Research Topics

Mechatronic Systems, Electrical Drives and Electric Vehicles
- Control, modeling and optimization of electrical drives, e.g.
 - Interior permanent magnet synchronous motors (IPMSM)
 - Switched reluctance drives
 - FPGA based control
- Self optimizing systems (Collaborative Research Center 614)
 - Optimal Energy management for (hybrid) vehicles and hybrid energy storage
- Electric vehicles
- RailCab

Power Electronics
- Switched-mode power supplies
- High efficiency topologies
- Resonant converters
- Digital control
Staff

Head of Department
Prof. Dr.-Ing. Joachim Böcker
- Full professor at Paderborn University since 2003
- Deputy vice dean of the Institute of Electrical Engineering and Information Technology, Paderborn University
- Executive board at Institute for Industrial Mathematics
- Share holder of the Rail Cab Development GmbH
- Senior member of the IEEE, member of VDE

Scientific staff
- More than 20 research assistants and graduate students

Technical staff
- Support for various test and measurement setups in the laboratories

Laboratory

Laboratory (450 m²)
- Conventional test benches for power electronics and drives
- Special test facilities for electrical drives, particularly automotive (S_{\text{max}} > 500 \text{kVA})
- Air-conditioned cabin, water cooling/heating
- Wide range of motor types
- dSPACE prototyping systems
- Modern analogue and digital measuring instruments

NBP Test Track
- 530 m, 1:2.5 scale
- Linear motor, both active and passive stator
IPMSM Modeling & Control

IPMSM: Preferred Motor in Automotive Traction Applications
- High efficiency
- High power and torque densities

Research Topics
- PMSM / IPMSM Modeling
 - Electrical (Saturation, iron losses)
 - Thermal (Observer, LPTN)
- Efficiency Optimization
 - Operating point selection
 - Optimized pulse patterns
- Control
 - FOC / DTC
 - Model predictive (MPC)
 - FPGA-based
Switched Reluctance Drives

Robust and Simple Mechanical Structure
- Concentrated windings only on one part (stator vs. rotor)
- Rotor is thermally unsusceptible and shock-resistant
- Simple Converter structure
 - One asymmetric half-bridge per phase
 - Multiphase operation recommended

Complex control
- Discrete control of each phase
- Inherent torque ripple → Noise generation
- High THD could interfere with other systems
- Efficiency and force density similar to ASM

Magnetic Bearing with Integrated Drive

Design and control of a magnetically borne agitator for hermetic applications
- Passive radial bearing using permanent magnet rings
- Permanent Magnet Synchronous Motor integrated into the rotor outlines
- Active magnetic bearing in axial direction

Benefits
- No Fluid pollution by ball bearing grease and abrasion
- No external drive needed
- No maintenance of wear parts
- Smaller outline
Design Environment E-Mobil

Simulation Supported Design of Electrical Vehicles

- Assistance with the developing procedures of electrical vehicles
- Optimization of the development process
 - Efficiency and savings potential
 - Model and virtual control unit tests
- Provision of essential design tools for standardized platforms

Windpower

Employment of a PMSM with integrated magnets instead of a doubly-fed ASM

- No energy transfer into rotor via collector rings (low maintenance)
- No need to synchronize with the grid due to existing DC link
- Variable speed operation to increase efficiency
- Gearless direct drive

Development objectives

- Control structure for a permanent magnet synchronous generator with integrated magnets
- Reduction of switching losses in the converter by optimized driver strategies for the IGBT stack
- Routines for failures (fault ride through, blackout, …)
Energy Management for Hybrid Energy Storage

Efficient Storage for Electrical Energy: Hybrid Energy Storage System

- Combination of complementary storage technologies
 - Batteries (NiMH, Li-ion): Long term storage
 - Double layer capacitors (DLC): Short term storage

- Intelligent self-optimization operating strategies for energy management

- Variable relevance of objectives
 - Losses, efficiency
 - Power reserve
 - Life span

RailCab

Novel Modular Railway System

- Small autonomous vehicles (shuttles)
 - Only direct connections without need to change trains
 - No distinction between local and long-distance traffic

Research Topics

- Linear induction motor
 - Doubly-fed motor for contactless energy transmission
 - Alternatively operation with passive reaction rail (lower track costs)

- Hybrid energy storage system
 - Efficient buffer of energy and power in both batteries and double layer capacitors
FPGA-Based Motor Control

Advantages of Field Programmable Gate Arrays (FPGA)

- Flexible, fast and parallel processing
- Parallel execution of e.g. controller and observer
- Fast response with hysteresis-controllers

Research Topics

- FPGA-based quasi-continuous PWM controls
 - Better dynamics compared to regular sampled control without increasing the switching frequency
- Analog to digital conversion using $\Delta \Sigma$ modulators
 - Programmable ADC characteristics: Resolution vs. computation time
- Dynamically reconfigurable control structure
 - Adaptation to varying operating conditions
 - Better fault tolerance (e.g. to sensor failures)

Self-Optimizing Systems

Self-Optimization offers Advanced Control of Mechatronic Systems

- Relevance of different objectives is adapted to varying operating conditions during runtime
- Exceeds adaptive control by adaptation of objectives, not only behavior
 → Ensures optimal system behavior even under changing surroundings and demands
Students in Motion: LEA-Mobil

Practical Students’ Work on Electric Vehicles

- Design and assemble hardware
 - Power electronics (inverter etc.)
 - Electrical machines (IPMSM)
 - Hybrid energy storage

- Develop control software
 - Control of power electronics
 - Power management strategies
 - Communication via CAN-bus

- Platforms
 - CityEL electric vehicle with hybrid storage
 - Hybrid go-cart with power split drive train
Switched-Mode Power Supplies (SMPS)

DC Voltage Supplies
- Server and Telecom applications
 - $V_{out} = 12V - 380V$
 - $P_{out} = 300W - 10kW$

Digital Control
- Advanced control methods (adaptive, nonlinear, …)
- Feed-forward control
- Power management to improve efficiency, THD and PF especially at light load

Efficiency Optimization of PFC and DC-DC Stage
- Advanced DC-DC topology, e.g. LLC resonant converter
- Multiphase PFC and DC-DC topologies
- Using digital control facilities

High Efficiency Commercial PV Inverter

Economics of Photovoltaic System
- Costs of inverter negligible (8%)
- 1% improvement in inverter efficiency
 - $\rightarrow 80$/kW lesser initial costs & benefits on logistics (land costs, etc.)

Future Trend: Higher MPP voltages up to 840-1000 V

Project Scope
- Effects of higher voltages on low & medium voltage grid tied systems
- Develop marketable topology
 - Higher PV voltages
 - High efficiency
 - Low costs & size
 - High reliability
Research Topics:
- Modeling and control design for resonant operated DC-DC converter
- Multi-objective optimization environment for optimal converter design
- Bidirectional HV converter

Applications
- High-dynamic DC-sources (DCS)
 - Higher dynamics, smaller outline
- Very low frequency HV test systems (HVTS)
 - Higher efficiency, smaller outline

Power Supply for Piezoelectric Actuators

Characteristics of piezoelectric actuators
- High force, small displacement
 - Capacitive characteristic
 - Operated at resonant frequency

Power supply for piezoelectric actuators
- 2-level or 3-level inverter topologies
- Compensation of the capacitive reactive power
- Reduction of THD with optimal modulation strategy
- Filter design at minimal volume and weight