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COMPARISON OF METHODS FOR STATE ESTIMATION 
AND ON-LINE IDENTIFICATION IN SPEED AND POSITION CONTROL LOOPS

S. Beineke, F. Schütte, H. Grotstollen 

University of Paderborn, Germany 

Abstract. For high performance speed and position control of drives featuring elasticity observation of inner states 
becomes necessary, if only motor speed and current can be measured. In the presence of time-varying inertia or friction 
on-line identification of these parameters is also needed. In this paper different approaches for these tasks are compared 
which base on extended Kalman filters, extended Luenberger observers, basis function networks and their combina-
tions. 

Keywords. Speed control, time-varying inertia, on-line identification, state estimation, observers, Kalman-filters, basis 
function networks 

1 INTRODUCTION 

The speed and position control loops include the
dynamics of the mechanical transfer elements and
the working machine to be controlled, both of which
can feature time-varying inertia or some kind of
mechanical imperfectness such as elasticity, backlash
and friction. For high dynamic speed control of elec-
trical drives these mechanical imperfections have to
be considered and the controller has to be adapted to
the time-varying inertia. For many industrial applica-
tions the mechanic can be modelled as one-mass sys-
tem or, in the presence of elasticity, as two-mass
system, while neglecting backlash. For the latter sys-
tem high dynamic control can be attained by active
vibration damping. Both, the model of the two-mass
system and one basic control scheme,  proposed e.g.
in [1],[2], are given in the signal flow chart of Fig.1.

If the load inertia is time-varying, adaptation of the controller gains
becomes necessary implying on-line identification of the mechanical
parameter .
In the presence of deterministic load characteristics, e.g. friction, the
observer can be extended, e.g. by a basis function network, to identify
this characteristic. With this additional measure errors of the observers
states can be reduced and the identification result can be used to
improve control by feedforward compensation [3]. 
Therefore this paper deals with the following tasks for identification
and observation in high dynamic speed control:

• Observation of load torque and, in the presence of elasticity, load
speed and shaft torque 

• On-line identification of time-varying mechanical inertia
• On-line identification of friction as an example for deterministic

load characteristics 

For these tasks a number of schemes from different engineering disci-
plines, e.g. signalprocessing, system theory or neural computing,  seem
to be suitable. Kalman filters, Luenberger observers, as well as their
nonlinear („extended“) versions, and basis function networks are
selected in this paper for comparative investigations. Results of these
selected methods are presented for applications and conclusions are

JL

derived. 

All concepts are implemented on a DSP-board with TMS320C40 and
measurements are carried out on suitable mechanical laboratory set-ups
[4]. The main data of the synchronous motor are ,

, time constant of current control .
The sampling time of the speed control is ; values of
mechanical parameters can be taken from the results. 

2 GENERAL DISCUSSION OF STATE OBSERVATION 
AND IDENTIFICATION

First observation and identification will be discussed on a general base
to give some definitions and to show relationships between the con-
cepts from different disciplines, mentioned in the introduction and
applied in the following chapters. 
From the view of system theory or signal processing technical systems
can be described by the differential equations 

, (1)

where the states are denoted as , measurable inputs as  and measur-
able outputs as . q and r are noise sources and their meanings are out-
lined below. The technical system is modelled by 

, (2)

where the estimated values are indicated by the hat. System and model
are depicted in the signal flow chart of Fig. 2. The mathematical states

 can represent physical states  of the system (e.g. shaft torque, load
torque, load speed) or parameters  of the system (e.g. load inertia).
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The parameters of the system are motor side inertia , load side iner-
tia , as well as the stiffness  and damping constant  of the
shaft. The shaft torque  and/or the difference speed between motor
and load, , are fed back for active vibration damping.
Delay times are given by additional filters ( ), discrete realiza-
tion ( ) and bandwidth of current control loop ( ).  is the pro-
portional factor between motor current  and torque .

Because often only current and speed of the motor are available, for
elastic systems an observer is used to estimate the non measurable
states, such as load speed, shaft torsion and load torque. 
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Fig. 1: Two-mass system and basic control scheme for active vibra-
tion damping



They can also be weights of a neural network or other adaptive
schemes, where each weight  can be given a certain physical mean-
ing, depending on the network´s structure. This yields

 and therefore observation of states, identification of
parameters and tuning the weights of a neural network can be consid-
ered as similar tasks. The prediction error e, which is the difference
between output signals of the technical system and the model, is
caused by two disturbances, regarded as noise sources. Model errors
occuring from inaccurate modelling or simplifications of the system
equation  are considered by the system noise q and errors of
the measurement equation , caused e. g. by the measurement
facilities, are considered by the measurement noise r. The prediction
error e is weighted by a matrix K and fed back to adapt the states of the
model. Thus the update results as: 

(3)

As mentioned above, the mathematical model, given by Eq. (1) to Eq.
(3), is suitable to describe the behaviour of many adaptive schemes,
such as Kalman filters, adaptive filters, Luenberger observers, basis
function networks, adaptive look-up tables, feedforward and recurrent
neural networks and is therefore called the general network in the fol-
lowing. Depending on the application  is called the state or the
weight vector. In the following states and weights are used equiva-
lently. 

To classify different methods some definitions for special variants on
this general network are given first: 
The network is called linear, if the system´s dynamics can be repre-
sented as  and  . 
It is called linear in the weights, if a representation is possible as

 and . Note, that
the weights  appear linear at the system´s output and therefore the
well known linear optimization theory can still be applied although a
nonlinear transformation of the network´s inputs is carried out. 
The next important distinction is: The system model is called feedfor-
ward network or statical network, if , otherwise it is
called recurrent network or dynamic network. 
Thus, the general model of Fig. 2 is a nonlinear, dynamic network. 

Further distinctions are given by determination of matrix K. An on-
line, recursive optimization of K regarding the assumptions about sys-
tem noise q and measurement noise r is carried out by Kalman filters
for dynamic networks, leading to different recursive least squares algo-
rithms for statical networks. An off-line calculation of K, e.g. by pole
placement for linear systems, is carried out to design Luenberger
observers for dynamic networks, or similar to find learning rates for
least mean square algorithms, when the network is statical. 
Backpropagation or other nonlinear techniques are not subject of this
paper because convergence is very critical and a systematic analysis is
still missing. Therefore they seem not to be suitable for on-line tasks,
yet.

Generally parameter identification requires sufficient system excita-
tion, known as persistent excitation, because otherwise correlation
between measurement data will be high and the estimation will be very

slow, or even not consistent. Therefore additional measures become
necessary. 

3 PRACTICAL APPLICATIONS: ONE-MASS SYSTEMS 

A mechanical system can be regarded as stiff, if for the product of its
eigenfrequency  and the sum of the delay times , given by torque
control loop, filtering and digital implementation, the relation

 holds [1]. In this case, elasticity can be almost neglected
for high performance control and the model can be reduced to an one-
mass system. The one-mass system is described by one of the follow-
ing, equivalent differential equations

  (product form), (4)

 (sum form), (5)

where load and motor side inertias are combined to the sum of inertia
 and load and motor speeds are assumed to be identical,

. For one-mass systems the time-varying inertia 
and load torque  have to be estimated on-line. For systems contain-
ing friction it will be sufficient in most applications to model  friction
torque as a statical function of speed, , although more
advanced friction models, e.g. nonlinear state space representations
[3], are available. The identified function can then be used to improve
control. 
Estimation of inertia and load torque (or friction) can be performed by
different networks, which can be either statical or dynamic, and which
can either be based on the product form Eq. (4) or the sum form Eq.
(5). 

3.1 Basis function network to estimate friction characteristics 

The statical friction characteristic  can be learned by a
basis function network with speed  as input, , and estimated
friction  as output, . The input/output relation is given by a
weighted sum of the components of the transformed input vector

, see Fig. 3:

(6)

Note, that usually the output of the network should be normalized, 

, (7)

to obtain a smooth function approximation. Throughout this paper only
basis functions with triangular shape are applied, so that the relation

 is valid. The basis functions can be derived from
the identification results, given in Fig. 6(c) and Fig. 10(c).

An error signal, which is the difference between the output of the net-
work and a measurable value, , is fed back for adjust-
ing the weights of the basis function networks. In the case that  and

 are exactly known and measurement works ideal the reference
value  can be directly derived from Eq. (4) or Eq. (5). Basis func-
tion networks are statical networks, , with the weights
being equivalent to the states of the network, , and linear in
weights, . Thus, many linear optimization
methods are applicable. Here adaptation is performed by least mean
squares method (LMS), in the neural network literature often refer-
enced as Delta rule. The update is described with the time-continuous
learning rate  or the time-discrete learning rate  by: 

(8)

Feedforward and training of the network, given by Eq. (6) and Eq. (8),
can be represented by the signal flow chart of Fig. 3. Hence, the net-
work behaves like a set of integrators coupled by the basis functions. 

Learning is stable as long as the discrete learning rate is chosen
between , while a smaller learning rate allows bet-
ter filtering. Shape and number of basis functions are selected using
a-priori knowledge. Scaling has great influence on the condition of
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Fig. 2: Signal flow chart of system and general network 
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ŷ u( ) Φ ω( )

Φi ω( )∑
---------------------- ŵ⋅=
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h ŵ u,( ) ΦT u( ) ŵ⋅=
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autocorrelationmatrix, and thus on the adaptation results, see e.g. [9]. 

Estimation of the friction characteristic with a basis function network
can be seen as a special case of the more involved task described in
3.2, where inertia is estimated simultaneously. Thus, no additional
results are presented here. 

3.2 Estimation of time-varying inertia and friction characteristic 
with basis function network 

For estimation of time-varying inertia and friction characteristic Eq.
(4) is discretized with Euler´s-rule, assuming small sampling times

: 

(9)

This model is represented by the statical network, shown in Fig. 4,
which is still linear in its weights. This is the main difference to an
approach published in [7], where a highly nonlinear neural network
(multi layer perceptron) was used. 

The LMS algorithm is used to adapt the weights:

, 

with (10)

In order to yield a similar fast convergence for weights  and  the
condition of the optimization problem, which is equivalent to the con-
dition of the autocorrelation matrix, has to be good. This can be
obtained by either scaling the basis functions or chosing different
learning rates. Both measures lead to similar results. Given a desired
convergence speed the learning rates can be derived analytically using
a stochastic approach [9]. Learning is stable as long as the relation

 holds. 

Usually the learnig rates are set to small values to filter noise. Here, the
measured data of  are highly noisy. Optimization of the LMS learn-
ing rule is performed by using a training data storage in which the last
Z relevant measurement data vectors are first stored and are then taken
randomly for the update to avoid strong correlation between subse-
quently following training data. A distance measure is introduced to
distinguish wether a new measurement is considered as relevant and is
recorded in the data storage. In this way the training data storage is
only updated when the system is excited sufficiently, which is a neces-

sary condition for closed loop operation. In the presence of strong cor-
relation the weights of the network converge very slowly. The
influence of the training data storage is principally demonstrated in
Fig. 5, where the on-line adaptation of two weights  of one net-
work is shown, which is trained without (a) and with (b) a data storage
using the same training data.

When implemented on a fast signal processor or a parallel hardware
not only the actual measured data but also some more z data from the
data storage can be used for adaptation during one sampling interval,
which reduces the learning time by a factor of z in the mean. 

Both measures (data storage, more than one update per data sample)
yield a fast on-line adaptation as shown in Fig. 6. The reference speed
is changing sinusoidally, with ,
because sinusoidal speed references have been found to be well suited
to identify friction characteristics. The results are recorded in a closed
speed control loop with PI controller. Parameters used for learning are
also given in Fig. 6. All weights are initialized with zero at .
Learning rates  are adapted after  yielding a fast adaptation
at start of identification and good filtering afterwards. The inertia is
sufficiently determined after , see Fig. 6(a). Identification of
inertia is necessary before friction can be calculated correctly due to
the modelling approach, see Eq. (9), and after one more oscillation of
reference speed the friction characteristic is determined in the whole
speed interval under consideration, as shown in Fig. 6(c). 

3.3 Estimation of friction characteristic with Luenberger observer 
extended by basis function network

Integration of a general regression neural network (GRNN), which is a
special kind of basis function network, in a Luenberger observer,
including a stability proof using Lyapunov theory, has been already
published in [5].  This approach was also applied to two-mass systems,
when measurement of the load speed is feasible [6]. 

In 4.2 it will be shown how learning rates for basis function networks,
which are integrated in an observer, can be simply derived using linear-
ization methods. The basic linear Luenberger observer for the one-
mass system leads to a linear dynamic network whose structure is
depicted in Fig. 7. The Luenberger feedback gains  can

Fig. 3: Signal flow chart of basis function network 
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be calculated using pole placement or another linear design technique.
Note, that estimation of the load torque is performed by a simple inte-
grator with the prediction error e, weighted by the feedback gain , as
input. 

The input of the basis function network is the measurable speed
, output is  and the error signal is given by .

The task is now to find a learning rate , so that the behaviour of the
whole observer with the integrated basis function network with regard
to model errors is similar to that of the linear Luenberger observer.
How this learning rate can be derived, is outlined for the two-mass sys-
tem in 4.2., which represents a more involved task. No further results
are shown here, because identification is not as critical as for the two-
mass system. 

3.4 Estimation of time-varying inertia and load torque with 
extended Kalman filter (EKF)

The system is described by Eq. (11) leading to a dynamic, nonlinear
network with input  and output  and three weights (or
states) corresponding to speed , load torque  and, in order to
reduce linearization error, the inverse of inertia .

(11)

The EKF [10] has to be applied to the nonlinear model which is based
on a linearization of the actual estimation of the weights. The predic-
tion step is calculated by an integration method and the update or cor-
rection step has to be performed in a discrete way, if the algorithm is
implemented on a digital processor. 

The system noises q and r can be directly taken into account for the fil-
ter design by chosing the noise parameters of the covariance matrices

 and . Noise parameter  directly determines the dynamics of
the parameter estimation of  and the measurement noise  can be cal-
culated from the resolution of the incremental encoder used. For a
more detailed description refer to [8].

Identification results are based on a closed loop control with an adap-
tive PI-speed-controller and are depicted in Fig. 8. A method for „rec-
ognition of sufficient excitation“ is implemented  to ensure a sufficient
accuracy of the estimation. Therefore the signal dy is derived from the
drive torque  and is combined with the reference velocity to trig-
ger the parameter estimation, see Fig. 8(c). Fig. 8 shows the step
response of the controlled system and the identification results of load
torque  and inertia , starting with an unknown . 

Comparison of results and conclusions for one-mass systems 

For identification of inertia and observation of load torque in one-mass
systems statical or dynamic networks can be applied. 

If inertia is known, the networks used to model the system remain lin-
ear or linear in weights and estimation of load torque or load character-
istics, such as friction, is not critical. Estimation of load torque is
always stationary exact in dynamic networks because an inaccurate
estimation of load torque would lead to an increasing output error,
which is not the case for statical networks.

 

If inertia has to be estimated on-line, identification can base on two dif-
ferent models (product oder sum form). Using the sum form and a stat-
ical network leads to a basis function network, which is linear in
weights although a nonlinear characteristic is identified simultane-
ously. The sum form features the disadvantage that all weights have to
be adapted when the inertia is changing. Thus  the product form should
be preferred, if inertia varies instaneously. In this case additional, non-
linear adaptation rules have to be applied to ensure stability and con-
vergence. 

For every identification method supervision of persistent excitation is
required. For statical networks this tasks is done by introducing a data
storage, for the Kalman filter estimation of inertia is only active if ref-
erence speed signal and motor torque change suitable. Our experiences
have shown that Kalman filters can perform well also with very small
excitation if the noise parameters have been chosen appropriately. 

Basis function networks can be well analyzed and are therefore well
suited to learn characteristics on-line. During design one has to take
care for good condition  of autocorrelation matrix which can be
ensured using analytical methods but often also "try and error" immid-
iately leads to success. To avoid correlation of the input data modified
training (e.g. using data storage) is recommended.  It is further possible
to integrate basis function networks into dynamic networks, which
have been designed as Luenberger observers or Kalman filters. 

4 PRACTICAL APPLICATIONS: TWO-MASS SYSTEMS

For two-mass systems identification of time-varying inertia or deter-
ministic load characteristic is required in combination with observation
of non measurable states. Thus, only dynamic (recurrent) networks are
suitable. Here Luenberger observers and extended Kalman filters are
considered, which become nonlinear for the tasks described in 4.2. and
4.3. 

4.1 Estimation of load torque with Luenberger observers

For this task disturbance observers are applicable, which can be repre-
sented by a linear dynamic network as shown in Fig. 9. Similar to 3.3,
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the coefficients of the correction matrix  can be
calculated by an appropriate linear design technique. Pole placement is
chosen here, yielding a Luenberger observer, which can be regarded as
state-of-the-art. Structure of observer and feedback path are shown in
Fig. 9. Note, that the gain  is responsible for weighting the output
error of the observer (network) in order to correct the estimated value
of the load torque , leading to the time discrete update: 

, 

with  (12)

4.2 Estimation of friction characteristic with Luenberger observer 
extended by basis function network 

To estimate the friction characteristic of a mechanical load, the integra-
tor whose  output represents  the load torque and which is drawn with
grey background in Fig. 9, is replaced by a basis function network.
Referring to the structure depicted in Fig. 3, the input of the network is
the estimated load speed , the output is the estimated the load
torque  and the error signal is derived from measured
and estimated motor speed, which is  for
discrete implementation. Although the approach is very similar to the
one used for the one-mass system, the nonlinearity of the network is
increased by the fact that the input of the network is now an inner state
of the observer, instead of being a measurable value. Therefore learn-
ing becomes now a more involved task. 

Nevertheless a learning rule for this network can be derived, as shown
in [2] and briefed here. 
Considering the discrete implementation the input/output relation (pre-
diction) and the update at step k become 

(13)

. (14)

Assuming that speed is constant (steady state) or changes only slowly,
the following approximations hold: 

 and (15)

 (16)

The output of the network during one sampling intervall is only
changed by the weighted output error , so that the predic-
tion at step k+1 becomes 

. (17)

Comparing the update term of Eq. (17) with the update of the common
Luenberger observer given by Eq. (12), the whole observer shows the
desired behaviour when the learning rate  is calculated as 

. (18)

Usually networks are constructed that the expression of Eq. (18) for
determing  is nearly constant and that a constant learning rate results.
With Eq. (18) an analytic equation is given for calculating a learning
rate from a Luenberger gain , derived by a linear design. 

By means of such an extended observer identification of friction char-
acteristics becomes feasible. Load torque estimations of the linear
observer and the observer extended by basis function network are com-
pared in Fig. 10(a),(b) where the speed controller is given a sinusoidal
reference signal. An additional load torque is applied as indicated. The
extended observer performs better if the load change is deterministic.
In this case load torque is a function of speed, the load characteristic is
identified yielding the friction characteristic shown in Fig. 10(c) as
result. After identification of friction the observer can follow the step
like changes at zero speed nearly without delay. With the usual linear
observer an identification of load characteristic is not feasible. It per-
forms better at stochastic load changes because the load model, a sin-
gle integrator, fits better. 
It is important to note that identification of friction characteristic does
not work with every reference signal. E.g. step like references are not
well suited, because the assumptions made in Eq. (15) are not valid. At
steady state (constant speed) the extended observer works still stable. 

Comparison of results and conclusions for extended observer

Estimation of friction characteristic is a more involved task for two-
mass systems than for one-mass systems. If only motor speed can be
measured the system model becomes a nonlinear, dynamic network.
For stochastic variations a simple integrator should be selected as dis-
turbance model, because it is obviously easier to adjust one weight
than a network. But especially when the load torque changes quickly
and deterministically, as in the case of Coulomb friction, the perform-
ance of the observer can be increased by use of a more sophisticated
disturbance model. Application of this approach is recommended for
off-line identification of load characteristics in closed loop control if
suitable references (e.g. sinus) can be applied. On-line identification
makes sense if load torque changes can be expressed by a time-varying
characteristic and the application demands references that makes iden-
tification feasible. 

4.3 Estimation of time-varying parameters with extended Kalman 
filter (EKF) 

To estimate the non measurable states and time-varying parameters,
which can be load inertia and stiffness for two-mass systems, the EKF
is used instead of the common Luenberger observer. The approach is
similar to the one used for the one-mass system, but a more compli-
cated network, which is dynamic and nonlinear, has to be used. The
vector of physical states  is augmented with
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Fig. 9: Structure of Luenberger observer for two-mass system

u ω̂L=
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the parameter vector  yielding the weight vector.
For a more detailed description refer to [8]. Here only some results are
shown in Fig.11 to demonstrate the validity of the approach. 

Conclusions of Kalman filter results 

The advantage of the Kalman filter is that time-varying parameters can
be regarded as system noise and can be taken into account for the
design. Therefore Kalman filters can be more powerful in principal for
parameter identification than Luenberger observers. Especially they
seem to be well suited when physical parameters and states have to be
estimated simultaneously, which requires an adaptation of feedback
gain K. Experiences have shown that identification with Kalman filters
performs also with small excitation, especially when the noise parame-
ters are chosen well. The disadvantage is the great computation effort
which results from the on-line adaptation of the correction gain K.
Especially, when many weights have to be adjusted at once, as e.g. for
basis function networks, Kalman filters can not be applied efficiently.
In the case of state observation, if the systems model is accurate and
linear, Luenberger observers can lead to same results, when appropri-
ately designed. In the case of nonlinearities, which are always present
when parameters and states are estimated, adaptation rules for K have
to be introduced for observers, which can not be deduced easily.
Kalman filters adapt K automatically and behave more robust, which is
also true in the case of noise occuring from modelling errors or meas-
urement. 

5. SUMMARY 

For comparative studies of different approaches (observers, filters,
other (e.g. neural networks) an unified description is advantageous.
Thus, a nonlinear, dynamic network has been introduced. If  only
parameters have to be identified and no observation of inner states is
needed, use of statical networks is feasible, as it has been shown for the
one-mass system. If observation and parameter estimation is carried
out simultaneously, as for two-mass systems, only dynamic networks
can be applied. As expected, no approach can be declared as "the best
for every application". Thus, our experiences have been summarized as
rule-like short conclusions after presenting the results that can be taken
as guidelines when selecting an appropriate algorithm for an own solu-
tion. 
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Fig. 11: Results of estimation with extended Kalman filter for a two-
mass system, showing reference and real value for load speed
(a) and motor speed (b), motor torque (c), signal to trigger
parameter estimation (d), estimation of shaft torque (e), load
torque (f), stiffness constant (g) and load side inertia (h). 
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