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Preface 
 

The course “Controlled Three-Phase Drives” is dedicated to the electric drive system. The 

electric drive does not only consist of the electric machine, but according to modern 

understanding also of power electronics, sensors and multi-level controls units.  

 

After an overview and definitions, access to this issue is given by an analysis of the electrical 

machine. The permanent magnet synchronous motor is chosen as an entry into this topic. Due 

to its high torque and power density this motor type has gained great popularity and 

represents the state-of-the-art motor in a vast abundance of applications nowadays. However, 

in this context the machine analysis shall not and cannot be as profound as in a course focused 

only on electrical machines and their respective characteristics. Moreover, the important flux-

oriented control scheme can be easily and clearly explained on the basis of this motor. Later it 

will be applied and extended also to the induction machine. Apart from the control principles, 

the power electronics, the pulse width modulation and the digital control implementation will 

be discussed, in consequence. 

 

Even though this course is limited to the examples of the permanent magnet synchronous 

motor and the induction motor, the course participants shall be enabled to transfer the 

depicted principles to other drive systems, such as the separately excited synchronous motor, 

which cannot be dealt with in this course due to the limited amount of time.  

 

I like to thank Mr. Dipl.-Ing. Tobias Huber who has done the translation of the German 

lecture notes to English language.  

 

Paderborn, March 2013 

 

 

Joachim Böcker  
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1 The Electrical Drive 

 

 
Fig. 1-1: Basic structure of electrical drive system 

 

The modern electric drive consists of the following basic components: 

 

 Motor as electromechanical energy transducer. 

 Inverter (power electronics) for converting the electrical energy, the inverter is the 

actuator of the control loop. 

 multi-level control unit (consisting of e.g. low-level current control & high level 

operating point selection unit) 

 Transducers and sensors. 

 

System boundaries: 

 

The mentioned components represent the core of the electrical drive system. Depending on 

the assigned task and system boundaries the following items can be allocated to the drive 

system: 

 

 Electric power supply, e.g. electric filters, transformers, if necessary, stationary or 

dynamic behavior of the power supply unit (battery, power grid) can also be included. 

 Mechanical drive train, such as gear box, consideration of inertia, stiffness, accurate 

behavior of the driven mechanical load 

 High-level / process control units for the realization of complex electrical drive tasks 
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External drive interfaces 

 

- Within the power flow: 

 to the electrical power supply (DC, AC, 3-phase voltage) 

 to the mechanical load 

 

- Within the information flow: 

 Reference values and, if necessary, information from the superior high-level / process 

control or from the user. 

 Feedback of internal states or measured values to high-level control  

 

The electric drive can be described as a controllable electromechanical energy converter. 

Moreover, it can be characterized as a mechatronic system by its functional integration of 

power and information flow.  

 

Power flow: 

Many drive applications rely only on a unidirectional power flow (from the power supply to 

the load). However, if for example braking power shall be recuperated (operating mode: 

conversion of mechanical into electrical energy) a bidirectional power flow needs to be 

realized. 

 

The structures for such kind of modern ways of electrical energy generation often do not vary 

from the basic structure of an electrical drive system. In contrast, generators for electrical 

energy supply purposes, as e.g. employed in conventional water- and thermal power plants, 

are connected directly to the grid without an intermediate electrical conversion stage. The 

necessary system control is not realized in an electrical way, but by controlling the applied 

mechanical power (impeller position of the turbine, throttle valve, etc.). 

 

Examples: 

 unidirectional electrical  mechanical: pumps, fans 

 unidirectional mechanical  electrical: generators (wind power, water power, steam 

turbine) 

 bidirectional electrical  mechanical: traction drives for railways, drives in rolling 

lines, paper making machines  

 

Fundamental drive tasks: 

 Torque control 

 Velocity control 

 Position control 

 

Mostly, those tasks are realized by using cascaded control structures: The position control 

relies on a subordinate velocity control, which in turn relies on a subordinate torque control. 

 

Apart from these three fundamental tasks, there are numerous complex drive related tasks, 

which cannot be exactly allocated to one of the fundamental tasks, but rather represent 

combinations of these tasks, as for example in an elevator: positions control when stopping, 

velocity control during normal operation. 
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2 Structure and Modeling of Permanent Magnet Synchronous 
Motors (PMSM) 

2.1 Modeling of a simplified motor with orthogonal windings 

 

 

 

 
Fig. 2-1: Ideal permanent magnet motor with two orthogonal windings 

 

 : Angle of rotation of rotor against stator 

  : Circumference angle in stator fixed coordinates 

 

Assumption: The normal component of the magnetic flux density caused by the permanent 

magnet is assumed to be sinusoidally distributed along the rotor circumference. The 

displacement of the sine curve depends on the rotor angle . 

 

 )cos(ˆ)(   pp bb  (2.1) 

 
Fig. 2-2: Distribution of magnetic flux density vs. stator coordinate     

depending on the rotor angle   
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Remark on the direction of counting in the unwinded motor representation (motor cut open 

and made flat for better understanding): If the  -axis is oriented to the right and the normal 

axis n is oriented upwards, then the z-axis, representing the longitudinal axis of the motor, has 

to be counted positively when going into the figure’s sectional plane (i.e. into the paper). As a 

result, the directions of counting of the depicted currents are obtained. Geometrically 

speaking, this procedure corresponds to a view from the back onto the figure’s sectional 

plane. In consequence, the directions of counting appear to be mirrored. 

 

The flux through the stator winding α is now given by 

 

 




 




2/

2/

d)(pp brl  (2.2) 

The included parameters are: 

 

r  effective radius 

l  magnetically effective motor length 

 

It follows 
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 (2.3) 

whereas 

 
pp brl ˆ2  (2.4) 

 

Similarly, the flux through the stator winding   can be written as 

 

 


 sinsinˆ2d)cos(ˆ

0

pppp brlbrl    2.5) 

 

Taking into account the number of turns N  for each stator winding, linkage fluxes result: 

 

   cosppp N   (2.6) 

   sinppp N   (2.7) 

whereas 

 
ppp bNrlN ˆ2   (2.8) 
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According to Faraday’s law of induction, the induced voltages are: 

 

  se   (2.9) 

 

  se   (2.10) 

 

where the fluxes   ss ,  penetrate the conductor windings. The fluxes are composed of two 

portions, one generated by the permanent magnets, the other one by the conductor currents via 

the self inductance. 

 

   cospsspsss iLiL   (2.11) 

   sinpsspsss iLiL   (2.12) 

 

 

 
 

 

Furthermore, we shall as well consider the internal resistance of the windings, which leads to 

the following voltage equations 

 

 
 ssss iRu   (2.13) 

 
  ssss iRu 

 
(2.14) 

  sinpssssisssss iLiRuiLiRu    (2.15) 

  cospssssisssss iLiRuiLiRu  
 

(2.16) 

    (2.17) 
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Fig. 2-3: Equivalent circuit diagram of a permanent magnet synchronous motor 

 

Now, we can determine the torque from the power balance, i.e. by multiplying the above 

voltage equations with the currents: 

 

  sin2
pssssssss iiiLiRiu    (2.18) 

  cos2
pssssssss iiiLiRiu  

 
(2.19) 

 

The electrical power is given by 

 

 
memagVel PEPP    (2.20) 

 

whereas, 

 

 
 ssssel iuiuP   (2.21) 

 22  ssssV iRiRP   (2.22) 

   cossin pspsme iiTP   (2.23) 

 

In the equivalent circuit diagram, we can interpret the mechanical power as the power 

generated directly at the equivalent voltage sources. 

 

The output torque can now be derived from the mechanical power as  

sLsR
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   cossin psps iiT   (2.24) 

 

Introduction of vector notation: 
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Thus, the torque follows as 

 

   spspspsp iiT iψiψ  ,    (2.25) 

The bracket [ , ] or cross × in the above equation represents the outer or vector/cross product 

of two vectors in a plane. The cross product now corresponds to the area covered by the 

parallelogram spanned by the two vectors, as shown in the figure below. 
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For a given vector of the permanent magnet flux, all current vectors lying on the shear line 

(T=const.) of the parallelogram generate the same output torque. However, only the current 

vector which is perpendicular to the magnetic flux produces torque with a minimum current 

magnitude and thus with minimum heat/ohmic losses. 

 

2.2 The rotating rotor-fixed d/q coordinate system: 

 

 
Fig. 2-4: Introduction of a rotor-fixed coordinate system  

aligned in the direction of the permanent magnet flux 
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In the d/q -rotating frame, the equation for the torque can be simply expressed by 

 

 
sqpiT    (2.26) 

 

The sdi  component does not affect the torque, as it is aligned to the d-axis. Given a desired 

torque T, the necessary current component sqi can be calculated by 

 

 
p

sq

T
i


  (2.27) 

In order to set a torque with minimum current magnitude, the current component sdi should be 

set to its minimal value, i.e. 

 0sdi  (2.28) 

 

The d/q- coordinate system is named after its two axes, the direct and quadrature axis. The 

direct axis is hereby aligned with the permanent magnet flux vector, while the quadrature 

axis is perpendicular to the d-axis. 

 

The transformation of a general vector x between stator-fixed coordinates α/β and rotor-fixed 

coordinates d/q is given the expression 
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where Q represents the rotational transformation matrix, given by 
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In the field of electrical machines this transformation is also commonly known as the Park-

Transformation. For an inverse transformation can thus be written as 
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Later, we also need the time derivative of the rotation matrix, which can be expressed as 
 

JQQJQQ )()(
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cossin
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whereas 
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Transforming the voltage equations results in 
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Representing the voltages in component notation leads to 

 

 
sdsqsqssq iRu     (2.30) 

 
sqsdsdssd iRu     (2.31) 

 

Now, transforming the flux equations results in 
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Applying component notation again leads to 

 

 
sqssq iL  (2.33) 

 
psdssd iL    (2.34) 
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When substituting the flux derivatives by the current derivatives in the above voltage 

equations, it follows 

 

 
sqssdssdssd iLiLiRu    (2.35) 

 
psdssqssqssq iLiLiRu     (2.36) 

 

 
Fig. 2-5: Equivalent circuit diagram of the PMSM motor in d/q-coordinates 

sL

sdu

sdi

sLsR

psdssd iL  

sqi

sqssq iL 

squ

sR



2 Structure and Modeling of Permanent Magnet Synchronous Motors (PMSM) 16  

 

 

 

2.3 The Three-Phase Motor 

 
Fig. 2-6: Three phase motor with windings fixed at 120° to each other on the stator  

 
Fig. 2-7: Schematic diagram of the three-phase motor 

 

 

The sinusoidal flux density produced by the permanent magnets is distributed among the a, b, 

c stator windings similar as in the two-phase orthogonal motor case. 
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The voltage equations are given by 
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aa

w
a iRu   (2.40) 

 
bb

w
b iRu   (2.41) 

 
cc

w
c iRu   (2.42) 

 

Due to symmetry reasons, there is no coupling between the orthogonal windings in the two-

phase motor case. The mutual inductance between these two windings is zero in consequence. 

In the three-phase motor case, each of the 120° shifted windings has a self inductance wL . 

Moreover, always two of these windings, respectively, are linked with each other through a 

flux. These couplings are expressed by the mutual inductance
w
hL . Due to motor symmetry, all 

pair wise couplings have to be of the same magnitude. Due to the introduced directions for the 

currents the couplings have a negative sign, indicated by prefixing the positive mutual 

inductance with a negative sign, as well. 

 

 
pacb

w
ha

w
a iiLiL   )(  (2.43) 

 
pbac

w
hb

w
b iiLiL   )(  (2.44) 

 
pcba

w
hc

w
c iiLiL   )(  (2.45) 

 

If the motor is constructed in that way that that the return path of the flux a  is split half by 

half through the windings b and c, the relation between self and mutual inductance results 

directly as  

 

 ww
h LL

2

1
  (2.46) 

  

In the general case, there will exist usually also return paths which are not linked with the 

neighbored coils b and c so that a smaller mutual results. However, at least an upper bound 

can be concluded like   

 

 ww
h LL

2

1
  (2.47) 
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Fig. 2-8: Self and mutual inductances of a 3-phase motor 

 

2.4 Transformation of three-phase components into orthogonal components 

 

The transformation of the three vector components cba xxx ,,  to orthogonal components is 

given by 
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 (2.48) 

 

The transformation results in two orthogonal components  xx ,  and a zero component 0x . A 

commonly known alternative definition of the zero component is  

 )(
3
1

0 cba xxxx   (2.49) 

In this case, the zero component represents the arithmetic mean value of the three phase 

components cba xxx ,, and differs from the above expression in the transformation matrix only 

by the factor 2 . However, as far as the representation of power terms is concerned, the first 

definition of the zero component has turned to be advantageous (see below).  

 

The inverse transformation can be performed as shown below 
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Scalar/inner products, as they commonly occur in power terms, can be written as follows 
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  00
2

3
yxyxyxyxyxyx ccbbaa    (2.50) 

 
-T

T  represents the transposed inverse matrix. Aside from this, 

 

 T1

2

3
TT 

,   3
TT

3

2
ITTTT   (2.51) 

 

Note: The transformation could also be defined as 

 

 TT
2

3~
  

 

(2.52) 

As compared to T , T
~

is orthogonal, and therefore has the property 

 

 T1 ~~
TT      and    3

TT ~~~~
ITTTT   

(2.53) 

 

The modified Transformation T
~

 is called power-invariant, due to the fact that the 3/2 scaling 

factor disappears during the transformation of the inner products. The major drawback of this 

transformation is, however, that the projections of the vectors onto the corresponding axes can 

no longer be directly interpreted as phase components (see below). Therefore, the here 

presented transformation T  has been generally accepted. 

 

If the absence of a zero component can be assumed, the above equations can be simplified as 

follows. 
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and 
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For the reduced transformation matrices the following properties apply. 
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(2.58) 

The relationships between the differences of the phase components (also known as linked or 

phase-to-phase components)  
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 (2.59) 

 

and the orthogonal components 
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are also useful. 
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Fig. 2-9: Geometrical interpretation of the transformation with no zero components 

 
Fig. 2-10: Geometrical interpretation of the linked components 
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2.5 Mapping the Three-Phase Model on the Orthogonal Two-Phase Model 

 

With the law of induction, the equations of the three-phase motor in vector notation are given:  
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 (2.62) 

Flux linkage equations: 
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  (2.63) 

with the inductance matrix 
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Assumption: Motor windings are connected in star configuration 

 

 0 cba iii  (2.65) 

 

i.e. current components are free from a zero component: 

 

00 i  

 

We quickly see that also the following equations apply: 

 

00 u  

 

00   

 

Note, that when taking saturation or structural asymmetries of the motor into account, the zero 

component of the flux and thus the voltage cannot be neglected anymore. In the following, 

however, all quantities shall be considered as free of zero components, allowing a two-

dimensional vector representation, respectively. 

 

Exercise: Under which conditions do the zero components disappear when the motor 

windings are connected in delta configuration? 
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Applying the transformation matrix 23T  to the voltage equations leads to 
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That means that the winding resistance value of the orthogonal motor model corresponds to 

the one of the three-phase motor model: 
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Flux linkage equations: 
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Now evaluating the transformation of the inductance matrix results in 
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 (2.68) 

 

Based on this equation, the equivalent inductance of the orthogonal model 

 ww
h

w
s LLLL

2

3
  (2.69) 

is determined. 

 

So far, the torque of the three-phase motor model has not been identified. However, based on 

the introduced transformation matrix notation, the torque can again be easily derived through 

a consideration of the power terms. According to section 2.4, when expressing the power of a 

three-phase system through the product of the corresponding orthogonal components, the 

scaling factor 3/2 has to be taken into account. The torque of the three-phase motor can now 

be written as 
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   sqpspsp iiiT  
2

3
 

2

3
 . (2.70) 

 

Memorizing rule: The factor 3/2 can be understood from scaling up the power and the torque 

of a two-phase motor model to three phases. 

 

2.6 Determining Stator Resistance and Stator Inductance Using Measuring 
Techniques 

 

The parameters of sR  and sL  can be determined by measuring a single winding between a 

terminal and the star/neutral point, as shown in the previous paragraph. As the neutral point is 

often not accessible, measurements have to be made between two phases. Assuming that the 

third terminal remains open, the resistance between the two terminals a and b results to 

 

s
w

ab RRR 22   

 

Moreover, while regarding ba ii  , the phase-to-phase inductance results to 

 

s
w
h

w
ab LLLL 222  . 

 

2.7 Multi-Pole Motors 

 

In case the arrangement of mutually magnetized magnets repeats over the rotor 

circumference, we speak of multi-pole motors. As no monopoles of magnetic fields exist, the 

pole pair number p is used as the characteristic quantity in this context, instead of the pole 

number. Note, that the stator windings in multi-pole motors need to be rearranged, as well. 

 

Along the motor circumference, the magnetic field as well as the winding arrangement have 

an angular periodicity of p/2 . In order to continue to be able to work with quantities with a 

periodicity of 2 , the angle variable 

 
mep   (2.71) 

 

is introduced. The variable   refers to the electrical system and is therefore denoted as 

electrical (rotation) angle. 
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Fig. 2-11: Motor with pole pair number 2p  

 

 
 

Fig. 2-12: Flux distribution in a motor with two pole pairs and flux through a conductor loop 

 

The relationships between the geometrical field quantities and the equivalent electromagnetic 

quantities slightly change: The permanent magnetic flux through a single conductor loop is 

now expressed by 
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whereas 0  indicates the geometrical angular location of the considered loop. For example, as 

for the two loops (phase a) presented in the above figure, 00   and  0 , respectively. 

The peak or crest value of the flux through one of these loops reduces to 
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due to the fact, that in multi-pole motors a single winding only spans over the mechanical 

angle p/ instead of π. Adding up all conductor loops of one stator winding corresponds to a 

multiplication of the flux with the number of turns N. In this context, it should be noted, that 

all conductor loops of a winding, no matter over which magnetic pole the corresponding 

winding is located, always provide the same flux contribution. The flux linkage of the 

windings can now be written as follows: 
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As N  represents the total number of turns per winding, pN /  turns can thus be allocated to a 

single pole pair. When using the electrical angle  , the relationships get the same appearance 

as in the case of the motor with pole pair number 1p . 

 

As far as the transition from three phases to orthogonal coordinates and transformation into 

the rotating d/q-system is concerned, the general procedure does not change, except for the 

torque. The torque can be derived from the power balance again, whereas now it has to be 

distinguished between the mechanical angular frequency me  and the electrical angular 

frequency : 
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2.8 Winding Configuration 

 

So far we have assumed that the conductors of a winding are located at the geometrically 

ideal positions inside the stator. In fact, the conductors of a winding are usually distributed 

along the circumference of the stator. The copper wires are embedded inside slots, as shown 

below. In case round copper wire is wound inside the slots, we commonly speak of random-

wound machines. However, as for machines with high power ratings and high degrees of 

utilization usually shaped wires or shaped bars are employed, which fit perfectly inside the 

stator slots. In this case, we speak of form-wound machines. As for the random-wound 

machines, fill factors between 0.3 - 0.5 can be achieved, for form-wound machines fill factors 

between 0.8 - 0.9 are even possible. 

 

  
Fig. 2-13:  Stator structure (linear representation) 

 
Scheme of a distributed winding with 18Q , 1p , 3q  

(Usually, the teeth bottoms are shoe-shape-like widened, 

this is not shown in this schematic diagram) 

 

Definitions:  

 

 Q  Number of slots 

 m  Number of phases (only three-phase machines shall be assumed here, 

i.e. 3m ) 

 p  Number of pole pairs 

form-wound winding random-wound winding 

slot wedge 

(non-ferromagnetic) 

stator yoke 

Fe 
Cu Cu 

slot 

tooth 

2/2/  0

 a

p

 a c  b  c b
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p

p
2

2
   pole pitch 

 
pm

Q
q

2
  Number of notches (Number of slots per phase and pole)  

 

If q is an integer, we speak of integral-slot winding, otherwise of fractional-slot winding.  

 

 
Fig. 2-14: Realization of the distributed winding a through concentric windings  

with varying widths 

 
Fig. 2-15: Realization of the distributed winding a through windings  

with the same width pw   

 

Flux linkage of distributed windings: The windings can be configured differently for the same 

distribution onto the slots. As these different configurations concern only the end windings, 

however, conductor loops of the same width w can be assumed. The flux of a single conductor 

loop (see above) can be expressed by 

 

  0cos  pp 
 

(2.80) 

 

p
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3w
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w
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w
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Now the conductors are no longer concentrated in one location, but distributed over the zone 

width  . In case the conductors are uniformly distributed on the m phases (relative to the 

electrical angle) 

 
m2

2
   (2.81) 

can be applied. The flux linkage, however, cannot be calculated as the flux of a single 

conductor loop multiplied by the number of turns, anymore. Instead, it is given by the sum of 

fluxes of the all windings with their different corresponding angular orientations. For 

simplicity, it can be abstracted from the concrete number of slots by approximating the sum of 

fluxes via averaging over the zone width. As an example, the following calculation holds for 

winding a: 
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2
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pN  (2.82) 

The term 

 
2

sin
2 


 z  (2.83) 

is called winding factor. It indicates which portion of the flux of an idealized winding of 

maximum span can be achieved through the actual winding arrangement. In the case of 

uniformly distributed three-phase windings, the following value results: 

 

0.955
3

2

16

6
sin

6
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




z  

 

This calculation is based on the assumption, that the number of slots is large enough, that a 

simplified continuous current distribution can be assumed. The calculation of winding factors 

with discrete slots is discussed below. 
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Fig. 2-16: The concept of chording shown here for 1p  

 

 

In case the winding width is smaller than the pole pitch we speak of chording or fractional 

pitch winding. The chording / pitch factor can be defined as follows: 

 
p

w
s


  (2.84) 

To calculate the winding factor, it is useful to use the more compact complex notation. The 

actual flux distribution is then represented by the real part of the complex value. The 

geometrical angular positions of the conductors are given by 

 
p

w

p 




2
2,1   (2.85) 

whereas the number of pole pairs p  is also considered. The resulting flux linkage with a 

conductor turn is given by 
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On the other hand, the ideal flux linkage in case of full unchorded winding widths results in 
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Thus, the winding factor is  

 

w

unchorded 

return conductor 
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 (2.86) 

 
Fig. 2-17: Flux linkage of a chorded winding 

 

Summing up, the two effects zone winding and chording yield a total winding factor
1
 of 
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Chording is e.g. employed in multi-layer windings, although two-layer windings are usually 

preferred. In other words, one slot can comprise conductors from two different phases. One 

benefit of such an elaborate winding scheme is to approximate a sine-shaped winding 

distribution. That way, harmonics in the field distribution can be successfully suppressed 

(below, harmonic winding factors are introduced; compare their values in the table at the end 

of this section for zone windings with and without chording). 

 

 

 

 

                                                 
1
 Although neglected in these lectures notes, it shall be noted that the process of skewing also has an impact on 

the winding factor.  

pb̂
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Fig. 2-18: Example of a two-layer winding with chording factor 9/8s  

 

Getting closer to the rotor, the teeth usually widen in a shoe-like shape (unlike the simplified 

representation of the previous pictures suggest). That way, a preferably uniform field 

distribution along the circumference shall be achieved. However, just in between two adjacent 

pole shoes a slot gap always remains. That way, a preferably large magnetic resistance along 

the tangential direction of the inner stator surface shall be maintained, preventing the 

magnetic field from short-circuiting along the inner stator surface instead of generating the 

desired flux linkage between rotor and stator. 

 

Another winding type, which is often employed in machines with large pole numbers are the 

so-called concentrated windings, each wound around only one tooth (tooth windings
2
), i.e. 

incoming wire and return wire are allocated in neighboring slots. 

 
Fig. 2-19: Winding scheme with concentrated windings, 

2/32/ pQ , 2/1q , 3/2s , 866.0  

 

In this winding scheme, only three slots are allocated to one pole pair. In principle, we are 

dealing with a two-layer winding since each slot comprises conductors of two different 

phases. However, the conductors are here arranged side by side instead of on top of each 

other. The number of notches q, i.e. the number of slots per phase and pole, therefore results 

to 

 

 

                                                 
2
 Sometimes the term “pole winding” is (incorrectly) applied when speaking of tooth windings. Although the 

numbers of poles and teeth are of similar dimensions in this winding scheme, however, one pole is not 

represented by one tooth.  
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Consequently, we speak of a fractional-slot winding in this context. The chording factor of the 

winding equals to 

 
3

2
s  (2.89) 

The winding is not distributed across a zone, the conductors are concentrated in only one slot. 

The total winding factor is given by 

 

866.0
2

3

3
sin

2
sin 




s
. 

 

Thus, the chording causes a significant reduction of the theoretically achievable flux linkage. 

Nevertheless, the advantages compensate for this disadvantage: The windings can be wound 

on winding machines and in a prefabricated stage simply pushed over the teeth. A crucial and 

further important advantage of concentrated windings lies in the reduction of the end 

winding
3
 to a minimum.  

 

 
 

Fig. 2-20: Cross-sectional view of a PMSM with magnets embedded in the rotor 

and concentrated windings (not shown in this figure) 

866.0,3/2,2/1,24,8  sqQp  

 

 

                                                 
3
 The part of the wire that connects the incoming and return conductors is called end winding. Though this 

electrical connection is of course mandatory, it does not contribute to the generation of torque. End windings, 

however, contribute to the stator resistance and the stator self inductance and require considerable construction 

space within the motor. 
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In the previously considered schemes, the winding arrangement is repeated periodically over 

one magnetic pole pair. However, this is not strictly mandatory. The following figure shows a 

winding scheme in which the winding arrangement is repeated only after 5 pole pairs. The 

same scheme, but in a linear representation is shown again further below. 

 

 

 

 
 

Fig. 2-21: Winding scheme, which is only repeated periodically after five pole pair pitches 

(the three phases are represented by different colors, the winding direction cannot be seen in 

this figure, refer to the following linear representation in this context) 

 

To determine the winding factor of such arrangements the flux linkage with all the conductors 

of a winding needs be determined first. Just as we determined the chording factor earlier, we 

again resort to the compact complex notation. As a generalization of these earlier results the 

expression 

 



Q

i

jp
ai

a
a

ieN
jN 12

1   (2.90) 

can be obtained. Here, it is added up over all slots i , whereas the angle i  indicates the 

mechanical angular position of the slots in the stator. Although the slots are typically 

distributed equidistant along the circumference, the formula Qii /2   is also applicable for 

special cases with non-equidistant slots. aiN  is the number of conductors in a given phase a  

in the respective slot, whereas the orientation of the conductor is taken into account by the 

sign of aiN . In case no phase a  conductors are available in the i-th slot, this is expressed 

through 0aiN .  
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The total number of conductors leads to the total number of turns aN  of phase a . Hereby, 

one has to be aware that one turn is composed of exactly one outgoing conductor and one 

incoming conductor, thus 

 
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
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aia NN
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2

1
 (2.91) 

 

 

Contrary to the previous procedure, here the winding factor is regarded as a complex number, 

whereas the angle of the complex winding factor gives information about the phase shift. 

 

In the same way, the winding factors 
b

 , 
c

  for the other phases can be determined. These 

factors must be equal in magnitude and have a defined phase shift of 120° to each other, 

ensuring a symmetrical three-phase system: 

cba
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That way, it can be tested whether a symmetrical three-phase system occurs, even for winding 

arrangements in which the geometry of the scheme is not symmetric with reference to the 

three phases. Also, errors regarding winding direction or phase sequence can be detected in 

virtually symmetrical schemes by testing the above equations. 

 

In a similar manner, winding factors of the not yet considered harmonics waves
4
 can be 

determined, where k  represents the order of the corresponding harmonic wave: 
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1   (2.92) 

An objective in the selection of an appropriate winding scheme could also be to eliminate 

certain undesired harmonic waves or at least to minimize them (see table at the end of this 

section). 

 

The figure below shows the linear representation of the already introduced winding scheme, 

whose winding arrangement is not repeated after one, but only after 5 pole pair pitches (in the 

figure, only slightly more than half of this period is shown). The slots to poles ratio is 6 / 5, 

resulting in a notch number of 4,0q . In this scheme, as well, concentrated windings (tooth 

windings) are employed. The corresponding advantages of this winding type were discussed 

earlier. The winding factor can be calculated according to above formula: 

 

 

 

 

 

                                                 
4
 Waves represent periodics in space, while oscillations are periodic in time. Therefore, it has to be distinguished 

between harmonic waves and harmonic oscillations. Here, the focus is put on deviations of the spatial field 

distribution from the sine shape, i.e. harmonic waves. One the other hand, the impact of harmonic waves on the 

temporal processes at the motor terminals due to magnetic induction are harmonic oscillations. 
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The resulting winding factor of this scheme is even slightly better than the one of the simple 

winding scheme with concentrated windings (0.866). Moreover, the 5th and 7th harmonic 

waves are suppressed more effectively (see table below). 

 

 

 
Fig. 2-22: Winding scheme with concentrated windings 

10/122/ pQ , 4.0q , 933.0  

 

 

The following table summarizes the results for different winding schemes and also shows the 

winding factors for the harmonic waves. Here, also the data for the zone windings were not 

determined as above by approximation of a continuous current coverage, but by taking into 

account the individual slot numbers.  

 

Nr. winding scheme p  Q  q  
1  5  7  11  13  

1 Zone winding 1 6 1 1 1 1 1 1 

2 Zone winding 1 12 2 0.966 0.259 0.259 0.966 0.966 

3 Zone winding 1 18 3 0.960 0.218 0.177 0.177 0.218 

4 

Zone winding 

with chording 

factor 8/9 

1 18 3 0.945 0.140 0.061 0.061 0.140 

5 

Zone winding 

with chording 

factor 7/9 

1 18 3 0.902 0.038 0.136 0.136 0.038 

6 
Concentrated 

winding 
1 3 0.5 0.866 0.866 0.866 0.866 0.866 

7 
Concentrated 

winding 
5 12 0.4 0.933 0.067 0.067 0.933 0.933 

8 
Concentrated 

winding 
4 9 0.375 0.945 0.140 0.061 0.061 0.140 
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The results apply equally well to multiples of the specified pole pairs and slot numbers. The 

winding factors for even orders are not listed. Due to reasons of symmetry, in most winding 

schemes 02 k  holds anyways, however, not in the schemes No. 6 and 8 for example. As 

usually the field distribution can be assumed as symmetrical, harmonic waves of even orders 

k2  do not exist so that even-order winding factors, even if non-zero, are irrelevant. However, 

harmonic waves of orders k3  do occur with winding factors being unequal to zero. 

Nevertheless, due to the electrical connection of the windings in star or delta configuration no 

harmonic oscillations of orders k3  occur in the terminal quantities. Therefore, these winding 

factors, as well, are irrelevant and therefore not listed. In consequence, only the order 

numbers 1, 5, 7, 11, 13, 17, 19 etc. are of interest. 
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2.9 Relation Between Motor Geometry and Torque Output 

 

The equation for the torque is given as 

 
sqpipT 

2

3
  (2.93) 

The torque equation suggests that motors with high pole pair numbers are more suitable for 

the generation of high torques. This shall be examined more carefully in the following. 

According to the previous chapter 
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and thus 

 

 
sqp iNblrT ˆ3  (2.95) 

 

holds. Under the assumption 0sdi , sqi  represents the amplitude of the phase currents 

cba iii ,, , exclusively: 

 
sqcba iiii  ˆˆˆ  (2.96) 

 

The root mean square (RMS) values for the three phases result to 
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  (2.97) 

Let us assume that for each phase cba ,, , the outgoing and incoming conductor, respectively, 

cover 1/6 of the circumference length r2 . With respect to zone windings, this applies 

exactly. As far as the problem of heat dissipation is concerned, this assumption may, however, 

also be applied to other types of windings schemes. Thus, the effective current density results 

to 
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The maximum effective current density depends on the design of the motor and the method of 

cooling, in particular. This characteristic quantity can be regarded as approximately constant 

for motors of different ratings, but same design. Typical values lie in the range of 

 

m

kA
80...40max A  

 

With this quantity, the maximum possible torque can be calculated as follows: 
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whereas 

 lrV 2
rotor   (2.100) 

 

represents the volume of the magnetic active portion of the rotor. 

 

The same result can be reached by considering the average shear stress  , experienced by a 

surface element of the rotor due to the Lorentz force. The average shear stress can be 

calculated directly as the product of the RMS values of current and flux densities, whereas the 

winding factor   accounts for geometrically non-ideal arrangements. 

 A
bp

2

ˆ
   (2.101) 

The integration of the shear stress over the rotor surface lr2  and multiplication by the lever 

arm r  leads to the already introduced formula for the maximum achievable torque output 

 

 
maxrotormax

ˆˆ2 AVbAbrlrT pp   . (2.102) 

 

One can see, that apart from the motor design and material specific constants maxA , pb̂ ,   

the torque output of a motor also depends on the rotor volume rotorV . For T1ˆ pb  and 

9.0 , typical torque densities result to 
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It becomes obvious, that this result does not depend on the number of pole pairs. 

 

However, the number of pole pairs has an impact on the resulting motor size: The magnetic 

flux generated by a pole pair can be calculated according to the above relations via 

 

 

p

brl p
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ˆ2
   (2.103) 

 

This flux must be fed back through the stator yoke of one magnetic pole to the next with 

opposite magnetization. The higher the number of pole pairs, the smaller the flux contribution 

of a single pole pair. Consequently, the stator yoke can be of thinner design. According to 

this, the number of pole pairs has a quite considerable impact and on the thickness of the 

stator and thus on the outer diameter of the motor. Additionally, a thinner yoke improves the 
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heat dissipation characteristics of the motor, potentially allowing higher current densities in 

return. 

 

Moreover, the pole-pair number has an influence on the end windings: The higher the number 

of poles pairs, the shorter the connection paths between outgoing and incoming conductors of 

a winding. With a high number of pole pairs, the end windings can be made small and thus 

reduce the overall length of motor. 
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2.10 Steady-State Operational Behavior  

 

Steady state voltage equations are: 

 
sqssdssqsdssd iLiRiRu    (2.104) 

 
psdssqssdsqssq iLiRiRu    (2.105) 

 

 
Fig. 2-23: Steady-state phasor diagrams for same motor torque and speed, respectively, left 

without negative d-axis current, right with negative d-axis current. 
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Fig. 2-24: Steady-state phasor diagrams for same generator torque and speed, respectively, 

left without negative d-axis current, right with negative d-axis current. 

 

 

In case of no constraints in selecting the two current components sqsd ii , , the desired torque 

*T  can be set with minimal losses (i.e. with minimum current phasor amplitude) according to  

 

 0,
3

2 *  sd
p

sq iT
p

i


. (2.106) 

The same torque output can also be achieved by applying a negative sdi  current leading to a 

reduction of the resulting stator voltage. Although, this is of course at the expense of the 

losses this operation mode is of great significance when operating the motor at voltage limits. 

Since the flux in d-direction can be expressed by 
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a negative d-component current weakens the flux portion provided by the permanent magnets. 

In consequence, this operation mode is also called flux-weakening mode. Moreover, you can 

see from the above figure that the permanent magnet synchronous motor exhibits both 

inductive behavior (voltage phasor leads the current phasor) and capacitive behavior (current 

phasor leads the voltage phasor). By suitable choice of sdi  operation with power factor 1 is 

also possible. 
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Operation at current and voltage limits 

 

The inverter supplying the power to the motor, but also the motor itself, are exposed to 

current handling capacity limits as well as voltage limits: 

 

 2
max

222 iiii sqsds   (2.108) 

 2
max

222 uuuu sqsds   (2.109) 

 

Accordingly, the voltage is small at low speeds; here, the voltage limits do not play any role. 

The corresponding region of operation is known as voltage control range or in terms of the 

DC-Motor armature control range. If the motor is operated with 0sdi  then the current limit 

restricts the available torque to 

 
max0max

2

3
ipTT p . (2.110) 

In the armature control range, the maximum achievable torque is independent of the speed.  

 

Increasing the motor speed leads to higher voltages that will eventually reach the voltage 

limit. Substituting the steady-state voltage equations into the voltage limits expressions while 

neglecting ohmic voltage drops leads to 

. 

    2
max

2222222 uiLiLuuu sqspsdssqsds    (2.111) 

 

The assumption of neglecting the ohmic voltage portions is only reasonable for machines with 

high power ratings, i.e. several 10 kW or higher. As for small motors which operate at only a 

few Watts, the ohmic voltage drops can be of similar order as the back-EMF and armature 

reaction even at high speeds. Also, would have EMF and armature reaction of same 

magnitude. In this case, the following calculations may only be considered as rough 

approximations. 

 

The voltage limit can be transformed into a condition for acceptable currents: 

 

  
2

2
max222




u
iLiL sqspsds   (2.112) 

 

Geometrically, this can be interpreted as a circle in the qd ii , - plane with center point at 

 0, 00  q
s

p
d i

L
i


 (2.113) 

and a radius of 
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By the way, the magnitude 

 

s

p
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L
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
 00  (2.115) 

 

represents the flux weakening current necessary compensate the permanent magnet flux p  

completely. Furthermore, when neglecting the ohmic resistance the current 0i  is equal to the 

short-circuit current of motor, as discussed in section 7. 

 

For the following, the design parameter 

 

 

maxmax
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iLi

i
k

s

p
  (2.116) 

and the reference frequency 

 
p

u


 max

0   (2.117) 

are introduced. The frequency 0  refers to the no-load operation speed at which the voltage 

limit is reached. Above this frequency, flux-weakening current is always required 

independent of the desired torque output, i.e. also at no-load operation. 

 

 

 
Fig. 2-25: Current and voltage limits for max0 ii   
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The above figure depicts in the qd ii , -plane the limiting circles resulting from the 

corresponding current- and voltage limits. At low speeds, the radius Ui  is large and does not 

play a role. Therefore, the current only needs to be kept below the maximum current limit 

maxi . As the rotational speed increases the radius /maxuiU   reduces requesting negative 

di  current in consequence. 

 

In the following, the maximum achievable torque during flux-weakening mode shall be 

determined. In other words, the current limit as well as the voltage limit are reached. From the 

voltage limit, it follows 
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whereas 
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
   (2.118) 

represents the normalized speed. Solving this equation for the flux-weakening current leads 

to: 
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The starting point at which flux-weakening comes into effect, i.e. the point of maximum 

current or torque at which a flux-weakening current is required for the first time, can be 

determined by 
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or alternatively, 
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Using the above flux-weakening current, we now find the torque-generating current to be 
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The corresponding torque results to 
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or (normalized) to  
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For the following considerations of the flux-weakening range two cases shall be 

distinguished. They are characterized by the short-circuit current 0i  being either smaller or 

larger than the maximum current maxi , i.e. whether 1k or 1k  applies. 

 

Case 1: Limited speed, max0 ii   or 1k  

 

In this case, the center point of the circle Ui  lies outside the current limiting circle. Above a 

certain speed the intersection of the two circles is empty. The maximum speed results directly 

from electrical limitations and is reached when the circle Ui  barely touches the current 

limiting circle maxi  . Then, the following equations hold: 
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The above formula derived for the maximum available torque  
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can thus be applied for the (normalized) speed range 

 

max1   . 

 

Now, what is the maximum power available for different speeds? In the voltage control range 

1  , the maximum power results to  
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Thus, the power increases linearly with the speed. In the following, the performance will be 

referred to the maximum available apparent power of the converter, given by 
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Defining the normalized power leads to 
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Generally speaking, this value does not represent the power factor, as the current real power 

is not referred to the current apparent power, but to the maximum apparent power of the 

inverter. The maximum apparent power is utilized to its full extent only when operating at the 

current and voltage limits. In this case,   is equal to the power factor. In general, the value   

can be considered as a measure for the utilization of the installed converter power, also known 

as inverter utilization degree. 

 

For the voltage control range 1  , the normalized maximum power or inverter utilization 

degree follows to 
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On the other hand, for the flux-weakening range max1   , it holds 
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The speed at which maximum possible power is provided can be derived through a several 

calculation steps and results to 
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In this case, 1  and maxmax SP  . 

 

Drives with 1k  do not have a constant power range. For pump sets and fans, whose 

performance increases with increasing speed, anyways, a constant power range is not 

necessary. However, if the drive shall exhibit a constant power range 1k  has to be selected. 

 

 

Case 2: Unlimited speed, max0 ii   or 1k  

 
Fig. 2-26: Current and voltage limitations for max0 ii   

 

 

In the voltage control range 1   there is no fundamental difference to the previously 

discussed case. In spite of the similar behavior when entering the flux-weakening region, 

increasing speeds give rise to a qualitatively different behavior: Unlike in case 1, max0 ii   

and 1k  lead to non-empty intersections of the limiting circles for any given speed. 

Consequently, there exist valid operating points for any speed. The speed is not limited by the 

electrical behavior. 

 

The flux-weakening region 1   can be divided into two ranges. In the lower flux 

weakening region the motor is operated at current and voltage limits to achieve maximum 

torque. The torque is calculated just as before: 
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The maximum power is given by 
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This operation is, however, only reasonable until 2  . The limit 2  is reached when the 

flux-weakening current di  reaches the 0i value. This limit is determined by 
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or 
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It does not make sense to decrease di  below 0i  while speed is further increasing, as the 

maximum torque utilization would be reduced. For speeds 2   the maximum torque is 

always achievable with the following flux-weakening current and torque-generating current, 

resulting from voltage limits: 
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The torque and power can be expressed by 
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The region, where the available power is constant is called the upper flux weakening region. 

The last equation shows that the inverter utilization degree can be at most equal to the design 
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parameter k . Accordingly, the inverter utilization is poor for small values of k. For a 

technically and economically optimized design of a drive with a constant-power range, as it is 

common in automotive applications, k values close to 1 are thus preferred. Quite often, values 

in the range of 9.0...8.0k  can be found in this context. 

 

 

 
Fig. 2-27: Maximum torque, maximum power and normalized power  

(inverter utilization degree ) vs. motor speed with 1k  
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Fig. 2-28: Maximum torque and maximum power vs. speed in a normalized representation.  

Parameter of the array of curves is the design parameter max0 / iik   
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3 Inverter 

Today’s state-of-the-art technology relies on feeding AC- or three-phase-motors from a DC 

source, also known as voltage source DC-link, via a frequency- or voltage-source inverter 

(VSI).  

 

For AC motors with very high power ratings up to 10 MW or above, inverters with current 

source DC-link (I-inverters, current-source inverter, CSI) or cyclo-converters or matrix 

inverters are also employed. In this lecture, we will focus on the DC-fed inverter, also known 

as pulse inverter, exclusively. 

 

The inverter with DC-link is a three-phase bridge circuit (B6). The operating principle can be 

illustrated with ideal switches, as shown in the figure below. 

 

 
 

Fig. 3-1: Idealized inverter with DC power supply 

 

 

 
Fig. 3-2: Common circuit symbols for inverter with DC power supply 

 

 

 

The switch positions are described by the switching functions )(),(),( tststs cba . Whereas 

switching state 1,, cbas  is assigned to the upper switch position, 1,, cbas  represents the 

lower position. At the input (DC side) of the inverter a DC voltage is applied and at the output 

(AC side, motor) currents are fed into a connected inductive load. Depending on the switch 

positions, the output voltages as well as the input current can be determined with the help of 

the switching functions as follows:  
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For simplification, the reference potential for the output voltages is set to the midpoint of the 

DC input voltage, as shown in the figure. In terms of actual circuitry this point does not exist, 

however. Moreover, there is no current balancing via this potential. The motor is connected in 

star or delta configuration, so that the following condition for the currents, 

  

0)(
,,


cba

k ti . 

 

holds. 

 
Fig. 3-3: Equivalent circuit diagram of the inverter with controlled current- and voltage 

sources 

 

The actual design of the inverter using transistors is shown in the figure below. Depending on 

the power and voltage requirements the following power electronics devices are commonly 

employed as switches. 

 

 MOSFET (Metal Oxide Field Effect Transistor) 

 IGBT (Isolated Gate Bipolar Transistor) 

 GTO-Thyristor (Gate Turn Off) 

 IGCT (Integrated Gate-Commutated Thyristor) 

 

Each of these three components is connected with an anti-parallel diode, thus forming a 

switching element which can carry current in both the directions (except for the MOSFET, 

which due to its body structure already includes a so-called body-diode making the usage of a 

separate diode redundant). However, the switching element only allows unidirectional 

voltages, which is sufficient, as the polarity of the supplying DC-link voltage usually does not 

change. On the DC-side close to the power semiconductors a capacitor is installed, preventing 
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the abruptly changing current dci  during switching instants to be fed to the input voltage 

source via a potentially long inductive cable. 

 

The target applications of the  following power semiconductor devices is characterized in the 

table below: 

 

 MOSFET IGBT GTO/IGCT 

Voltages 
3
 

  600 V 
1
 

1600 V 
2
 

600 V/1200 V 
1
 

6500 V 
2
 

6000 V 

Currents 
1 - 50 A 

1
 

690 A 
2
 

50 - 400 A 
1
 

2400 A 
2
 

4000 A 

typical switching 

frequencies 
10 - 1000 kHz 2 - 20 kHz 0.2 - 1 kHz 

 
1
 Typical standard elements 

2
 technological limits (2008) 

3
 Here, the maximum blocking voltages are given. One should be aware, that the nominal 

operating voltage of an inverter utilizes only 65-80% of the blocking voltage of the power 

transistors. This is due to safety margins that need to be kept, enabling the device to handle 

transient voltage peaks which occur during commutations. 
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Fig. 3-4: Three-Phase inverter with IGBT (above) or MOSFET (below) 

 

The DC supply feeding the inverter is referred to as intermediate circuit or DC-link, in case 

the DC voltage itself results from a conversion procedure, such as rectification of an AC- or 

three-phase voltage grid (see figure below). The rectifier can be composed of a simple bridge 

diode circuit. In case of more complex systems, especially when a regenerative feedback of 

electrical power into the grid is requested, the same inverter circuit as on the motor side 

(mirrored) can be used as rectifier between the grid and the DC-link. 
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Fig. 3-5: Configuration with DC-link 

 

The three-phase inverter can only adopt 823   switching states.  The resulting output 

voltages cba uuu ,,  can be mapped to two orthogonal components  uu ,
 

and a zero 

component 0u  via the transformation matrix T . The zero component describes the common 

mode behavior of the inverter output voltages. Usually the motor windings, which are 

connected to the inverter are isolated. The zero component which shifts all three motor phase 

potentials in common mode, thus, has no impact and does not need to be considered in 

consequence. 

 

When having a closer look, however, one realizes that the zero component is still of 

importance, as it is responsible for displacement currents through parasitic capacitances 

between the motor windings and the housing or shielding or GND. Nevertheless, the zero 

component will not be considered in this basic modeling approach. 

 

The eight fundamental voltage vectors in orthogonal  /  coordinates generated by the eight 

switching states are denoted by iv . With the help of the transformation  
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they can be calculated from the switching states 1,1,, cbas . For simplification, the 

normalized fundamental voltage vectors 
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shall be used in the following. With the help of the transformation matrix 
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the following table can be obtained. 

 

 

 

 

as  

 

bs  cs  iαv~  iv~  

0
~v  1  1  1  0 0 

1
~v  1  1  1  3/4  0 

2
~v  1  1  1  3/2  3/2  

3
~v  1  1  1  3/2  3/2  

4
~v  1  1  1  3/4  0 

5
~v  1  1  1  3/2  3/2  

6
~v  1  1  1  3/2  3/2  

7
~v  1  1  1  0 0 

 

 

The zero voltage vectors can be realized by two different switching states i.e. 070  vv . We 

can depict the fundamental vectors geometrically in the  /  plane, where they span a 

regular hexagon. 
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 Fig. 3-6:  Fundamental vectors in the orthogonal plane 
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4 Pulse Width Modulation 

Since an inverter accepts only discrete switching states and thus can generate only 7 different 

output voltage levels, we therefore realize intermediated voltage values with the help of a 

Pulse Width Modulation (PWM). The principle will first be introduced through a single phase 

example which will later be extended to three phases. 

 

4.1 Single-Phase Pulse Width Modulation 

 

The normalized reference voltage  

 
2/

*
*~

dcu

u
u   (4.1) 

is the input variable, the reference switching function for the PWM is given by 

 

 *~* us   (4.2) 

The switching function )(ts  is generated by comparing the normalized voltage value with a 

triangular modulation carrier. The output of the comparator can be directly referred to as the 

switching function. Through geometric interpretation of this procedure it becomes clear that 

the time average of the switching function corresponds to the reference, as long as the 

reference can be assumed constant or only slowly varying. (For a more detailed investigation 

of the temporal behavior, see also section 4.8, especially 4.8.2): 

 
*)( sts   

 

 

 
Fig. 4-1: Implementation of pulse width modulation through  

triangular carrier modulator and comparator 
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Fig. 4-2: Modulation of a constant reference value 

 

The above procedure is called Triangular Modulation due of the shape of its carrier signal. 

Especially with regard to sinusoidal reference values (see below), the term Sine-Triangular-

Modulation is also common. Unfortunately, the last term is a bit misleading as it implies that 

this method can only be used for the modulation of sinusoidal reference values. Although 

sinusoidal reference values are also considered in the below example, it should be noted that 

the PWM method can be used for any arbitrary transient reference signal. 

 

Here, we always assume symmetrical triangular functions as modulation carrier. It is, 

however, also possible to use rising or falling saw-tooth functions instead. 

 

The resulting switching frequency sf  of the PWM is directly determined through the 

frequency of triangular carrier signal )(tc . For many industrial devices a switching frequency 

standard of kHz16...8sf  has evolved. Nevertheless, especially in certain high power 

industrial applications, switching frequencies of just few hundreds of hertz are usual. On the 

other hand, switching frequencies of several 10 kHz can be found in some special low power 

applications.  
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Fig. 4-3: Modulation of a sinusoidal reference value 

 

 

The modulation index is given as the normalized peak voltage 

 )(~max
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4.2 Three-Phase Pulse Width Modulation 

 

 
Fig. 4-4: Pulse width modulation with triangular carrier signal for three phase system 

 

 

 
Fig. 4-5: PWM for sinusoidal three phase system  

with modulation index A = 0.5 
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Fig. 4-6: PWM for sinusoidal three phase system  

with modulation index A = 1.0 

 

 

The modulation index range is given by 

 

1)(~
,, tu cba  

 

In the figure below, this condition leads in the orthogonal  /  plane to stripes around the a, 

b or c axis, whose intersection forms the depicted inner hexagon. Each voltage vector 
*~u  of 

this hexagon can be realized through PWM. Considering only the magnitude of the voltage 

vector independent of its direction in the plane, in any case a vector following 

 

1~
max

*  AA u  

 

can be implemented through this type of modulation. 

 

The maximum line-to-line voltage, the inverter can apply to the motor, is represented by the 

input DC voltage dcu . However, this potential is not being utilized by the current modulation 

method. 
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Fig. 4-7: Realization of voltage vectors through triangular modulation (PWM) 

 

 

Shifting the reference potential (i.e. adding a zero component to the phase voltages) does not 

change the line-to-line voltages, but increases the dynamic modulation range. 
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 )()()( 0
*** tututu aa   (4.5) 

 )()()( 0
*** tututu bb   (4.6) 

 )()()( 0
*** tututu cc   (4.7) 
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Triangular modulation (PWM) with zero point shift 

 

 

With this zero point shift, the maximum possible dynamic modulation range of the line-to-line 

voltages is utilized as shown in the figure. 

 

1
)(,,


dc

cabcab

u

tu
   and   2)(~

,, tu cabcab  

 

Regardless of the direction of the desired voltage vector in the orthogonal coordinates, each 

vector in the orthogonal system is realizable. 

 

2/

~
*

*

dcu

u
u   

 

 

 15,1
3

2~*  uA  (4.8) 

 

Due to the zero point shift, the voltage utilization is thus increased by 15%. Although, the 

reference phase voltages lose their sinusoidal shape, the line-to-line voltages remain 

sinusoidal. 
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Fig. 4-8: Realizable voltage vectors with triangular modulation and zero point shift 

 

 
Fig. 4-9: Three phase triangular modulation with zero point shift, 

A = 1.0 
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Fig. 4-10: Three phase triangular modulation with zero point shift, 

15.13/2 A  
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4.3 Space Vector Modulation 

 

In contrast to PWM in which each of the three phases are modulated separately, space vector 

modulation is based on a reference vector *
u  in orthogonal coordinates: Given a time interval 

of length aT , also known as the sampling interval, the mean value of the inverter output 

voltage vector )(tu , which can be realized via an appropriate sequence of fundamental 

voltage vectors kv , shall be equal to the desired voltage reference )(* ku  for this time 

interval: 

 

 

 7766554433221100

)1(
* 1

)(
1

)( vvvvvvvvuu tttttttt
T

dtt
T

k
a

Tk

kTa

a

a

 


 

 
   

7766554433221100 evvvvvvv   , 
(4.9) 

 

 

whereas 

 

     
a

i
i

T

t
  (4.10) 

and considering the constraints 

 

 

1
i

i    und    0i . 

 

In other words, the sum of all normalized times 
i  has to exactly correspond to the available 

sampling interval. The above equation can be also written with the normalized vectors 
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)(~

*
*

dcu

k
k

u
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2/
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u
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v   (4.11) 

leading to  
 

 

 

 

 
7766554433221100

)1(

* ~~~~~~~~)(~1
)(~ vvvvvvvvuu   

 a

a

Tk

kTa

dtt
T

k . (4.12) 

 

In order to do so, the factor 2/dcu  is taken outside of the integral under the assumption that 

the voltage )(tudc  is constant in time or at least varies slowly with respect to the sampling 

interval aT . This assumption is true in many applications, but not always given. The DC 

voltage supply is usually stabilized by a capacitor. If the capacitor is dimensioned very small 
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then )(tudc  would vary quite rapidly, thus violating the prerequisite of an approximately 

constant voltage. This leads to errors in the desired motor voltage (see Section 4.5). 

 

Depending on the location of the desired voltage vector )(* ku  maximum three out of the 

eight vectors are sufficient for vector modulation. In the case shown in the below figure, the 

reference vector lies in sector 1 of the hexagon. Therefore, vectors 21, vv  together with zero 

voltage vector 0v  are sufficient for vector modulation. 
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(4.13) 

 

 
Fig. 4-11: Principles of space vector modulation 

 

For a given vector )(* ku , this system of equations can be resolved algebraically for the times 

i . From a geometric point of view, the times i  can be interpreted as dual coordinates, 

which can be read off axes, which are perpendicular to the fundamental vectors. By 

considering the projections of the reference vector on the dual 1 - and 2 -axes in the below 

figure, it directly follows:  
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  (4.15) 

 

Similarly, we find the corresponding relations for the other sectors, which are summed up in 

the table below. 

 

 
Fig. 4-12: Geometrical construction of times k  in dual coordinates 

 

 

By suitable choice of the fundamental vectors, all reference vectors within the hexagon can be 

realized. Therefore, the dynamic modulation range of the space vector modulation covers the 

entire hexagon spanned by the fundamental vectors. It is identical to the three phase pulse 

width modulation, if zero point shift has been applied. Regardless of the direction each 

reference vector of the magnitude  
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can be realized (see figure below). 
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Fig. 4-13: Dynamic modulation range of space vector modulation 

 

 

Depending on the sector the voltage reference vector is located in, the following pulse times 

follow (s. below table). The two pulse times refer to the active fundamental vectors, 

respectively, and are expressed as functions of the orthogonal components of the voltage 

reference. The times for the zero voltage vectors, i.e. 0  or 7 , must complement the first two 

periods to a full (sampling) interval aT . 
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Sector 

 

Times for active vectors Zero voltage vector 

1 **
1

~

4

3~

4

3
 uu   

*
2

~

2

3
 u  2170 1    

2 **
2

~

4

3~

4

3
 uu   

**
3

~

4

3~

4

3
 uu   3270 1    

3 **
4

~

4

3~

4

3
 uu   

*
3

~

2

3
 u  4370 1    

4 **
4

~

4

3~

4

3
 uu   

*
5

~

2

3
 u  5470 1    

5 **
6

~

4

3~

4

3
 uu   

**
5

~

4

3~

4

3
 uu   6570 1    

6 **
1

~

4

3~

4

3
 uu   

*
6

~

2

3
 u  1670 1    

 

The sector, in which the reference vector is located, can quickly be determined by checking 

some signs: 

 

 

Sector 

 

*~
u  ** ~~3  uu   ** ~~3  uu   

1       

2       

3       

4       

5       

6       

 

 

Although the respective times for the active vectors can be uniquely determined from the 

desired voltage reference, there are some degrees of freedom as far the practical realization of 

vector modulation is concerned: 

 

 The choice of the zero voltage vector, 0v  or 7v  

 The sequence (order) of the participating fundamental vectors within the sample 

interval. Moreover, the time of the zero vector is often split up in equal halves which 

are allocated to the beginning and end of an interval, respectively.   

 



4 Pulse Width Modulation 73  

 

 

 

The below table provides some potential variants, in this context. The sequences of the 

vectors are only stated for sectors 1 and 2, exemplarily. The vector sequences for the other 

sectors can easily be deduced from the symmetries. Note, that in the table all listed vector 

sequences are depicted with the help of the indices k of the relevant fundamental vectors kv . 

 

type 
Sector 1 

i =  

Sector 2 

i = 

1 
0, 1, 2, 7  

  7, 2, 1, 0 
1 

0, 3, 2, 7 

  7, 2, 3, 0 
1
 

2 7 (and 0
2
), 1, 2, 7 0 (and 7

2
), 2, 3, 0 

3 7 (and 0
2
), 2, 1, 7 0 (and 7

2
), 3, 2, 0 

1
 alternating 

 
2 

During a sector change the last forth-coming zero voltage vector would be replaced with the 

newly given vector, without having any impact on the motor voltage. This redundant 

switching procedure can be avoided when the last forth-coming voltage vector is left 

unchanged during a sector change until the next active vector is applied. Only afterwards, the 

new zero voltage vector is used in the vector sequences. 

 

Type 1 in the above table with split (in equal halves) and alternating zero voltage vectors in 

the result exactly corresponds to the pulse width modulation with zero point shift and 

application of the regular-sampling principle.(refer to the figure below). 

 

 
Fig. 4-14: Type 1: Pulse pattern of the vector modulation 

Alternating pulse pattern; corresponds to pulse width modulation 

(Two out of three switching commands are represented) 
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Fig. 4-15: Type 2: Pulse pattern of the vector modulation 

 (two out of three switching commands are represented) 

 

 

When switching from one fundamental vector to another, switching procedures in one, two, if 

necessary also in three inverter legs (phases) can become necessary. The resulting switching 

frequency of an inverter leg is therefore not directly related to the frequency with which the 

fundamental vectors are switched. 

 

The following diagram shows the transitions between states of the fundamental vectors. Two 

states are connected by a line, only if the transition is possible by switching only one leg. For 

better illustration, the two possible switching states of the zero vectors were not directly put 

on top of each other. 
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Fig. 4-16: Transition diagram for the fundamental switching states 

 

 

With the help of this transition diagram, it is easy to determine the number of actual switching 

events of the inverter legs. For example,  the Type 1 sequence switches each leg exactly once 

within one sampling interval leading to a total of three switching instants. As for Types 2 

and 3 a total of four switching events takes place in each interval. However, in these cases 

switching events during sector transitions, i.e. when the voltage reference vector changes 

from one sector to another, are eliminated. Shall the sampling frequency be denoted by 

 

a
a

T
f

1
  

 

while 1f  represents the fundamental frequency of the signal to be modulated. Then, the 

switching frequencies of the inverter legs can be calculated according to the below table. 

 

 

type of space 

vector modulation 

inverter leg 

switching 

frequency 

1 as ff
2

1
  

2 1
3

2
fff as   

3 1
3

2
fff as   

 

1v

2v

6v5v

4v

3v

7v

0v



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4.4 Regular Sampling 

 

When speaking of regular sampling we refer to two aspects affecting the interaction of 

control and pulse width modulation or space vector modulation. 

 

 The synchronization of the modulation carrier with a discrete-time setting of the 

reference voltages (in vector modulation this is automatically given). 

 

 The synchronization of discrete-time measurement samples with the modulation 

carrier. 

 

First Aspect: Nowadays, drive controls are no longer realized with analog circuit designs, 

which works in a continuous-time manner, but with the help of microcontrollers or DSP 

technologies. These controls rely on recursive control rules which are executed in a discrete-

time manner (sampling), i.e. new reference values are provided only at a certain clock cycle. 

Since the controller can influence the motor currents only via the switching inverter elements, 

it is not reasonable from an economic point of view to execute the control cycle more often 

than the inverter’s maximum switching frequency. Therefore, the sampling time aT
 

is 

synchronized with the switching period sT , whereas two variants (see figures below) can be 

applied: 

 

   sa TT      or   sa TT
2

1
  (4.16) 

 

For simplification, the functional principles shall be developed and explained based on a 

single phase PWM (one inverter leg). The results are directly applicable to three phases case, 

as well.  

 

 

 
Fig. 4-17: Pulse width modulation with continuous-time reference value 

(For not limiting the general validity, a random transient process is illustrated,  

instead of a simple sinusoidal one)  
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Fig. 4-18: Pulse width modulation with discrete-time, non-synchronized reference values 

 

 
Fig. 4-19: Pulse width modulation with synchronized reference values  

(Regular Sampling) with 2/sa TT   

 

 
Fig. 4-20: Pulse width modulation with synchronized reference values  

(Regular Sampling) with sa TT   
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The discrete-time application of reference values leads to a delay in the system, which shall 

be further examined in the following: 

 
Fig. 4-21: Discrete-time reference 

 

 

The discrete-time reference values shall be )(kud , the continuous-time function )(tu   is 

represented by the sum of time-shifted step functions )( 0tt  : 
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Transition to the Laplace domain: 
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 (4.18) 

 

The series 

 

   


k

skT
d

aeku )(  (4.19) 

 

represents the z-transform (or Laurent-transform) of the sequence )(kud  at the point  

asT
ez  : 

    

k

k
dd zkuzU )()(  (4.20) 
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The term 

    asT

a

e
sT

sH


 1
1

)(  (4.21) 

can be considered as the transfer function of a sample and hold process (despite the fact that 

no continuous-time reference value exists that could be sampled, since the discrete-time 

reference value is determined directly from a discrete-time controller). 

 

Therefore, it follows: 

    asT
da eUsHTsU )()(   (4.22) 

In order to see the influence of amplitude and phase more clearly, )( jH  can be written in 

the following form, as well: 
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Alternatively,  
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whereas 

   
a
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2
  (4.24) 

Quite frequently, approximations of )(sH  are used: 
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           (4.25) 

 

)(sOn  denotes the remaining terms of the n-th and higher order in s. Through this result, we 

can conclude that )(sH  can be approximated by a dead-time element ( tT - element) with dead 

time 2/aT , whereas terms of second and higher order are neglected. 

 

The 1st-order Padé approximation for the exponential function 
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provides an alternative approximation for )(sH  
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Here, )(sH  is approximated through a T1-element (1st-order delay element) with the time 

constant 2/aT .  

 

Hence, the discrete-time reference value can be approximated either by a dead time element 

or a delay element, whereas in both cases the significant time constant 2/aT  occurs. 

 

 
 

Fig. 4-22: Frequency characteristics of the sample and hold process und its approximations 

 

 blue: )( jH  without approximation 

 green: approximation through 1T -element with 2/aT  as time constant 

 red: approximation through tT -element with 2/aT  as dead time 
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As it becomes evident from the frequency characteristics, both approximations reproduce the 

actual behavior of the sample and hold process in a different way. 

 

The dead time approximation at least exactly reproduces the behavior of the phase (for 

frequencies below twice the Nyquist frequency 1/ a ). In the range of 44.0/ a , the 

amplitude error is less than +3 dB. 

 

The useful range of the T1- approximation is rather determined by the phase error, which is 

less than 10° if 29.0/ a . In this area the amplitude error is as smaller than 1.4 dB. 

 

 

Second aspect of the regular sampling process: the measurement sampling: 

 

For simplification, we assume a purely inductive load with a constant reverse voltage. In this 

case, a synchronization of the current sampling with the PWM carrier causes the sampled 

current values to exactly represent the time-local average current values. The current ripple 

caused by the inverter pulsation is masked by this subtly sampling process making analog 

filtering redundant. On the contrary, the application of an analog pre-filter would cause the  

current sampling method to no longer work as originally intended. Although the harmonic 

pulsation components would be smoothed, the pre-filter would cause a phase shift in the  

fundamental component, leading to errors in the control loop.  

 
Fig. 4-23: Current sampling with regular-sampling technique 
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4.5 Dead Time in Digital Control Loops 

 

If the control scheme is implemented on a microcontroller or microprocessor, then a certain 

time is required to process the control algorithm. Therefore, a measured value can affect the 

voltage reference only after this time period has passed. In an appropriate manner, all these 

processes are synchronized with the clock cycle given by the pulse width modulation or 

vector modulation. This way, the digital control introduces a dead time of one sampling step. 

Together with the discrete-time application of the reference voltage for the PWM (s. Section 

4.4) a total dead time of 1.5 sampling steps of the control loop results.  

 

 

 
Fig. 4-24: Flow chart of measurements sampling, control algorithm and PWM 

 

 

At varying DC input voltages the dead time related to the discrete-time processing causes a 

further problem. Both, for the vector- and pulse width modulation, the voltage reference 
*

u  

initially needs to be referred to the input voltage dcu . Therefore, the DC voltage value, which 

is known by the time when the reference voltage is applied, is used. If the input voltage has 

been sampled synchronously together with the current measurements, then the voltage value 

at the previous sampling instant is given as: 
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However, this normalized voltage reference is converted into a corresponding pulse sequence 

not before the next sampling interval. If the input voltage does not change or only slowly 

changes until that point, no problem occurs. When dealing with highly fluctuating input 

voltages, however, a voltage error is caused during the pulse width modulation, accordingly. 
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4.6 Voltage Errors Due to Interlocking Times 

 

The switching behavior of an inverter can be realized by giving complimentary gate pulses to 

the two transistors of an inverter, as shown in the below figure. To avoid short circuits due to 

dead times in the control and the drivers and to ensure an orderly commutation, the previously 

conducting transistor is opened/blocked and the complementary transistor changes its state 

only after an interlocking time 0t . The timing of the actual commutation depends on whether 

the current flows from a transistor to a diode, or vice versa. The stages of operation are 

illustrated in the following pictures. 

 

 
Fig. 4-25: Pulse generator and driver 

 

Output voltage as a function of transistor states 
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1
 As long as the current is flowing, it determines the output voltage via the conducting diode. 

Once the current stops flowing, i.e. the two diodes are blocking, the output voltage is no 

longer determined by the inverter but by the reverse voltage of the connected load. 

 
2
 The open state is the idle or off-mode. In case of operation error, the converter is switched to 

that state.  

 
3
 The short circuit usually leads to the destruction of the transistors, or in consequence even to 

the destruction of the entire equipment. This must be avoided at all costs. 
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Fig. 4-26: Current paths depending on the switching state  

and the current flow direction 

 
Fig. 4-27: Current paths depending on the current flow direction  

in case of blocked transistors 
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Fig. 4-28: Voltage curves due to interlocking times 

 

 

The interlocking time introduces an error in the average value of the output voltage. The error 

affects by always opposing the current flow (just like an additional load). As long as the sign 

of the current does not change during the pulse period, the following equation holds (in 

average) under the assumption of an ideal commutation:  
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Hereby, it shall be assumed that the DC voltage dcu  does not change significantly during a 

pulse period. In case the current changes sign within a switching period, then the above error 

equation is no longer valid. If the current is close to zero then the current curve might even 

exhibit discontinuities during interlocking periods. Please note that this consideration, as well, 

can only be regarded as an approximation, as the commutation procedures in the 

individual transistors and diodes are still assumed to be ideal. 

 

Typical values: 

 

Valve sf  0t  

GTO-Thyristor 200-500 Hz μs3015  

IGBT 5-15 kHz μs52  

MOSFET 20-1000 kHz μs1  

 

The typical values of the resulting voltage errors can be in the range of 10% or even more! 

Compensating these errors seems to be simple at a first glance, but turns out to be quite 

challenging when dealing with small currents, i.e. if the average value of the current lies 

within the fluctuation range. In this case, the prediction of zero-crossings / discontinuities of 

the current can only be performed with moderate accuracy. 

 

The voltage errors appear in each of the three phases: 

 

 
dcscbacba uftisignu 0,,,, )(  (4.29) 

 

Due to the star connected circuit, always two currents have different signs. The 

transformation of the individual phase voltage errors into the orthogonal vector representation 

results in a voltage vector u , whose magnitude results from the transformation 23T : 
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The direction of the error voltage is determined by the sign of the current or by the sector in 

which the current vector is located (see below figure). The voltage error, oriented in the 

opposite direction of the current vector, can now be approximated, as follows: 
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Fig. 4-29: The voltage error can be compensated by adding it to the reference value of the 

PWM, 
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It is, however, recommended for small currents, for which the impact direction of the voltage 

error is uncertain due the current fluctuation range, to slowly fade out this compensation 

depending on the current amplitude. 
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4.7 Dynamic State-Space Averaging of the Pulse-Width Modulated Inverter 

 

For instantaneous values, the following equations hold: 
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Averaging over one pulse period: 
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Hereby, it must be assumed that the DC voltage )(tu dc  and the corresponding motor currents 

)(,, ti cba , respectively, do not or at least only change negligibly slow during a pulse period. 

 

State-Space Average (SSA) model in  / - coordinates: 
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1
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,, tutstu dc   (4.37) 
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State-Space Average model in d/q-coordinates: 
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Fig. 4-30: Equivalent circuit diagram for State-Space Average modeling 

 

 

 
Fig. 4-31: Equivalent circuit diagram for State-Space Average  

modeling in orthogonal coordinates 
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4.8 Harmonics 

 

4.8.1 Harmonics at Constant Reference Values 

 

Harmonics of the switching function )(ts  at constant reference values: Due to the operating 

principle of the pulse width modulation, it is implicitly guaranteed that the reference value is 

equal to the mean value of the generated switching function:  

 

*ss   

 

 
Fig. 4-32: Pulse width modulation with continuous-time reference 

 

 

In addition to that, the PWM also causes harmonics due to its switching characteristics. The 

pulse frequency sf  and ss f 2 , respectively, as well as their multiples occur. The complex 

Fourier coefficients of the harmonics sk , while 0k , result to: 
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it further follows 

 

 







 *)1(

2
sin

2
)( s

k

k
kS s




  (4.43) 

 

The Fourier coefficient for the zero frequency is the already known mean value: 
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The time function is obtained via the Fourier series 
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Since, 

 )()( ss kSkS    (4.45) 

we can also write, 
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Alternatively, 
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Approximation for small *s  
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This means, that in a first approximation the odd multiples of the switching frequency do not 

depend on the desired value *s . They are approximately constant, while the even 

multiples grow proportionately with the desired value. 
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The voltage harmonics result from the switching function via 
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whereas the input DC voltage is assumed to be constant. However, in case harmonics of 

)(tudc  itself exist, the output voltage results through the convolution operation 
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We are often not directly interested in the harmonics of the voltage, but rather of the currents. 

For an inductive load L (with constant input DC voltage), they can be obtained through 

 

 







 *)1(

2
sin

2

)(
)(

22
s

k

k

j

L

U

Ljk

kU
kI dc

s

s
s






  (4.49) 

 

 
 

Fig. 4-33: Harmonics due to pulse width modulation 
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can be exactly determined via convolution: 
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As an estimate, it may be sufficient to assume the output current 

 

 
0)( Iti   (4.51) 

 

to be nearly constant. Then, the spectrum of the input current, as well as the output voltage 

directly results from the spectrum of the switching function 
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4.8.2 Harmonics at Sinusoidal Reference Values 

 

Assuming a steady state condition, modulation with amplitude A and fundamental 

frequency 1f : 
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If the number of pulses per fundamental period, 
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is integral, it is referred to as synchronized pulsing. In this case, the pulse rate is a multiple of 

the fundamental frequency. In the spectrum, only multiples of the fundamental frequency 

would occur, accordingly. 

 

However, it shall initially be assumed that the frequencies are not following any rational 

pattern. Then, the pulse sequence is not periodic in a fundamental frequency period. The 

Fourier coefficients are determined over a sufficiently long averaging time: 
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Fourier coefficients of fundamental frequency multiples: 
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Consequently, averaging of the switching function )(ts  over many periods precisely leads 

to the reference value of the pulse width modulation: 
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It therefore follows, 
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The Fourier coefficients of the fundamental frequency multiples, thus, exactly correspond to 

the Fourier coefficients of the reference value of the pulse width modulation. In other words, 

the pulse width modulation has no influence, in this context. If the reference is a purely 

sinusoidal signal, as assumed above, then this very signal is reflected in the switching 

function; the reference is mapped exactly with respect to amplitude and phase: 
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Then, the coefficients for multiples of the fundamental frequency are zero: 

 

0)( 1 kS  for 1k  

 

In particular, no time delay, as sometimes mistakenly attributed to the pulse width 

modulation, is recognizable; this would be noticeable in form of a phase shift. A time delay is 

introduced solely by the discrete-time application of reference values (see Section 4), but not 

trough the pulse width modulation, itself.  

 

For the practical verification of these relationships, the assumed infinite averaging time must 

not be overlooked. When limiting the measurement duration to only one or few fundamental 

periods, multiples of the fundamental frequency will be measureable.  
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In addition to the multiples of the fundamental frequency, intermodulation products occur  

between switching- and fundamental frequency. The Fourier series of the switching function 

)(ts  for a constant *s  shall serve as a starting point, in this context: 
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With, 
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it follows, 
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In a first approximation intermodulation products continue to occur as odd multiples of the 

switching frequency sf  and s , respectively. However, the even multiples are shifted around 

the fundamental frequency, causing side band around each of these frequencies, respectively. 

If we take higher orders in the above approximation into account, further intermodulation 

products would occur. 
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5 Control of Permanent Magnet Synchronous Motor in Rotating 
Coordinates 

So far, we have examined the steady-state behavior of the motor. It was, however, not 

discussed how to ensure that a desired operating state actually appears. This is the task of the 

control. The control can be a position-, velocity- or speed control. The position and speed 

control can be set up largely independent of a particular motor in a cascaded structure, where 

they represent superordinate entities of a torque control. Therefore, latter shall be focused on 

in the following.  

 

The torque is proportional to the torque-generating current component. Therefore, a torque 

reference *T may be converted into a current reference following 

 **

3

2
T

p
i

p
sq


  (5.1) 

The task of the torque control is thus converted into the task of regulating the current. 

5.1 Current Control 

 

The task of the current control is to regulate the components of the motor voltage sqsd uu ,
 
in 

a way that the desired current components sqsd ii ,
 
are set. The requested value *

sqi  results 

from the torque. The desired value of the d-component is adjusted, if necessary, according to 

the requirements with respect to flux weakening (see Section 2.10). At first, the voltage 

control range shall be provided, i.e.  

 0* sdi  (5.2) 

can be assumed. In order to perform the current control task, the control or actuating variables 

of the current controller can be considered as voltage references ** , sqsd uu  for the PWM unit. 

In return, the PWM unit generates corresponding switching functions (also known as duty 

cycles) which are applied to the transistors of the inverter. 

For simplification, we shall assume in the following, that the requested values are converted 

into actual values correctly by the PWM and the inverter (in terms of the dynamic State-Space 

Average modeling), i.e. 

 ** , sqsqsdsd uuuu   (5.3) 

 

In a first step, the plant model (that is the system to be controlled) needs to be derived. It is 

advantageous to do so by means of the current differential equations in rotor-fixed/rotating 

coordinates (see Section 2.2): 

 

 
psdssqssqsqs iLiRuiL    

sqssdssdsds iLiRuiL   

(5.4) 
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Regarding the control task, we are, thus, dealing with a coupled system with two control or 

actuating variables sqsd uu ,  and two controlled variables sqsd ii , . The coupling effect can, 

however, be compensated with the help of a simple voltage feedback and feed-forward 

control, respectively, according to 
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 (5.5) 

 

In consequence, two decoupled SISO (Single Input Single-Output) plant models are obtained. 
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 (5.6) 

 

Both represent P-T1 elements with the transfer function 
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whereas, 
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s
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R

L
  (5.8) 

represents the stator time constant. The remaining control task can now be easily solved, by 

designing a PI-controller for each of the plant models.   
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Fig. 5-1: Simplified current control block diagram 
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This simplified model serves as basis for the design of the controller parameters, i.e. the 

controller gain PiK  and controller reset time nT . For the realization of the control scheme, the 

transformation of the d/q-components into the stator-fixed coordinate system and vice versa, 

also needs to be regarded, of course.  

 

5.2 Discrete-Time Controller Realization 

 

Quite often, the control design is abstracted from the actual discrete-time control realization 

on a processor by applying continuous-time design rules and methods (see above). Only after 

the dimensioning of the control parameters, e.g. integrators are approximated by summing 

units. In this case, we speak of a quasi-continuous design approach. This approach is justified 

if the typical time constants of the system lie within a certain number of sampling steps. The 

limitations of this approach are reached at the latest, however, if the control actions are to be 

executed within only very few sampling steps (such as in deadbeat controls). In such cases, 

discrete-time design methods must be applied, which shall, not be discussed any further here. 

 

However, even when using a quasi-continuous design approach, the effects of the discrete-

time control realization should be taken into account through a total dead-time of one and a 

half sampling intervals (see Sections 4.4 and 4.5). Although this dead-time results from the 

controller realization, it can theoretically be added to the plant model as it does not represent a 

degree of freedom for the controller design: 

 

 sT

n

n
Pici

ae
sT

sT
KsG

5.11
)(


  (5.10) 

 

This dead-time can be recognized not only within each individual control loop for the d-and 

q-component, but also in the transform into or from the rotor coordinates. If the 

transformation of the voltage references from the d/q-system into the stator-fixed  / -

system is performed with the currently available rotation angle  , then after the dead time, 

the rotor has rotated further by an angle of aT5.1 . Depending on the rotational speed  , an 

incorrectly oriented voltage would then be applied to the motor. Therefore, during the reverse 

transformation of the voltage references into the stator-fixed system an angle offset of 

 

  aT5.1  (5.11) 

 

should be taken into account, to ensure a correct voltage orientation. It may be possible to 

neglect this angle offset, if depending on the speed range of the motor, angular errors of only 

few degrees result. The integrators in the current controllers will then compensate for these 

errors. At high speeds and depending on the sampling frequency, however, the angle offset 

can increase significantly up to two-digit numbers. In this case, it is advisable to explicitly 

account for this angle offset in the control design. 
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5.3 Overall Control Structure 

 

The following figure summarizes the previous considerations in a block diagram, also adding 

a speed controller. 

 
Fig. 5-2: Basic structure of the control loop in rotor-fixed coordinates 

  for the voltage control range (without flux weakening mode) 
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6 Direct Torque Control (DTC) 

6.1 Control Concept 

 

As an alternative to the above described control concept in rotating coordinates with 

subordinate current controllers and PWM, the Direct Torque Control (DTC) shall be 

discussed in the following. 

 

Once again, the torque equation represents the starting point for the following considerations: 

 

   spspsp piipT iψ 
2

3

2

3
    (6.1) 

 

With, 

 

 
psss L ψiψ   (6.2) 

 

further equivalent representations for the torque are obtained: 
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or 
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This last representation is the starting point for the DTC method. 
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 Fig. 6-1: Geometric interpretation of the torque as the cross product between the flux and 

current or between the flux vectors 

 

The following equation holds: 

 

 sssss uiRu ψ  

 

(6.5) 

The chosen voltage vector, thus, determines the direction of the flux change. As possible 

voltage vectors only the fundamental voltages kv  are considered. In the example shown 

below, vectors 43,vv  increase the torque while vectors 61, vv  decrease it. Geometrically 

speaking, this is due to the fact that in the first case the plane of the parallelogram increases, 

while in the second case it decreases. 

 

If the zero voltage vector 0v , or 7v  is chosen, then the stator flux sψ  approximately remains 

in its position. The change in torque then only depends on the movement of the vector of the 

permanent magnet flux pψ , due to the mechanical rotation of the motor. With reference to the 

below example and assuming a fixed stator flux pointer, the torque would decrease at positive 

rotations 0  and increase at negative rotations. Apart from the torque, the flux 

magnitude 

  

ss ψ  

 

increase or decreases, as well, depending on the choice of the voltage vector.  
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Fig. 6-2: Control concept of the DTC method 

 

Depending on the sector (see figure below, the sector definition used here differs from that of 

the vector modulation), in which the stator flux vector is currently located, the effects of 

various voltage vectors on torque and flux are summarized in the following table. 

 

 
Fig. 6-3: Sector definition for the DTC method 
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1 2v  3v  6v  5v  70,vv  

2 3v  4v  1v  6v  70,vv  

3 4v  5v  2v  1v  70,vv  

4 5v  6v  3v  2v  70,vv  

5 6v  1v  4v  3v  70,vv  

6 1v  2v  5v  4v  70,vv  

 

 

Torque and flux magnitude are now forced to remain within certain tolerance bands around its 

reference values with the help of Hysteresis controls. The switching strategy for the torque is 

as follows: Under the assumption of a positive direction of rotation and torque values too far 

below the desired reference, an active voltage vector is applied (see table) to increase the 

torque, in consequence. If the upper threshold of the tolerance band has been reached, the zero 

voltage vector is applied (last column of the above table), decreasing the torque in positive 

direction of rotation, accordingly. At the same time, the flux vector remains in its attained 

position. The flux magnitude cannot be influenced in this state, which is acceptable, as it can 

be considered during the next choice of the active voltage vector. 

 

This switching strategy requires the permanent knowledge of the direction of rotation, as with 

respect to the change in torque in the zero voltage state, the relationships exactly invert 

depending on the direction of rotation. On the other hand, the direction of rotation can be 

inferred from the behavior of the torque in the zero voltage state: If the torque decreases 

within the zero voltage state, the direction of rotation must be positive; otherwise, the motor 

rotates in the negative direction. This can be achieved by modifying the switching strategy, 

which then relies on three thresholds, as shown in the figure below. An explicit knowledge of 

the direction of rotation is now no longer necessary. 

 

 
Fig. 6-4: Switching strategy for the torque 
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Fig. 6-5: Typical flux trajectory in DTC methods 

 

 

The resulting control structure is shown in the figure below. Note, that no pulse-width 

modulation occurs. The switching strategy directly generates the control commands for the 

inverter. 

 

 
Fig. 6-6: Structure of Direct Torque Control (DTC) 

 

For loss optimal control, the flux reference should be adjusted as a function of the torque. 

Assuming 0sdi , the flux is given as, 
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Accordingly, the flux reference should be adjusted depending on the torque reference *T , as 

follows: 
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When the voltage limit is reached, the flux needs to be reduced, accordingly (flux weakening). 

 

In contrast to PWM, the resulting switching frequency of the DTC method is not exactly 

defined. In order to limit the switching losses, it may be useful to monitor the switching 

frequency and adjust the widths of the tolerance bands of the hysteresis controllers, 

accordingly. This can be accomplished with the help of a simple counter. In terms of control 

engineering, the counter represents an I-controller. 

 

 
Controlling the switching frequency 

 

6.2 Flux and Torque Observers 

 

The control structure developed in Section 6.1 is not yet complete, because so far we assumed 

that the stator flux sψ  and torque T values are known. Although, these quantities are 

measurable in principle, due to cost reasons, one will usually refrain from doing so by means 

of sensors in real applications. Instead, they have to be calculated from other available 

variables. Such an arrangement is referred to as observer in control theory. 

 

Measurable quantities are the stator currents si  and stator voltages su . Due to cost reasons,  it 

is desirable to avoid the measurement of the stator voltage, as well. However, one can 

compute the voltage value from the knowledge of the inverter switching states cba sss ,,  and 

the DC-link voltage dcu . In this context, the stator voltage shall therefore be regarded as a 

known variable. 
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To clearly distinguish in the following between the actual variables x in the technical system 

and observed or assumed variables, the latter (estimated or observed) variables will be 

denoted by x̂ . As measurements can also contain errors, this (hat) denotation will also be 

applied to measured quantities, as well as assumed machine parameters. 

 

In order to determine the necessary stator flux vector sψ  for the DTC, the evaluation of the 

machine equations comes into consideration
5
: 

 

Current Model 

 

By current model, we refer to the equation to determine the stator flux, 

 

psss L ψiψ ˆˆˆˆ   (6.7) 

or in stator-fixed components, 

 

  cosˆˆˆˆˆˆˆ psspsss ψiLψiLψ   (6.8) 

  sinˆˆˆˆˆˆˆ psspsss ψiLψiLψ   (6.9) 

 

It becomes obvious, that apart from the current measurement, the acquisition of the rotation 

angle also becomes necessary. In addition to that, the machine parameters permanent flux pψ  

and stator inductance sL  need to be known. 

 

With the stator flux determined in this way, the torque can now be estimated via the torque 

equation 

   sinˆcosˆ
ˆ2
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ˆˆ
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3
 ˆ

ss
s

p
sp

s L

ψp

L

p
T  ψψ  (6.10) 

 

These equations must then be implemented as an observer to complete the control structure of 

Section 6.1. 

 

 

Voltage Model 

 

By voltage model, we refer to the alternative determination of the stator flux via the  stator 

voltage equation 

 

ssss R iuψ ˆˆˆˆ   (6.11) 

 

                                                 
5
 Apart from the direct replication of the system equations, the concepts Luenberger observer and Kalman filter 

are also known from control theory. These concepts, as well, can be applied to this problem. In the course of 

these lecture notes, these concepts will, however, not be further discussed.  
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The voltage must therefore be integrated to obtain the flux: 

 

  0ˆ)(ˆˆ)(ˆ)(ˆ

0

s

t

t

ssss dRt ψiuψ     (6.12) 

 

The advantages are obvious: Only the stator resistance is required as machine parameter. The 

rotation angle is not a necessary measurement. In the remaining DTC control structure, as 

well, the rotation angle is not necessary, as no transformation into a rotating coordinate 

system is performed. We can therefore completely abandon the use of a rotary encoder. This 

case is referred to as sensorless control. Those types of control schemes are highly 

appreciated not only for cost but also robustness reasons (encoder failures, wire break) and 

constructive degrees of freedom. 

 

The mentioned advantages are countered by a number of disadvantages to be faced: On the 

one hand, the initial value of the flux 0ˆ sψ  is unknown in most cases. On the other hand, the 

observer is mainly represented by a simple integrator, which is characterized as a simple 

stable system in control theory. Specifically this means that a potential offset error in the 

voltage determination, 

sss uuu ˆ  (6.13) 

no matter how small it is, lead to an arbitrarily large flux error after a sufficiently long time 

 

ss ttt uψ  )()( 0  (6.14) 

 

In this form, the strategy is of no practical use. For this reason, the original differential 

equation is modified by means of a stabilizing feedback term: 

s
B

ssss R ψiuψ ˆ
1ˆˆˆˆ


  (6.15) 

The system with the input ssss R iue ˆˆˆˆ   and the output sψ̂  is now stable, which can be best 

seen in the Laplace domain: 
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The observer pole is now at Bs /1 ; the system is exponentially stable. A voltage offset 

error then only causes a limited stationary flux error 
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sBs uψ    (6.17) 

Looking at this equation, it seems reasonable to choose the time constant B  as small as 

possible, in order to achieve the smallest possible flux error as a result of a voltage offset. 

Moreover, the (step) response to the in most cases incorrect initial observer value 0ˆ sψ  decays 

with the time constant B .  

 

One should not overlook, that the additional introduced feedback distorts the original system 

behavior. Assuming the measurements is accurate, i.e. ssss iiuu  ˆ,ˆ  an estimation error of 
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would result. In the frequency range B /1 , the error can be neglected, due to 

 

 jj B

1
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1
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On the other hand, for decreasing frequencies below B /1 , the error becomes 

increasingly large and the flux estimation useless, in consequence. After this consideration, 

B  should therefore be chosen as large as possible to obtain a preferably large usable 

frequencies range. This directly reflects the possible speed range in which such an observer 

works reliably: For standstill and frequencies Brs  /1 , the observer does not work 

properly. Only at a minimum speed of Brs  /1  this observer can be used. 

 

For achieving both design objectives, a trade-off has to be made. In fact, in the practical 

implementation, lots of efforts are made to achieve small voltage errors and to thus allow 

large values of B . For this purpose, it is usually not sufficient to model the inverter only by 

its ideal switching behavior, but both the transient switching behavior and the forward voltage 

drops must be considered. 

 

In the context of DTC in the literature, the voltage model often serves as the basis for the 

observer design and is even presented as an inherent part of it. There is, however, no reason 

for that. The DTC principle can very well be combined with the current model as an observer, 

as well. Compared to the voltage model, the drawback lies in the necessity to measure the 

rotor position. On the other hand, the current model observer can then be used within the 

entire frequency range – even at standstill.  
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7 Protective Measures 

The operation of an electric drive generally requires measures for monitoring operation, to 

detect unacceptable operating conditions and to safely shut down the system, in consequence. 

Variables to be monitored are, for example: 

 

 Motor and inverter output currents 

 Supply voltage (DC input voltage) 

 Motor temperature 

 Converter temperature 

 Rotor speed 

 

The protective measures are aiming at protecting the system against damage or in case of a 

component damage which has already occurred (e.g. a defect capacitor or transistor) to 

minimize the spread of the damage to other components and to avoid endangering people. As 

a rule of thumb one can say, that protective measures are becoming more complex as the drive 

size increases. With larger drives, it is crucial to consider during the design phase, how they 

can be protected (e.g. extinguishing electric arcs). In micro drives, the ohmic resistance of the 

motor may already limit the current sufficiently and thus dispense with the need for further 

measures.  

 

Protective measures should be implemented on a control level independent of the motor 

control, itself. The reason is that the processor responsible for the motor control is often too 

slow for time-critical operations and could, thus, even be the cause of a fault, itself. In the 

ideal case, protective measures are designed in a way that they can autonomously and safely 

shut down the system, completely independent of a functioning motor control (fail safe). 

 

In particular, the monitoring of the inverter output and motor currents represent the most 

time-critical requirements. Since the thermal time constants of the junctions of the power 

semiconductors are extremely short, an overstepping of the permissible limits by only a few 

milliseconds can already lead to the destruction of the device. Moreover, in case of a short-

circuit (due to control errors or damage of other components) the application of unwanted 

voltages can lead to rapidly increasing inverter currents in a way that within only a few 

microseconds the current flow cannot be interrupted anymore. On the other hand, since 

operational limits are to be exploited as far as possible due to economic reasons, the distance 

between operationally permissible maximum currents and unsafe over- or excess currents is 

often quite small. Therefore, a safety shutdown in this field must respond very quickly. By the 

way, excess currents occasionally also occur as random fluctuations as a result of never 

completely avoidable disturbances in the control loop. 

 

In the following, possible measures for responding to excess currents are being discussed. 

 

 

 

 

 

 



7 Protective Measures 111  

 

 

 

7.1 Pulse Blocking or Motor Short-Circuiting 

 

The commonly used protective measure when dealing with excess currents is to block all the 

transistors of the bridge (pulse blocking). Due to the inductive behavior of the load, the motor 

current initially flows through the diodes in a bridge. But if the input DC voltage is greater 

than the induced motor voltage then this voltage difference counteracts the current flow 

forcing the motor current to quickly extinct (usually within a few milliseconds). This is the 

commonly applied protective measure, for example, in induction motors, see Section 4.6. 

 

If a permanent magnet synchronous motor is operated at a speed range where the main 

voltage is smaller than the input DC voltage, 3/dcp u  , the current will also extinct. In 

contrast, if the motor is operated in the flux weakening range, 3/dcp u , the induced 

voltage will feed current across the diode bridge back to the DC side. The entire motor 

voltage (consisting of main voltage and armature reactions) is still determined by the DC link 

capacitor, which more or less quickly charges, as long as the power on the DC side is not 

discharged by other means (i.e. feed back into the power supply or dissipation in a braking 

unit). In cases, where the occurring braking effect slows down the drive and the induced 

voltage drops below the critical value, in consequence, a limited increase in voltage may be 

tolerated. An estimation can be accomplished in this context by comparing the dominant 

kinetic energy of the drive to the storage capacity of the capacitor.  

 

For drives where the load keeps on rotating the drive even after the fault case occurs and the 

drive cannot or should not be stopped, this measure is not acceptable. It is then conceivable to 

separate the motor from the inverter through a switch. However, this measure is associated 

with relatively high costs. 

 

An alternative is to short circuit the motor by applying voltages to either all three bottom or 

upper transistors of the bridge. The short-circuit as a protective measure requests the inverter 

to be fully functional. If this is not guaranteed, problems occur: If the malfunction was caused 

by the failure of an inverter valve, a forced motor short-circuit could as well result in a bridge 

short-circuit which might destroy the inverter, irreversibly. A motor short-circuit can also not 

be considered, if the energy supply of the inverter control and therefore its operational 

functionality cannot be guaranteed. 

 

Therefore, the behavior of permanent magnet synchronous motors in case of short-circuits 

shall be investigated, in the following. 

 

 

 

 

7.2 Steady State Short-Circuit Currents 

 

If the motor is shorted symmetrically (i.e. with all three terminals at the same time) and after 

the decay of transients, the steady-state voltage equations  
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and the steady-state short-circuit currents as a function of the rotational frequency 
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result. Based on these equations, the steady-state short-circuit torque 
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results. For a sufficiently large rotational frequency 1s , the steady-state short circuit 

current can be estimated through the speed-independent value 0i . 



7 Protective Measures 113  

 

 

 

 
Fig. 7-1: Steady state short-circuit current vs. speed 

 

 

The motor short-circuit can therefore only be considered if the drive is capable of conducting 

the steady-state short circuit current, i.e. 

 

max)( iisk   

 

If the drive is operated at high speeds, 1s , the condition  

 

max0 ii    and  1k  

 

must hold in the limit case. For such motors, the motor short-circuit can be considered as a 

protective measure. On the other hand, motors with 1k  cannot or only to a very limited 

extent be flux weakened, anyways, making pulse block to a very suitable protective measure. 

 

7.3 Transient Short-Circuit Currents 

 

Apart from the steady-state short circuit currents, the transient behavior is investigated. The 

peaks of the transient short-circuit currents can significantly exceed the steady-state values. 

Starting point are the current differential equations for the shorted motor: 

 

 
sqssdssds iLiRiL   (7.6) 

 
psdssqssqs iLiRiL    (7.7) 
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A particular solution of this differential equation is already known and represented by the 

steady-state short-circuit currents of the previous section.  It is therefore sufficient to only 

consider the homogeneous differential equations 

 

 
qhsdhsdhs iLiRiL   (7.8) 

 
dhsqhsqhs iLiRiL   (7.9) 

 

and 
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1  (7.10) 

 
dhqh

s
qh iii 




1 , (7.11) 

 

respectively. The homogeneous solution leads to a with the frequency   oscillating and with 

the time constant s  decaying process: 

 

  titieti qhdh
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  titieti dhqh
t

qh
s 

sincos)( 00
/




 (7.13) 

 

 

In the d/q-plane, the solution is represented by a spiral trajectory around the origin. 

Superimposing the steady-state solution, the center of the spiral is shifted to the point 

),( sqksdk ii . The initial values of this homogeneous solution result from the current 

components at the beginning of the short-circuit and the steady-state short-circuit currents 

according to 

 

 
dksddh iii  00  (7.14) 

 
qksqqh iii  00  (7.15) 

 

 

For estimating the maximum peak value a high rotor speed is assumed, keeping the damping 

effect within a single period at a low level. If now, a short-circuit occurs out of a state of 

maximum current, 

 

 

max00 ,0 iii sqsd  , 

 
i.e. 
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max00 iiii qksqqh   (7.16) 

 
000 iiii dksddh   (7.17) 

 

 

a vector length for the homogeneous component of about 
2
0

2
max ii   results. When this 

vector is eventually oriented towards the negative d-direction, an estimation of the transient 

current peak can be obtained. 
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2
max0 1ˆ kkiiiiis  (7.18) 

 

Even larger peaks would result for initial values 00 sdi . As these values do not represent 

reasonable operating points, however, they remain ignored. 

 

The above peak power estimation is obtained asymptotically for very large speeds and may 

lead to very large peak currents. Depending on the actually used speed range and stator time 

constant, the values can be lower, though. 

 

Whether the drive will survive this transient overstepping of the current limit, cannot be 

answered in general, but must be examined in each particular case. On the one hand, this 

overstepping will decay in most cases after only a few milliseconds. On the other hand, the 

transistors are no longer pulsed after applying the short circuit, causing switching losses to 

completely disappear. In consequence, higher short-term conduction losses can possibly be 

tolerated. 

 

Another alternative would be, depending on the rotational frequency, to either apply the 

pulse-block or the motor short-circuit as protective measure. In the flux weakening range 

small transient current peaks would then occur, as they originate from more favorable initial 

values in the left half of the current limit circle. For this staggered measure, however, the 

availability of the rotational frequency is required. If a simultaneous goal is to protect oneself 

against sensor failures, then this approach is therefore questionable. 
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Fig. 7-2: Exemplary trajectories of short-circuit currents for  

5s , 7.0k and two different initial values 

 

 

 
Fig. 7-3: Maximum transient short-circuit current peak as a function of k and s  
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8 Induction Motor 

8.1 Modeling with Orthogonal Windings 

 

Modeling of the stator and rotor with orthogonal windings: 

 

 

 
 

 
 

Fig. 8-1: Simplified model of induction motor with squirrel cage rotor 

 

 / : stator-fixed coordinates 

 

 / : rotor-fixed coordinates (for the rotor coordinate system, the d/q notation is not used, 

since these terms are needed for another coordinate system later) 
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Faraday’s induction law for stator and rotor also considering ohmic resistances: 
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The superscript should make clear, in which coordinate system the vector is represented. For a 

random vector x it therefore follows, 
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As usual, the different representations can be transformed into each other via the rotational 

transformation, 
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For example, the stator flux can be represented in the rotor coordinate system: 
r
sψ  

 

So far, two-dimensional real-valued vectors were used for modeling the processes. For the 

induction motor, however, the complex notation has certain advantages. The two coordinates 

of a vector are then converted into a complex vector: 
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The rotational transformation is then very simply performed by multiplication with the 

exponential function: 
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For the transformation of the time derivatives, it follows:  
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Similarly,  
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The most important equations are once again summarized in Section 9. 
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In complex notation, the voltage equations are completely analogous to the vector form 
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If the differential equation for the rotor flux is transformed into the stator system, it follows 
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Similarly, the differential equation for the stator flux can be transformed into the rotor system: 

 

 r
ss

r
s

r

srs
r

s
iRuj    (8.11) 

 

Instead of writing down the equations in the stator or rotor coordinate system, it may be 

useful to use another random coordinate system K, which is rotated against the stator by an 

angle ks  and against the rotor by an angle rskskr   . The axes of the coordinate system 

K are denoted d and q. The actual meaning of these denotations remains to be seen, though.   

 

 
 

Fig. 8-2: In this coordinate system, the two flux differential equations can now be written as 
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In addition to the differential equations, the relations between the currents and fluxes are 

required. In principle, the induction motor can be regarded as a transformer. Due to symmetry 

reasons, we may assume that the orthogonal components do not influence each other and that 

the inductances are independent of the spatial direction. This leads to 

 

 
rmsss

iLiL   (8.14) 

 
rrsmr

iLiL   (8.15) 

 

sL : Stator-self inductance 

rL : Rotor-self inductance 

mL : Mutual inductance; due to principle reasons, the mutual inductance is the same in both 

equations  

 

In the above equations, the superscripts are omitted, because the equations are valid in every 

reference system. However, all complex vectors of an equation have to be presented in the 

very same reference system. 

 

 
 

Fig. 8-3: Coupling between stator and rotor windings 

 

 
Fig. 8-4: T-equivalent circuit of the transformer coupling 

 

 

 

Introduction of leakage inductances 
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and the leakage coefficients 
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It follows: 
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The portions  
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are the leakage fluxes, while 
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is the mutual flux. The sum of stator and rotor current 

 

 
rs iii   (8.23) 

 

is also called magnetizing current, as this current is responsible for the magnetization of the 

mutual inductance. 

 

 

 

 

 
Fig. 8-5: Vector diagram of currents and fluxes 

 

Solving the flux equations for the currents leads to 
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Inserting the leakage coefficients, it follows 
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The above developed equations result in the following equivalent circuit diagrams. Please 

note, that due to the complex notation, the equivalent circuits are applicable for two spatial 

axes, respectively. The equivalent circuits describe the steady-state as well as the dynamic 

behavior in general. Due to the arrangement of the mutual and leakage inductances, we refer 

to this group of circuit diagrams as a T-equivalent circuit diagrams. 

 

 
Fig. 8-6: Equivalent circuit diagram of the induction motor in the stator coordinate system 

 

 

 

sLsR

s
su

s

rrsj 

s
si

 
 

rL rR

mL

s
ri

s

r


s

s


s
i



8 Induction Motor 123  

 

 

 

 
Fig. 8-7: Equivalent circuit diagram of the induction motor in the rotor coordinate system 

 

 

 
Fig. 8-8: Equivalent circuit diagram of the induction motor in random K coordinate system 
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8.2 Torque Generation 

 

The torque of an induction motor can again be identified from the power balance. Starting 

point are, for example, the voltage equations in rotor coordinates (any other reference system 

could be used as well):  
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In order to calculate the power terms, the equations are multiplied with the conjugated 

complex currents, respectively (see Section 8.6). 
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As all terms appearing in these equations are invariant with respect to the choice of the 

reference system, the superscript labeling of the reference system may be omitted: 
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The summation of the real parts in the equations and the identification of the individual terms 

leads to 
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with the supplied electrical power 
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the dissipated power (power loss) 
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and the alteration of the magnetic energy 
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Moreover, the integration provides the energy content as 
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Consequently, the mechanical power must be 
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Alternatively, 
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In consequence, the torque can be calculated via 
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This is the same torque equation as for the synchronous motor. It can be evaluated in different 

coordinate systems according to 

 

     ssssssss iipiipT 
2

3

2

3
 (8.36) 

 

 

This torque corresponds to the torque of the synchronous motor. Instead of once again 

evaluating the power balance, it would have been valid to directly use the torque equation of 

the synchronous motor, as only stator quantities occur in this equation. For the torque, it is 

irrelevant in this context how the torque generating magnetic fields are formed in the stator.  

 

Substituting  
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leads to a further representation of the torque equation: 
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Alternatively, it can be written component-wise in the random K coordinate system: 
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8.3 Flux-Oriented Coordinate System 

 

The above representations of the torque by means of the stator and rotor flux 
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give rise to the definition of a flux oriented coordinate system, similar to the one of the 

synchronous motor. Now, the alignment of the so far free K coordinate system is determined 

in a way that the d-axis is oriented along the direction of the flux. The q-component of the 

flux is zero, in consequence. As the torque can now be expressed by the stator flux as well as 

the rotor flux, this leads to two different variants depending on whether the d/q-axes are 

oriented along the direction of the stator or rotor flux: 

 

Stator flux orientation 

 

Is the d-axis choses as the direction of the stator flux (see Fig. 8-9 left figure), we refer to the 

stator flux orientation. In that case it is  
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and we get the torque 
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Rotor flux orientation 

 

We refer to the rotor flux orientation if the d-axis is aligned with the rotor flux, i.e.  
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Then, the torque results as 
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The current component sqi  can be interpreted as the torque generating current component, 

same as for the permanent magnet synchronous motor. The meaning of the component sdi  

will be elaborated later. It should be noted, however, that the d/q-components in the two 

torque representations  (8.42) and (8.44)  refer to different coordinate axes (see Fig. 8-9). In 

the following, only the rotor flux orientation shall be considered. The stator flux orientation 

will not be discussed. 
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Fig. 8-9: Flux-oriented reference frames  

 

8.4 Dynamic Modeling in Rotor Flux-Oriented Coordinates 

 

The dynamic equations in a random coordinate system were already developed: 
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Now the coordinate system K is aligned following the rotor flux orientation (8.43). The 

complex rotor flux vector has only a real part when representing it in its own rotor flux-

oriented reference frame: 
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Apart from the transition to the rotor flux system new state variables shall also be introduced. 

So far, the differential equations were stated with stator and rotor flux as state variables. 

However, with regard to the torque representation, the stator current and rotor flux shall now 

be used as state variables, instead. To do so, the rotor current and stator flux are being 

eliminated with the help of the equations 
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The equations originate from the inductance relations. 

 

Rotor circuit 

 

By substituting the rotor current in the rotor flux differential equation, it follows 
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 (8.50) 

 

The hereby occurring term 
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represents the rotor time constant. Thus, the differential equation takes the form 
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This equation subdivided into a real and an imaginary part, i.e. d- and q-component. It has to 

be noted that the rotor flux by definition has no q-component:  
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From the last equation, we can determine the unknown frequency
rr . This is the frequency 

of the rotor relatively to the d/q coordinate system. It is also known as rotor frequency of slip 

frequency. 
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While the torque generating component sqi  together with the rotor flux r  determine the slip 

frequency, the current component sdi  is responsible for forming the rotor flux. They are 

referred to as torque generating and flux forming or magnetizing current component. 
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Fig. 8-10: Block diagram for flux forming and torque generation 

(rotor side) 

 

 

 

 

 

 

Stator circuit 

 

Substituting the stator flux  
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in the right and left side of the stator flux differential equation results in 
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(8.57) 

 

 

whereas, 
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is used. Explicitly solving for the time derivative of the current leads to the current differential 

equation 
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The individual terms can be interpreted as follows: The first term on the right side originates 

from the apparent current variation, due to the rotation of the reference system. Through 

multiplication with the imaginary part, the two current components are exactly coupled cross-

wise, in consequence. The first term in brackets is the driving external voltage at the 

equivalent inductance sL . Alongside, a resistive voltage drop, also including the rotor 

resistance takes effect. Moreover, there are direct and rotational reactions from the rotor flux. 

 

Also a typical time constant, the leakage time constant can be identified. 
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It follows: 
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The hereby occurring angular frequency ks  corresponds to 
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Fig. 8-11: Block diagram of the stator circuit in rotor flux orientation 
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Current control approach 

 

The above block diagram serves as a basis for the design of a subordinate current control: The 

reactions from the rotor circuit on the dynamics of the stator current are regarded as a 

disturbances and can be compensated through a disturbance feed-forward control (“EMF 

feed-forward”) in the controller. Furthermore, the coupling of the current components by the 

angular frequency sr  can be compensated by an opposing decoupling measure. Both terms 

are summarized in the decoupling or feed-forward control portion 
0k

su . The total voltage can 

be written as follows: 
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Inserting this voltage in the above current differential equation, a simple decoupled equivalent 

stator circuit can be obtained: 
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Component-wise: 
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This is structure exactly corresponds to the one already known from the permanent magnet 

synchronous motor. The remaining control design is carried out, accordingly. 
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8.5 Transformation of Leakage Inductances 

 

Starting point: 
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The stator quantities, i.e. current and voltage but also the stator flux, shall not be altered, due 

to their reflections at the motor terminals. Based on the above equations, the rotor quantities 

are scaled with a constant factor c: 
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and again in the previous form 
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Written with the transformed variables, 
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Although, the stator inductance sL  itself is not changed by the transformation, its distribution 

into mutual and leakage inductance is affected, however. 
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The transformed leakage inductance of the rotor is 
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By choosing a suitable scaling factor, leakages of the resulting equivalent circuit can be 

shifted between the stator and rotor circuit. 

 

8.5.1 Model with Leakage Inductance Concentrated on Stator Side 

 

If the leakage inductance on the rotor side shall disappear, then 
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In this case, factor c is chosen as 
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Finally, the torque equation simplifies to 

 

  sr
ipT   Im

2

3
 (8.78) 

 

or 

 
sqripT  

2

3
 (8.79) 

 

in the rotor flux oriented coordinate system. Also, the stator current differential equation is 

simplified by this transformation to 
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Fig. 8-12: Equivalent circuit of induction motor with leakage concentrated on stator side 

 

 

Since many relations simplify through the transformation of the leakage inductance to the 

stator side, the rotor flux oriented control is usually based on this structure from the start. 

 

8.5.2 Model with Leakage Inductance Concentrated on Rotor Side 
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the scaling factor, 
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results. It follows for the transformed variables 
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The torque equation is given as 
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Fig. 8-13: Equivalent circuit of induction motor with leakage concentrated on rotor side 
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8.6 Consideration of Real Magnetization Behavior 

 

So far, the inductances in the model of the induction motor were assumed as constant. In fact, 

the iron in the motor may be saturated considerably during operation. This is owed to an 

economically and technically optimal motor design. Of course, it would be possible to reduce 

iron saturation by using more material, however, this measure would make the motor heavier 

and more expensive. Quite often, it is acceptable to consider only the saturation of the mutual 

inductance while assuming the leakage inductances as constant. Then, the mutual inductance 

or the mutual flux is dependent on magnetizing current i . 

 
Fig. 8-14: Saturation of the mutual inductance 

 

Altering the magnetization of a material is due to its hysteretic behavior associated with 

additional losses. In a first approximation, one can assume that these losses increase with the 

square of the flux magnitude and linearly with the frequency. In the circuit diagram, these 

additional hysteresis losses can be accounted for by inserting an equivalent resistance FeR  

parallel to the mutual inductance.  

 
Fig. 8-15: Equivalent circuit diagram considering the saturation of the mutual inductance  

as well as iron losses 
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8.7 Steady-State Operating Characteristics 

8.7.1 Voltage Equations and Vector Diagrams 

 

In steady state, all quantities in the flux-oriented reference system are settled. In particular, all 

current components, voltages and fluxes have the same angular velocity. Then, the angular 

frequency of rotor flux oriented system exactly corresponds to the frequency of current and 

voltage at the stator terminals. Therefore, in steady-state we can simply use the term stator 

frequency. 
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The frequency between the electrical phasors and the rotor is referred to as rotor frequency or 

slip frequency. 
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The rotational frequency (related to the electrical system) can now be expressed as 
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In steady state, the stationary rotor flux 
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arises. The stationary stator voltage follows the equation 
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Fig. 8-16: Phasor diagram for steady state operation 

(With appropriate scaling of current and flux phasors, the rotor flux can be  

represented as a projection of the stator current phasor on the d-axis) 

 

In steady state, we can express the torque relationship directly as the product of the current 

components: 
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The torque is directly proportional to the rectangular plane spanned by the current phasor in 

d/q-coordinates, provided the remaining parameters are assumed constant. 
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8.7.2 Steady-State Equivalent Circuit Diagram 

 

Starting point: stator and rotor voltage equations 
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Dividing the rotor voltage equation by the slip s leads to 
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These equations can now be interpreted in terms of the normal complex vectors for AC 

systems. The terms ms Lj , ssLj  , rsLj   are regarded as complex AC-impedances of the 

inductances. This leads to the following equivalent circuit, which in contrast to the previously 

presented equivalent circuit diagrams is only valid under steady state conditions. 

 
Fig. 8-17: Steady state equivalent circuit diagram of an induction motor 

 

In this equivalent circuit diagram, the stator leakage inductance can be transformed to the 

rotor side (Section 8.5.2): 
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Fig. 8-18: Steady state equivalent circuit diagram of an induction motor 

with leakage concentrated on rotor side. 

8.7.3 Torque at Constant Voltage and Frequency Supply 

 

In the uncontrolled operation mode, the induction motor can be connected to a three-phase 

system with constant amplitude and frequency. The torque estimation can be based on the 

equation 
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whereas the above steady state equivalent circuit diagram with rotor-sided leakage is made 

use of. The rotor current is determined from the rotor loop, while neglecting the stator 

resistance sR . 

 

 
s
s

rs
r

s
r u

Lj
s

R
i

 



1

 
(8.100) 

 

Then, the stator flux results to 
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It follows 
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(8.102) 

 

 

When using the RMS value of the stator voltage instead of the phasor amplitude, 
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then the equation results in 
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This is referred to as Kloss’s formula. With a constant stator frequency, the maximum torque 

is reached at a rotor frequency 
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also known as sweep or slip frequency. The corresponding torque at this frequency is called 

sweep torque and amounts to 
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By making use of the introduced sweep quantities, the torque equation can be expressed in the 

clear form 
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For small slips kss  , the torque behavior can be approximated with the linear function 
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Fig. 8-19: Torque as a function of the slip 
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8.7.4 Operation with Minimum Losses 

 

In steady state, the torque can be expressed by the product of the current components: 
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A desired torque can thus be achieved by various combinations of sqsd ii , . We want to 

investigate at this point, which one of these possible operating points causes the lowest ohmic 

losses. The ohmic stator and rotor losses are 
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With the help of the equation 
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the rotor currents can be expressed through rotor flux and stator currents. Component-wise 

this results in 
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In steady state, what shall be focused on in the following, the equation 

 

sdmr iL  (8.114) 

 

also holds, so that the d-component of rotor current is always zero: 
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The ohmic losses can then be solely expressed by the stator currents: 
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These losses are now to be minimized for a given torque T . Mathematically, this corresponds 

to an extreme value problem with two variables sqsd ii ,  and a constraint, which is solved by 

setting the partial derivatives of the Lagrangian function  
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Calculating the quotient of both equations eliminates the Lagrangian multiplier  , leading to 
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The operating points with minimum losses thus lie on the line through the origin in the 

sqsd ii /  plane. Motor and generator operation mode are distinguished by the sign. Now, the 

current components as a function of the given torque shall be determined. Using the last 

formula, sqi  can be eliminated in the torque formula: 
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Solving for sdi  results in 
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The optimal rotor flux can therefore be calculated via 
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The calculations were once again performed under the assumption of constant inductances, 

which is a useful approximation for small magnetizations. However, near the nominal 

operating point of the machine, the degree of saturation increases, making it necessary to 

modify the derived results, similar to section 8.7.5. 

 

As part of the rotor flux oriented control, only the above determined rotor flux would be used 

as reference for the flux control. In consequence, the flux controller would adjust the 

necessary magnetizing current sdi , while the torque control adjusts the suitable sqi . The 

above formulas for sdi  and sdi  must therefore not be implemented in the control. Instead, 

only the implementation of the formula for r  as a function of the nominal torque becomes 

necessary. 

 

When controlling the rotor flux according to this loss minimizing strategy, reduced torque 

dynamics must be taken into account. As flux changes always follow the relatively large rotor 

time constant, dynamic torque requirements cannot be realized that quickly. In case highly 

dynamic torque characteristics are required, a sufficiently large flux should be permanently 

maintained in the motor, also during idle mode and light load operation. 
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Fig. 8-20: Operating points with minimum losses 

 

 

8.7.5 Operating at Current Limits 

 

Constant torque curves in the current plane are hyperbolas. However, the inductances due to 

saturation of the magnetic material are dependent on the current. With assumed constant 

inductances the maximum torque would be set at a maximum possible current  
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Since the real constant torque curves due to the iron saturation noticeably deviate from the 

hyperbolic form, the maximum torque is usually achieved at a point at which the torque-

generating current sqi  is significantly larger than the magnetizing current sdi . 
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Fig. 8-21: Steady state characteristic of rotor flux over magnetizing current component  

for linear and saturating inductance 

 

 
 

Fig. 8-22: Constant torque curves for linear (left) and saturating inductance (right) 

incl. point of maximum torque at a given maximum current 
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Fig. 8-23: Comparison of maximum torque operating points 

for linear and saturating inductance 
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8.7.6 Operation at the Voltage Limit, Flux Weakening 

 

With a constant rotor flux, the motor voltage increases approximately proportional with the 

speed. Neglecting resistive voltage drops, the voltage magnitude in steady state results to 
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The inverter can only provide a maximum voltage, which is limited by the area of the 

hexagon (see Section 3). For a simple analysis, we assume a circular restriction.  
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At low speeds or frequencies, the inverter voltage is usually sufficient and the voltage limit is 

not reached. As the speed increases, the voltage limit is reached at some point. This point is 

referred to as the rated point of the drive. Greater speeds can be achieved by reducing 

(weakening) the rotor flux. This however reduces the available torque 
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unless the reduced flux r  can be compensated by an increased current sqi . This is, however, 

usually not possible or only possible to a limited extent, as the current itself is in turn limited 

by the current limit maxi . One can also represent the voltage limitation within the current 

plane. This results in a limiting ellipse, which becomes smaller with increasing stator 

frequency. The main axes of this ellipse is oriented in the di - and qi -direction with  

magnitudes of 
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Fig. 8-24: Operation at voltage and current limits 

 

 

Using the above diagram, three qualitatively different cases can be illustrated: 

 

1. The speed and the stator frequency are small and the available voltage is sufficiently 

large. In this case the voltage limit does not impose restrictions on how to set currents 

within the current limit circle. The maximum torque is achieved at the contact point of 

constant torque curves and current limit circle (point 1). The maximum achievable 

torque is independent of the frequency in this region. Setting the stator frequency and 

the rotational frequency equal in a first estimation, then the power increases 

proportionally with the frequency. The described region is referred to as voltage 

control range, or in accordance with the terms of the DC motor as the armature 

control range. 

 

2. At higher speeds or frequencies the voltage limit comes into effect. Valid phasors have 

to be located within both the current limit circle and the limiting voltage ellipse. The 

maximum torque is achieved at the intersection of the two limiting curves. The 

maximum available torque is reduced with increasing frequency, roughly by s/1 . As 

in this region, the flux-forming current component sdi  and the rotor flux r are 

reduced depending on the speed, this area is called flux weakening region. More 
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precisely, we refer to this region as the lower flux weakening region. The maximum 

achievable power is approximately constant in the lower flux weakening region.  

 

 

3. With further increase in frequency, the limiting voltage ellipses become so small that 

the current limit is of no importance any longer. The maximum torque is achieved at 

the contact point of voltage ellipses and constant torque curves. This region is called 

upper flux weakening region. The attainable torque is by 
2/1 s  and the maximum 

power by s/1 . 

 

 
Fig. 8-25: Approximate maximum torque and maximum power curves 

when operating at current and voltage limits 

 

 

The utilized flux weakening region during operation is often expressed as the ratio of the 

maximum speed to the rated speed. For example, we speak of a flux weakening region of 1:3. 

 

Depending on the field of application voltage control range and flux weakening region are 

designed differently: In case the load torque increases with the speed, which is typical for 

pumps and fans for example, operation in the flux weakening region is not reasonable, as the 

torque of the drive would be reduced. Such drives operate almost completely in the voltage 

control range, in consequence. 
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For many drives, it is important to utilize the installed power evenly within a preferably large 

speed range. This is a typical characteristic of traction drives (railways, road vehicles). Such 

drives are designed for a large lower flux weakening region of 1:3 to 1:5, for example. 

 

The upper flux weakening region, on the other hand, is not or only to a limited extent used in 

typical applications. The reason lies in the decreasing power as a function of the speed for 

which hardly any drive task with a suitable load characteristic can be found. 
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A vector-valued time function 
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whose components )(),( txtx   
represent real-valued functions can be transformed 

component-wise into the Fourier or Laplace domain: 
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with the Laplace or Fourier transformation 
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Instead of a component-wise transformation, we can combine the two real-valued time 

functions )(),( txtx   to a complex-valued time function  
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and apply the Laplace or Fourier transformation to this complex-valued function: 
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Obviously, the following equation holds: 
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This transformed function )(sX  is complex-valued as well (such as the real-valued time 

functions). However, it is not a complex conjugate to itself, as it is common for transformed 

real-valued time functions. In general, the following equations do not apply: 
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For the Fourier transform in particular, it is not sufficient to only consider the positive 

frequencies. Instead, the frequency range for all positive and negative frequencies must be 

taken into account. 

 

The inverse transformations are clearly defined: 
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The original components can be recovered according to 
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The well-known rules of the Laplace and Fourier transform can be applied in the same way 

for the transformation of complex-valued time functions. The modulation rule shall be 

considered in more detail, however: 
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In consequence, a transformation into a reference frame rotating with speed 0  leads to a 

frequency shift of the spectrum by exactly 0  (see above figure). In particular, the frequency 

component at 0   in the spectrum of the stator-fixed quantities now appears as a DC-

quantity at 0  in the spectrum of the rotating reference system. 

 

That way, the frequencies in the spectrum can not only be interpreted as oscillations with 

positive or negative frequencies: A positive frequency component corresponds to a rotating 

vector in the mathematically positive sense, a negative frequency corresponds to a vector 

rotating in the opposite direction. 

 

When referring to a frequency 0 , the frequency component at the point 0   is referred 

to as the positive sequence component, the one at 0   is referred to as the negative 

sequence component, accordingly. 
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Abtastung sampling 

Admittanz admittance 

Anker armature 

Ankerrückwirkung armature reaction 

Anlaufdrehmoment stall torque 

Anschluss terminal 

Antrieb drive 

Arbeit work 

Asynchronmotor induction motor, asynchronous 

motor 

Bandbreite bandwidth 

Blindleistung reactive power 

Bodediagramm Bode plot 

Drehmoment torque 

Drehstrommotor three-phase motor 

Drehung rotation 

Drehzahl rotational speed, speed 

Dreieckschaltung delta connection 

Drossel inductor 

Durchflutung magnetomotive force (MMF) 

Effektivwert root mean square (RMS) value  

elektrische Feldstärke electric field strength 

elektromotorische Kraft electromotive force (EMF) 

Elektrotechnik electrical engineering 

Energie energy 

Entkopplung decoupling controller 

Erregung excitation 

Feld field 

Flussschwächung flux weakening 

Formfaktor waveform factor 

fremderregt separately excited 

Frequenz frequency 

Getriebe gear 

Gleichrichter rectifier 

Gleichspannung direct voltage, DC voltage 

Gleichstrom direct current, DC 

Gleichstrommotor DC motor 

Hauptinduktivität mutual inductance 

Hochsetzsteller boost converter 

Impedanz impedance 

Induktivität inductance 

induzierte Spannung induced voltage 

Istwert actual value 

Käfigläufer squirrel cage rotor 

Kapazität capacity 



11 German-English Glossary 159  

 

 

 

Knoten node 

Kondensator capacitor 

Kapazität capacity 

Kraft force 

Kurzschluss short circuit 

Kurzschlussstrom short-circuit current 

Ladung charge 

Last load 

Leerlaufspannung open-circuit voltage, off-load voltage 

Leistung power 

Leistungsfaktor power factor 

Leitwert conductance, conductivity 

Losbrechdrehmoment stall torque 

Magnet magnet 

magnetische Feldstärke magnetic force 

magnetische Flussdichte magnetic flux density 

magnetische Spannung, Durchflutung magnetomotive force (MMF) 

magnetischer Fluss magnetic flux 

Magnetisierungsstrom magnetizing current 

Masche mesh 

Mittelwert mean, average value 

Mittelwertmodellierung state-space averaging 

Nennwert rated value, rating 

Netzwerk network 

Ortskurve frequency response locus 

Parallelschaltung parallel connection 

Permanentmagnet-Synchronmotor permanent magnet synchronous 

motor 

Polpaar pole pair 

Polteilung pole pitch 

Pulsweitenmodulation pulse width modulation (PWM) 

Quelle source 

Regelfehler control error 

Regelkreis closed-loop control 

Regler controller 

Reihenschaltung series connection 

Resonanzfrequenz resonant frequency 

Rotor, Läufer rotor 

Schalter switch 

Schaltkreis circuit 

Scheinleistung apparent power 

Scheitelfaktor crest factor 

Schlupf slip 

Sehnung fractional pitch winding 

Sollwert set point, reference value 

Spannung voltage 

Spannungsquelle voltage source 

Spule coil 

Stator, Ständer stator 
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Stellbefehl firing command 

Stellgröße actuating variable 

Sternschaltung star connection 

Streuinduktivität leakage inductance 

Strom current 

Stromquelle current source 

Stromschwankung current ripple 

Tiefsetzsteller buck converter 

Totzeit dead time 

Transformator transformer 

Übertragungsfunktion transfer function 

Vektormodulation vector modulatoin 

Verlustleistung losses 

Vorsteuerung feedforward control 

Wechselrichter inverter 

Wechselspannung alternating voltage, AC voltage 

Wechselsperrzeit interlocking time 

Wechselstrom alternating current, AC 

Welle shaft 

Wicklung winding 

Wicklungsfaktor winding factor 

Widerstand resistance, resistor 

Windung turn 

Winkelgeschwindigkeit angular velocity 

Wirkleistung active power 

Wirkungsgrad efficiency 

Zeitkonstante time constant 
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