

Power Electronics and Electrical Drives

Prof. Dr.-Ing. Joachim Böcker

Research Topics

Mechatronic Systems, Electrical Drives and Electric Vehicles

- Control, modeling and optimization of electrical drives, e.g.
 - Interior permanent magnet synchronous motors (IPMSM)
 - Switched reluctance drives
 - FPGA based control
- Self optimizing systems (Collaborative Research Center 614)
 - Optimal Energy management for (hybrid) vehicles and hybrid energy storage
- Electric vehicles
- RailCab

Power Electronics

- Switched-mode power supplies
- High efficiency topologies
- Resonant converters
- Digital control

Head of Department

Prof. Dr.-Ing. Joachim Böcker

- Full professor at Paderborn University since 2003
- Deputy vice dean of the Institute of Electrical Engineering and Information Technology, Paderborn University
- Executive board at Institute for Industrial Mathematics
- Share holder of the RailCab Development GmbH
- Senior member of the IEEE, member of VDE

Scientific staff

More than 20 research assistants and graduate students

Technical staff

Support for various test and measurement setups in the laboratories

UNIVERSITÄT PADERBORN

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker 3

Laboratory

Laboratory (450 m²)

- Conventional test benches for power electronics and drives
- Special test facilities for electrical drives, particularly automotive (S_{max} > 500 kVA)
- Air-conditioned cabin, water cooling/heating
- Wide range of motor types
- dSPACE prototyping systems
- Modern analogue and digital measuring instruments

NBP Test Track

- 530 m, 1:2.5 scale
- Linear motor, both active and passive stator

Mechatronic Systems, Electrical Drives and Electric Vehicles

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

IPMSM Modeling & Control

Tooth

Stator

Single Tooth

Roto

5

IPMSM: Preferred Motor in Automotive Traction Applications

- High efficiency
- High power and torque densities

Research Topics

- PMSM / IPMSM Modeling
 - Electrical (Saturation, iron losses)
 - Thermal (Observer, LPTN)
- Efficiency Optimization
 - Operating point selection
 - Optimized pulse patterns
- Control
 - FOC / DTC
 - Model predictive (MPC)
 - FPGA-based

Robust and Simple Mechanical Structure

- Concentrated windings only on one part (stator vs. rotor)
- Rotor is thermally unsusceptible and shock-resistant
- Simple Converter structure
 - One asymmetric half-bridge per phase
 - Multiphase operation recommended

Complex control

- Discrete control of each phase
- Inherent torque ripple
 → Noise generation
- High THD could interfere with other systems
- Efficiency and force density similar to ASM

-

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Magnetic Bearing with Integrated Drive

Design and control of a magnetically borne agitator for hermetic applications

- Passive radial bearing using permanent magnet rings
- Permanent Magnet Synchronous Motor integrated into the rotor outlines
- Active magnetic bearing in axial direction

Passive radial bearings · Active axial bearing

Benefits

- No Fluid pollution by ball bearing grease and abrasion
- No external drive needed
- No maintenance of wear parts
- Smaller outline

9

Simulation Supported Design of Electrical Vehicles

- Assistance with the developing procedures of electrical vehicles
- Optimization of the development process
 - Efficiency and savings potential
 - Model and virtual control unit tests
- Provision of essential design tools for standardized platforms

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Windpower

Employment of a PMSM with integrated magnets instead of a doubly-fed ASM

- No energy transfer into rotor via collector rings (low maintenance)
- No need to synchronize with the grid due to existing DC link
- Variable speed operation to increase efficiency
- Gearless direct drive

© dSPACE GmbH

Development objectives

- Control structure for a permanent magnet synchronous generator with integrated magnets
- Reduction of switching losses in the converter by optimized driver strategies for the IGBT stack
- Routines for failures (fault ride through, blackout, ...)

Energy Management for Hybrid Energy Storage

Efficient Storage for Electrical Energy: Hybrid Energy Storage System

- Combination of complementary storage technologies
 - Batteries (NiMH, Li-ion): Long term storage
 - Double layer capacitors (DLC): Short term storage

- Variable relevance of objectives
 - Losses, efficiency
 - Power reserve
 - Life span

UNIVERSITÄT PADERBORN

Hybrid Energy Storage System

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

RailCab

Novel Modular Railway System

- Small autonomous vehicles (shuttles)
 - Only direct connections without need to change trains
 - No distinction between local and long-distance traffic

Research Topics

- Linear induction motor
 - Doubly-fed motor for contactless energy transmission

shared stator field

- Alternatively operation with passive reaction rail (lower track costs)
- Hybrid energy storage system
 - Efficient buffer of energy and power in both batteries and double layer capacitors

11

Advantages of Field Programmable Gate Arrays (FPGA)

- Flexible, fast and parallel processing
- Parallel execution of e.g. controller and observer
- Fast response with hysteresis-controllers

Research Topics

- FPGA-based quasi-continuous PWM controls
 - Better dynamics compared to regular sampled control without increasing the switching frequency
- Analog to digital conversion using ΔΣ modulators
 - Programmable ADC characteristics: Resolution vs. computation time
- Dynamically reconfigurable control structure
 - Adaptation to varying operating conditions
 - Better fault tolerance (e.g. to sensor failures)

UNIVERSITÄT PADERBORN

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Self-Optimizing Systems

Self-Optimization offers Advanced Control of Mechatronic Systems

- Relevance of different objectives is adapted to varying operating conditions during runtime
- Exceeds adaptive control by adaptation of objectives, not only behavior
- → Ensures optimal system behavior even under changing surroundings and demands

Students in Motion: LEA-Mobil

Practical Students' Work on Electric Vehicles

- Design and assemble hardware
 - Power electronics (inverter etc.)
 - Electrical machines (IPMSM)
 - Hybrid energy storage
- Develop control software
 - Control of power electronics
 - Power management strategies
 - Communication via CAN-bus
- Platforms
 - CityEL electric vehicle with hybrid storage
 - Hybrid go-cart with power split drive train

UNIVERSITÄT PADERBORN

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Power Electronics

Switched-Mode Power Supplies (SMPS)

- Advanced control methods (adaptive, nonlinear, ...)
- Feed-forward control

applications

Digital Control

Power management to improve efficiency, THD and PF especially at light load

Efficiency Optimization of PFC and DC-DC Stage

- Advanced DC-DC topology, e.g. LLC resonant converter
- Multiphase PFC and DC-DC topologies
- Using digital control facilities

UNIVERSITÄT PADERBORN

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

High Efficiency Commercial PV Inverter

Economics of Photovoltaic System

- Costs of inverter negligible (8%)
- 1% improvement in inverter efficiency → 80\$/kW lesser initial costs & benefits on logistics (land costs, etc.)

Future Trend: Higher MPP voltages

Project Scope

Effects of higher voltages on low & medium voltage grid tied systems

Operations & Labour PV Panels

16%

26%

- Develop marketable topology
 - Higher PV voltages

General parts

50%

- High efficiency
- Low costs & size
- High reliability

Inverter

8%

17

RPC-HVTS-DCS - Resonant Power Conversion

Research Topics:

- Modeling and control design for resonant operated DC-DC converter
- Multi-objective optimization environment for optimal converter design
- Bidirectional HV converter

Applications

- High-dynamic DC-sources (DCS)
 - Higher dynamics, smaller outline
- Very low frequency HV test systems (HVTS)
 - Higher efficiency, smaller outline

UNIVERSITÄT PADERBORN

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Power Supply for Piezoelectric Actuators

19

Characteristics of piezoelectric actuators High force, small displacement Capacitive characteristic ntial piezo actuatoto Tribologic laver Operated at resonant frequency Substrate Power supply for piezoelectric actuators 2-level or 3-level inverter topologies al piezo actuator Elastic layer Compensation of the capacitive reactive power Reduction of THD with Filter optimal modulation strategy Inverter Piezo-Trans-Cable Filter design at minimal electric former volume and weight actuator Lcable Í_{Cp} 3[8 C₽草 u_{CP} $U_{\rm in}$