

Exercise 7: Switched-Reluctance-Motor

Consider a two pole switched-reluctance motor. The SR-Motor is operated at a constant speed.

The dimensions of the motor are the following:

 $r_1 = 6,75$ cm, $r_2 = 3,6$ cm, $r_3 = 3,57$ cm, $r_4 = 1,40$ cm, $\alpha = 20^{\circ}, l_1 = 11,4$ cm

The number of turns per pole are N = 72. The motor is operated below saturation, furthermore the resistance of the stator windings can be neglected. The iron of the stator can be considered as a linear material with a relative permeability, $\mu_{r,FeS} = 4000$. In addition, the magnetic resistance of the rotor can be also neglected.

Problem 1: Preparation for the MATLAB excercise

a) Set up the equation for the magnetic resistance of the apparatus with respect to angle φ . (Assume r_1 as the mean radius for the calculation of the flux path through the yoke.)

- **b)** Sketch the inductivity profile with respect to angle φ .
- c) Set up the equation of the magnetic flux $\psi(\varphi, I)$.
- d) Set up the equation of the torque T.
- e) Set up the derivation of the current \dot{I} .

f) Set up the equation for the desired current $I^*(\varphi)$. Sketch the profile of I^* in respect to the angle φ .

g) Sketch a functional diagram of the current control of the SRM.

Problem 2: MATLAB excercise

- **a)** Using the code provided:
- Plot the profile of the inductivity $L(\varphi)$ for at least 2 periods.
- Plot the profile $\psi(I)$ for different angles φ .
- Plot the profile of the torque $T(\varphi)$ for at least 2 periods. The current has to assumed constant at I=10A. How has the motor to be excited to operate in motoring mode?

b) Using the Simulink template provided, build up the block I_w which defines $I = I(\varphi)$ in such a way, that the commanded current in motoring operation is the output of this function.

c) Using the Simulink template provided, build up the block $T(\varepsilon, i)$ which defines $T = T(I, \varphi)$ in such a way, that the actual torque is the output of this function.

d) Set up a Simulink block $I(U, \varphi)$ which defines the equation: $\dot{I} = \dot{I}(U, \omega, \varphi, I)$.

$$\dot{I} = \frac{U - RI - I \frac{\partial L(\varphi)}{\partial \varphi} \omega}{L_{\text{diff}}(\varphi)}$$

e) Set up a Simulink block dL/dPhi which defines the equation both the inductance $L(\varphi)$ and its derivative $dL(\varphi)/d\varphi$ according to the equations:

$$L = \frac{(2N)^2 \mu_0 b_p L_l[(\alpha - \varphi)l_1 + \varphi l_2]}{2\alpha l_1 l_2 + R_{\rm Fe} \mu_0 b_p L_l[(\alpha - \varphi)l_1 + \varphi l_2]}$$

$$\Rightarrow \qquad \frac{\partial L}{\partial \varphi} = -\frac{2\alpha b_p (2N)^2 l_1 l_2 l_l \mu_0 (l_1 - l_2)}{[\varphi b_p (l_1 - l_2) l_l \mu_0 R_{\rm Fe} - \alpha (b_p l_l \mu_0 R_{\rm Fe} + 2l_2) l_1]^2}$$

f) Design a subsystem for the controller P - Controller. Consider uniquely a proportional gain P and voltage simulation for the DC-link set to $U_{DC,max} = 500V$.

g) Determine an acceptable P-factor of the current controller for a constant speed. ($\omega_m = 50 \text{rad/s}, U_{DC} = 500V$). Analyze the response of the system for different values of ω_m and gain P. Which factors should be considered when selecting P? How can the negative peak of the torque be suppressed? Why is there a steady state error for some operating points?