

1 Boost Converter

The boost converter which is shown in Figure 1 supplies an amplifier with a rated voltage of 60 V. For this exercise steady-state operation is assumed.

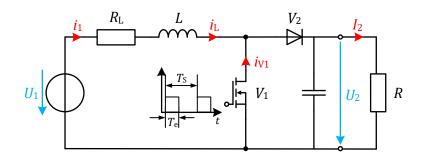


Figure 1: Boost converter topology

The specification of the boost converter is given below:

Input Voltage:	$U_1 = 12 \text{ V}$	Minimal Output Power:	$P_{\text{outmin}} = 10 \text{ W}$
Output Voltage:	$U_2 = 60 \text{ V}$	Output Voltage Ripple:	$\Delta u_2 = 120 \text{ mV}$
Output Current:	$I_2 = 2 \text{ A}$	Switching Frequency:	$f_{\rm s} = 100 \text{ kHz}$

First, all losses of the boost converter including the resistance of the inductor are neglected.

- 1. Derive the duty cycle , which leads to the specified output voltage.
- 2. Determine the mean input current \bar{i}_{L} .
- 3. Define a suitable inductivity for the coil *L*, so that the boost converter is operating in continuous conduction mode for the minimum output power given in the specification above. Determine the maximal switch-off current \hat{i}_{V1} of the transistor V_1 for the rated output current $I_2 = 2$ A.
- 4. Calculate a suitable capacity , using the output voltage ripple given in the specification. Determine the current stress of the capacitor $I_{C,RMS}$.

For the following points an ideal smoothed input current and a ripple-free output voltage are assumed.

- 5. From now on, the influences of the resistor $R_{\rm L}$ are considered. Derive the efficiency η and voltage ratio U_2/U_1 of the boost converter, in dependence on the duty cycle *D* and the resistance ratio $\alpha = R_{\rm L}/R$. Sketch both values η and U_2/U_1 over the duty cycle *D* and give comments. Calculate *D* under consideration of $R_{\rm L} = 0.2 \Omega$.
- 6. Calculate the efficiency η of the boost converter for an output current of 2 A and a coil resistance of $R_{\rm L} = 0.2 \ \Omega$.

- 7. In addition, consider the conduction losses of the diode V_2 and transistor V_1 . Assume an equivalent resistance of $R_F = 5 \text{ m}\Omega$ and voltage of $U_{TH} = 1 \text{ V}$ for the diode and an equivalent resistance of $R_{DSon} = 30 \text{ m}\Omega$ for the transistor. Determine the required duty cycle when the conduction losses are considered. Discuss the deviation to the ideal case.
- 8. Beside the conduction losses also switching losses need to be considered in reality. In this part the switching losses of a fast diode are compared to a normal silicon diode. Figure 2 illustrates the current and voltage waveforms during a turn-off event of a fast diode.

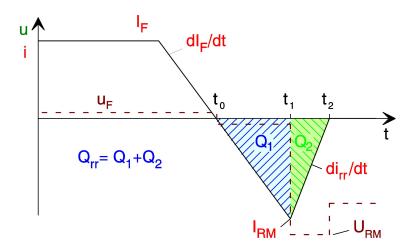


Figure 2: Turn-off behavior of a fast silicon diode

Determine the turn-off switching losses of

- a) a fast diode with a
 - i. commutation inductivity loop (comprising the loop with $V_1 V_2 C$ switches on) of $L_{\rm K} = 500$ nH
 - ii. peak reverse recovery current of $I_{\rm RM} = 4$ A
 - iii. reverse recovery time of $t_{rr} = t_2 t_0 = 46.6$ ns
- b) a normal silicon diode with $Q_{\rm rr} = 16 \,\mu \text{C}$ and $\frac{\text{d}i_{\rm rr}}{\text{d}t} = 40 \,\frac{\text{A}}{\mu \text{s}}$
- 9. In this part a malfunction is assumed. The diode V_2 is disconnected. Starting from an input current of $i_1 = 0 A$ the transistor V_1 is switched on for a duration of $T_e = 10 \mu s$. For this calculation the resistor R_L and the forward voltage of the transistor V_1 can be neglected. The transistor V_1 is protected against overvoltage by a Z-diode having a Zener-voltage of $U_Z = 84$ V. Determine with $L = 40 \mu H$ the waveform of the current $i_L(t)$. Calculate the period of time necessary for the current to reach $i_L = 0$ A. State the energy which is stored in the coil when the switch is turned off. Determine the energy which is transformed to heat by the Zener diode.