bins
 - sparsity most pronounced for STFT window lengths of approx 64 ms

$$M_{t,f} := M_{t,f}^{(x)} = 1 - M_{t,f}^{(n)} \in \{0, 1\}$$

$$\gamma_{t,f}^{(i)} := \hat{\Pr}(M_{t,f} = i | \mathbf{y}_{t,f}); i \in \{0, 1\}$$

• Mixture model for vector of microphone signals $\mathbf{y}_{t,f}$ or for representation derived from it

$$p(\mathbf{y}_{t,f}) = \sum_{i=0}^{1} \Pr(M_{t,f} = i) p(\mathbf{y}_{t,f} | M_{t,f} = i)$$

Example spatial mixture model

Complex angular central Gaussian (cACG) Mixture Model for normalized observation vector \$\tilde{y}_{t,f} = y_{t,f} / ||y_{t,f}||\$
 [Ito et al., 2016]:

$$p(\tilde{\mathbf{y}}_{t,f}) = \sum_{i=0}^{1} \Pr(M_{t,f} = i) p(\tilde{\mathbf{y}}_{t,f} | M_{t,f} = i) = \sum_{i} \pi_f^{(i)} \operatorname{cACG}(\tilde{\mathbf{y}}_{t,f}; \mathbf{B}_f^{(i)})$$

$$\operatorname{cACG}(\tilde{\mathbf{y}}_{t,f}; \mathbf{B}_{f}^{(i)}) = \frac{(M-1)!}{2\pi^{M} \det \mathbf{B}_{f}^{(i)}} \frac{1}{(\tilde{\mathbf{y}}_{t,f}^{\mathsf{H}}(\mathbf{B}_{f}^{(i)})^{-1} \tilde{\mathbf{y}}_{t,f})^{M}}$$

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Parameter estimation

- Parameter Estimation via Expectation Maximization (EM) alg.
 - E-step: estimate source activity indicator $\gamma_{t,f}^{(i)}$ for all *t*, *f* and *i* =0,1
 - M-step: estimate model parameters: $\pi_f^{(i)}$, $\mathbf{B}_f^{(i)}$; $i \in \{0, 1\}$
 - Iterate until convergence
- Actually, we are only interested in $\gamma_{t,f}^{(i)}$

Note: separate EM for each frequency causes frequency permutation problem: In one frequency i=1 may stand for speech, in another for noise! Permutation solver required, e.g. [Sawada et al., 2011] (or use permutation-free model with time-variant mixture weights [Ito et al., 2013])

SPP estimation with neural network

- SPP as supervised learning problem
 - Mask estimation formulated as classification problem
 - Objective function: binary cross entropy:

$$J(\theta) = -\sum_{\nu \in \{x,n\}} \sum_{t,f} \left(M_{t,f}^{(\nu)} \log \gamma_{t,f}^{(\nu)}(\theta) + (1 - M_{t,f}^{(\nu)}) \log(1 - \gamma_{t,f}^{(\nu)}(\theta)) \right)$$

• Note: masks need not sum up to one!

II.24

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Example configuration

• Input: spectral magnitudes $|\mathbf{y}_{t,f}|$

Layer	Units	Туре	Non-linearity	<i>p</i> _{dropout}
L1	256	BLSTM	Tanh	0.5
L2	513	FF	ReLU	0.5
L3	513	FF	ReLU	0.5
L4	1026	FF	Sigmoid	0.0

• Output: speech and noise masks $\gamma_{t,f}^{(x)}, \gamma_{t,f}^{(n)}$

Example masks

PADERBORN UNIVERSITY

Demonstration NN-based mask estimation

CHiME-3: Utterance ID: f04_051c0112_str

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

ASR results: Spatial mixture model mask estimation

- CHiME-3 (2015) [Barker et al., 2017]
 - WSJ utterances
 - "Fixed" speaker positions
 - Low reverberation
 - Noisy environment: bus, café, street, pedestrian
 - Trng set size: 18 hrs x 6 channels
- The winning system [Yoshioka et al., 2015, Higuchi et al., 2016] used a cACGMM spatial mixture model:

WER [%]	Dev Real	Test Real
No beamforming	9.0	15.6
DSB with DoA estimation	9.4	16.2
Spatial mixture model	4.8	8.9

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

ASR results: Neural network mask estimation

- CHiME-3 [Heymann et al., 2015]
 - Absolute WER values not comparable with last slide (different acoustic model, language model, data augmentation)

WER [%]	Dev Real	Test Real
No beamforming	18.7	33.2
NN supported beamforming	10.4	16.5

- CHiME-4 (2016):
 - All top 5 systems used mask-based beamforming (either NN or spatial mixture model)

Extensions

- Spatial mixture models
 - Other mixture models, e.g., Watson MM [Tran Vu and Haeb-Umbach, 2010]
 - On test utterance, with NN-based masks as priors $\Pr(M_{t,f} = i)$ [Nakatani et al., 2017]
- NN-Supported Beamforming
 - Cross-channel features, e.g., [Liu et al., 2018]
 - Block-online processing, e.g., [Boeddeker et al., 2018]
 - Used for dereverberation [Heymann et al., 2017b]

Pros and cons of two mask estimation methods

	Spatial mixture models	Neural networks
Spatial characteristics modeling	Strong	 Moderate (use of cross- channel features at input)
Spectro-temporal characteristics modeling (for speech)	 Weak Permutation problem No concept of human speech (pros and cons) 	 Very strong Strong speech model based training
#channels required	 Multi-channel 	 Single channel
Leverage training data	 No training phase 	 Yes, but parallel data required
Adaptation to test condition	 Strong Unsupervised learning applicable 	 Weak Poor generalization Sensitive to mismatch

I.31

Table of contents in part II

- Some physics
- From physics to signal processing
- "Informed" beamforming:
 - Speech presence probability estimation
 - Spatial mixture models
 - Neural networks
- Speaker-conditioned spectrogram masking

Speaker-Conditioned Spectrogram Masking

- In many application, we may be interested in recognizing speech from a target speaker even if there is noise or other people speaking, e.g., smart speaker
- \rightarrow Target speaker extraction
 - Known target speaker position
- → use beamformer to extract speech from that direction
- Unknown target speaker position → extract speaker based on his/her speech characteristics (SpeakerBeam)
- Idea of SpeakerBeam
 - NN for mask estimation can well discriminate a target speaker from noise, but not when interference is another speaker
 - This can be improved if the mask estimator is informed about the speaker to be extracted
 - We assume that we have about 10 sec. of enrollment/adaptation utterance spoken by the target speaker

SpeakerBeam [Zmolikova et al., 2017]

Time Frequency mask of the target speaker

- Adaptation layer
 - Drive NN to output mask for the target speaker only, given target speaker embedding
 - Different implementations possible, e.g. factorized layer, scaling, etc.
- Auxiliary network
 - Compute speaker embedding given the enrollment/adaptation utterance
 - Implemented using sequence summary network [Vesely et al. 2016]
 - Jointly optimized with mask estimation NN
 - SpeakerBeam performs 1ch processing to compute mask, but it can be combined with beamforming for multi-ch processing

Results [Zmolikova et al., 2019]

- WSJ2mix-MC
 - Artificial 2-speaker mixtures from WSJ utterances
 - 1ch no reverberation
 - 8 channels with reverberation $T_{60} = 0.2 0.6$ s

WER [%]	1 ch (no reverb)	8 ch (w/ reverb)
Single speaker	12.2	16.2
Mixtures	73.4	85.2
SpeakerBeam (1ch)	30.6	-
SpeakerBeam + Beamformer	-	22.5
SpeakerBeam + Beamformer (w/ AM joint training)	-	20.7

Software

- Spatial mixture models: <u>https://github.com/fgnt/pb_bss</u>
 - Different spatial mixture models
 - complex angular central Gaussian , complex Watson, von-Mises-Fisher
 - Methods: init, fit, predict
 - Beamformer variants
 - Ref: [Drude and Haeb-Umbach, 2017]

- NN supported acoustic beamforming: <u>https://github.com/fgnt/nn-gev</u>
 - NN-based mask estimator and maxSNR beamformer
 - Ref: [Heymann et al., 2016]
 - Part of Kaldi CHiME-3 baseline

Summary of part II

- Acoustic beamforming as a front-end for ASR
 - Exploits spatial information present in multi-channel input for noise suppression, which typical ASR feature sets (log-mel, cepstral) ignore
 - Leads to significant WER improvements
- SPP / Mask estimation is key component of beamformer
 - Both, spatial mixture models and neural networks are powerful mask estimators with complementary strengths
- Acoustic beamforming followed by DNN-based ASR is a typical representative of a combination of signal processing approaches with deep learning
 - Leads to interpretable, lightweight system compared to a NN with multichannel input

But what about overall optimality?

We'll come back to that...

II.37

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Table of contents

1. Introductionby Tomohiro2. Noise reductionby Reinhold3. Dereverberationby Tomohiro

Break (30 min)

- 4. Source separation
- 5. Meeting analysis
- 6. Other topics
- 7. Summary

by Reinhold by Tomohiro by Reinhold by Tomohiro & Reinhold

