

Exercise 10: 6-Pulse Bridge Circuit

For the assembly of a converter supplied DC drive train the following devices will be used:

Three-phase transformer:			
Rated power:	$S_{\rm Tr} = 180 \rm kVA$	Equivalent resistance per phase:	$R = 8 \text{ m}\Omega$
Nominal secondary line voltage:	$U_{\rm LN} = 400 \rm V$	Equivalent inductance per phase:	L = 0.1 mH
DC motor:			
Nominal power:	$P_{\rm N} = 160 \text{ kW}$	Resistance of armature circuit:	$R_{\rm A} = 25 \ {\rm m}\Omega$
Nominal voltage:	$U_{\rm AN} = 440 {\rm V}$	Inductance of armature circuit:	$L_{\rm A} = 2 \text{ mH}$
Nominal current:	$I_{\rm AN} = 390 {\rm A}$		
Smoothing inductor:			
Inductance:	$L_{\rm Dr} = 4 \rm mH$	Resistance:	$R_{\rm Dr} = 5 \ {\rm m}\Omega$
Thyristors:			
Threshold voltage:	$U_{\rm T0} = 1 \rm V$	Equivalent resistance:	$r_{\rm T} = 1.5 \ { m m}\Omega$
Recovery time:	$t_{\rm q} = 200 \ \mu { m s}$		

- 1. Which converter topology is suitable for this application and why?
- 2. Draw the equivalent circuit diagram for this arrangement and write the formula to calculate $U_{d\alpha}$. Determine the firing angle $\alpha_{\rm N}$ for nominal operation.
- 3. Which control angle α_3 has to be set if the line voltage has dropped by 5% and the DC motor shall still be supplied with nominal voltage and current? How many percent P_U does the maximum available converter voltage U_{di0} lie above the required voltage?
- 4. Determine the maximal stress of the thyristors at nominal operation in case of ideal smoothed motor current with regard to
 - periodic peak blocking voltage U_{TRR} .
 - the arithmetic average current $I_{T(AV)}$ and the root mean square current $I_{T(RMS)}$.
 - power losses P_T.
 - the current slope *di/dt*.
- 5. Calculate the efficiency η_A of the complete drive train (neglect the excitation losses) and the efficiency η_{SR} of the converter at nominal operation.
- 6. For the analysis of the commutation, I_d and L_k are assumed to be constant. Draw the equivalent circuit diagram of the commutation loop when V_3 (phase 3) commutates to V_1 (phase 1). Calculate the overlap time at nominal operation. The commutation resistances (R_k) can be neglected.

- 7. Use the results from problem 6 and the auxiliary sheet below to draw the waveform of the output voltage and the voltage at the switch V_1 . Draw the overlap time and the protection time as well.
- 8. Determine the maximum control angle α for the worst case condition if the protection time is twice as high as the recovery time at $U_{\rm LN} = 400 \text{ V} \pm 10\%$.

Auxiliary diagram for problem 7

