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Deep Model = Hierarchy of Concepts

M. Zieler, “Visualizing and Understanding Convolutional Networks”



Deep Learning history: 2006

2006: Stacked RBM

Pretraining Unrolling Fine-tuning

Hinton, Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks”



2012: Alexnet
SOTA on Imagenet

Fully supervised training
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Deep Learning Recipe

1. Get a massive, labeled dataset D = {(x,y)}:
— Comp. vision: Imagenet, 1M images

— Machine translation: EuroParlamanet data,
CommonCrawl, several million sent. pairs

— Speech recognition: 1000h (LibriSpeech), 12000h
(Google Voice Search)

— Question answering: SQUAD, 150k questions with
human answers

2. Train model to maximize logp(y|x)



Value of Labeled Data

e Labeled data is crucial for deep learning
* But labels carry little information:

— Example:
An ImageNet model has 30M weights, but
ImageNet is about 1M images from 1000 classes
Labels: 1M * 10bit = 10Mbits

Raw data: (128 x 128 images): ca 500 Gbits!



Value of Unlabeled Data

“The brain has about 10%* synapses and we only
live for about 10° seconds. So we have a lot
more parameters than data. This motivates the
idea that we must do a lot of unsupervised
learning since the perceptual input (including
proprioception) is the only place we can get

10° dimensions of constraint per second.”

Geoff Hinton

https://www.reddit.com/r/MachinelLearning/comments/2Imo0Ol/ama_geoffrey_hinton/



Unsupervised learning recipe

1. Get a massive labeled dataset D = {x}
Easy, unlabeled data is nearly free

2. Train model to...???

What is the task?
What is the loss function?



Unsupervised learning
by modeling data distribution

Train the model to
minimize — log p(x)

E.g.in 2D:

¢ LetD = {x:x € R*}

* Each pointis an 2-dimensional
vector

 We can draw a point-cloud

* And fit some known
distribution, e.g. a Gaussian



Learning high dimensional
distributions is hard

Assume we work with small (32x32) images

Each data pointis a == NS B8 ™ » 50 B8 A o =
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Autoregressive Models

Decompose probability of data points in R™ into
n conditional univariate probabilities:

p(X) — p(xlleJ ...,Xn)
= p(x)p(xzlxy) . p(xnlxg, X2, 0, X0 1)

- ]__[pocuxq)



Autoregressive Example:
Language modeling

Let x be a sequence of word ids.

p(x) = p(xll-XZJ ...,Xn) — Hp(xi|x<i)

~ 1_[ PO —py Xi—geg1s e Xim1)
i

p(It’s a nice day) = p(It) * p(‘s|it) * p(a]’s)...

* Classical n-gram models: cond. probs. estimated using
counting

* Neural models: cond. probs. estimated using neural nets



WaveNet:
Autoregressive modeling of speech

Treat speech as a sequence of samples!
Predict each sample base on previous ones.
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https://arxiv.org/abs/1609.03499



https://arxiv.org/abs/1609.03499

PixelRNN:
A “language model for images”

Pixels generated left-to-right,
top-to-bottom.

Cond. probabilities
estimated using recurrent or
convolutional neural
networks.

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).



PixelCNN samples
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Salimans et al, “A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and
Other Modifications”




Autoregressive Models Summary

The good:
- Simple to define (pick an ordering).
- Often yield SOTA log-likelihood.

The bad:
- Training and generation require O(n) ops.

- No compact intermediate data representation —
not obvious how to use for downstream tasks.



Latent Variable Models

Intuition: to generate something complicated, do:
1. Sample something simple z~N(0,1)

VA Z

2. Transformit x = |
10 ||z]

Z samples from standard normal X =d(zZ)
4

3
2
1
0
1
-



Variational autoencoder:
A neural latent variable model

Assume a 2 stage data generation process:
z~N(0,1) prior p(z) assumed to be simple

x~p(x|z) complicated transformation
implemented with a neural network

How to train this model?
logp(x) = log ) p(xl2)p(2)
YA

This is often intractable!



ELBO: A lower bound on log p(x)

Let q(z|x) be any distribution. We can show that

logp(x) = _ _
= KL(q(zx) I p(z]x)) + Eyq oy | log (p(zlx) (x))

| | qzlo "
= IIzzqu(zlx) log (p(Z|X) p(x))

= Eyq(zpn llogp(x|2)] — KL(q(z]x) Il p(2))

The bound is tight for p(z|x) = q(z|x).



ELBO interpretation

ELBO, or evidence lower bound:

logp(x) = E, gz [logp(x|2)] — KL(q(z|x) Il p(2))

where:

E, g0 [logp(x|z)] reconstruction quality:
B\ow many nats we need to reconstruct x,
when someone gives us q(z|x)

KL(q(zlx) I p(z)) code transmission cost:
how many nats we transmit about x in g(z|x) rather than p(z)

Interpretation: do well at reconstructing x, limiting the amount of
information about x encoded in z.



The Variational Autoencoder

p(z) — KL(q(z|x) 1 p(2)) <——
X
E
An input x is put through the g network to obtain a distribution over
latent code z, g(z]|x).

z~q(z]x) [logp(xlz)]

Samples z4, ..., Z; are drawn from q(z|x). They k reconstructions
p(x|z;) are computed using the network p.



VAE is an Information Bottleneck

Each sample is
represented as a
Gaussian

This discards information
(latent representation
has low precision)




VQVAE — deterministic quantization

Limit precision of the encoding by quantizing (round
each vector to a nearest prototype).

Output can be treated:

- As a sequence of discrete prototype ids (tokens) i

- As a distributed representation (the prototypes ':'-,.'_,Z",-';_." 4 L
themselves)

Train using the straight-through estimator,

with auxiliary losses:
L=logp(x|z,(x))
+[Isg(2e(@)) = e 13 +vllze(2) — sgleqe))ll5




VAEs and sequential data

To encode a long sequence, we apply the VAE to
chunks: | N | |

But neighboring chunks are similar!
We are encoding the same information in many zs!
We are wasting capacity!



WaveNet + VAE
M"—“’"""H‘ A WaveNet reconstructs

A‘A‘A the waveform using the

|| information from the past

z oz z z z Latent representations are
A A A A A i
'II : . inervals.

The WaveNet uses information from:

1. The past recording
2. The latent vectors z
3. Other conditioning, e.g. about speaker

The encoder transmits in zs only the information that is missing
from the past recording .

The whole system is a very low bitrate codec

(roughly 0.7kbits/sec, the waveform is 16k Hz* 8bit=128kbit/sec)

van den Oord et al. Neural discrete representation learning



VAE + autoregressive models:
latent collapse danger

Purely Autoregressive models: SOTA log-
likelihoods

Conditioning on latents:
information passed through bottleneck
lower reconstruction x-entropy

In standard VAE model actively tries to

- reduce information in the latents

- maxmally use autoregressive information
=> Collapse: latents are not used!

Solution: stop optimizing KL term
(free bits), make it a hyperparam (VQVAE)



Model description

M"‘_—"""""““— WaveNet decoder conditioned on:

- latents extracted at 24Hz-50Hz
- speaker

.Ill ' , 3 bottleneck evaluated:

Z Z Z Z
- Dimensionality reduction, max 32 bits/dim
AAAAA TG
” . | - VQVAE with K protos: log, K bits

Input:
Waveforms, Mel Filterbanks, MFCCs

Hope: speaker separated form content.
Proof: https://arxiv.org/abs/1805.09458



https://arxiv.org/abs/1805.09458

Representation probing points

We have inserted probing classifiers at 4 points
in the network:

Dcond: Several z codes mixed
M——»”“"—’_"ﬁ together using a convolution.
The wavenet uses it for
conditioning
M—"»"‘“”“";% Dpn: the latent codes

Pproj: low dimensional

Z z Z Z Z \
representation input to the
bottleneck layer

Denc: high dimensional
representation coming out of the
encoder



Experimental Questions

 What information is captured in the latent
codes/probing points?

 What is the role of the bottleneck layer?
 Can we regularize the latent representation?

. F
. F

ow to promote a segmentation?
ow good is the representation on

C

ownstream tasks?

 What design choices affect it?

Chorowski et al. Unsupervised speech representation learning using WaveNet autoencoders



VQVAE Latent representation
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What information is captured in the
latent codes?

For each probing point, we have trained
predictors for:

- Framewise phoneme prediction
- Speaker prediction

- Gender predicion

- Mel Filterbank reconstruction
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Phonemes vs Gender tradeoff
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How to regularize the latent codes?

We want the codes to capture phonetic
information.

Phones vary in duration — from about 30ms to
1s (long silences).

Thus we need to extract the latent codes
frequently enough to capture the short phones,
but when the phone doesn’t change, the latents
should be stable too.

This is similar to slow features analysis.



Problem with enforcing slowness

Enforcing slow features (small changes to the
latents), has a trivial optimum: constant latents.

Then WaveNet can just disregard the encoder,
and latent space collapses.



Randomized time jitter
Rather than putting a penalty on changes of the

latent z vectors, add time jitter to them.
This forces the model to have a more stable
representation over time.
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Randomized time jitter results
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How to learn a segmentation?

The representation should be constant within a
phoneme, then change abruptly

Enforcing slowness leads to collapse, jitter

prevents the model from using pairs of tokens as
codepoints

ldea: allow the model to infrequently emit a
non-trivial representation



Non-max suppression — choosing
where to emit
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Non-max suppression — choosing
where to emit
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Non-max suppression — choosing

where to emit
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Performance on ZeroSpeech
unit discovery

Within-speaker Across-speaker

English (45h) French (24h) Mandarin (2.4h) English (45h) French (24h) Mandarin (2.4h)
Model Is 10s 2m Is 10s 2m Is 10s 2m Is 10s 2m Is 10s 2m Is 10s 2m
Unsupervised baseline 120 12.1 12.1 125 126 12.6 11.5 11.5 11.5 234 234 234 252 255 252 213 213 213
Supervised topline 6.5 53 5.1 80 6.8 6.8 95 42 40 86 69 6.7 106 9.1 89 120 57 5.1
VQ-VAE (per lang, p.ong) S.6 5.5 5.5 73 75 175 11.2 10.7 10.8 81 8.0 8.0 11.0 10.8 11.1 122 11.7 119
Heck et al. [57] 69 62 6.0 97 87 B84 88 79 178 10.1 8.7 8.5 136 11.7 11.3 88 74 1713
Chen et al. [58] 85 73 172 11.2 94 94 10,5 8.7 8.5 12.7 11.0 10.8 17.0 145 14.1 11.9 10.3 10.1
Ansari et al. [59] 7.7 6.8 N/A 104 N/A 88 104 93 9.1 13.2 12.0 N/A 17.2 N/A 154 13.0 122 123
Yuan et al. [60] 90 7.1 7.0 11.9 95 95 11.1 85 8.2 14.0 11.9 11.7 18.6 155 149 12.7 10.8 10.7

SOTA results in unsupervised phoneme discrimination Fr
and EN ZeroSpeech challenge.

Mandarin shows limitation of the method:
- Too little training data (only2.4h unsup. speech)
- Tonal information is discarded.




English: VQVAE bottleneck
adds speaker invariance

English Within spkr. Across spkr.
VQ-VAE (per lang, MFCC, pcong) 5.6 8.0
VQ-VAE (per lang, MFCC, py,) 6.2 8.8
VQ-VAE (per lang. MFCC. ppr) 5.9 9.0
VQ-VAE (all lang, MFCC, pcong) 5.8 8.6
VQ-VAE (all lang, MFCC, pp,) 6.3 0.2
VQ-VAE (all lang. MFCC, py;) 2.8 9.3
VQ-VAE (all lang, fbank, ppro) 6.0 10.1

The quantization discards speaker info, improving across-speaker results
MFECCs slightly better than FBanks



Mandarin: VQVAE bottleneck
discards phone information

Mandarin Within spkr. Across spkr.
VQ-VAE (per lang, MFCC, pgong) 11.2 12.2
VQ-VAE (per lang, MFCC., py,) 10.8 11.9
VQ-VAE (per lang, MFCC, pproj) 0.9 11.0
VQ-VAE (all lang, MFCC, pgong) Q2 10.3
VQ-VAE (all lang, MFCC, ppy,) 9.0 9.9
VQ-VAE (all lang, MFCC, pp;) 7.4 8.6
VQ-VAE (all lang, fbank, ppro;) 6.8 78

The quantization discards too much (tone insensitivity?)
MFCCs worse than FBanks



What impacts the representation?

Implicit time constant of the model:

* |nput field of view of the encoder — optimum
close to 0.3s

e \WaveNet field of view - needs at minimum
10ms

0.70 s Pred. target

® gender

0.65 = phonemes

Prediction accuracy

0.60

1 10 100
WaveNet Receptive Field [ms]



Failed attempts

* | found no benefits from building a
hierarchical representation (extract latents at
differents timescales), even when the slower

latents had no bottleneck
* Filterbank reconstruction works worse than

waveform
— Too easy for the autoregressive model?

— To little detail?
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We will explore similar ideas during JSALT2019 topic
“Distant supervision for representation learning”.

The workshop will:
- Work on speech and handwriting

- Explore ways of integrating metadata and unlabeled
data to control latent representations

- Focus on downstream supervised OCR and ASR tasks
under low data conditions

Some approaches to try:
- Contrastive predicitve coding
- Masked reconstruction



The future: CPC

* Contrastive coding learns representations that
can tell a frame from other ones

redictions El EZ £3
N N N e
+ i + SN T P “

t ?3&1 ? Zig2 ? Y144 zZ
genc .gen('-

r i T
o, [ fou e fom| fooc| fioc fo
Ty | owen | owmeer | @ | mn | T2 | T Tga |
e 0 o e —— vl

Oord et al. ,,Representation Learning with Contrastive Predictive Coding”
Schneider et al. ,,wav2vec: Unsupervised Pre-training for Speech Recognition”



The future: masked reconstruction

e BERT is a recent, SOTA model for sentence
representation learning

Input (L8] | my {dng is | cute | [SEP] he [Iikes ” play | ##ingw [SEP]

Token
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* Mask the inputs:

Input: The man went to the [MASEKE]. . He bought a [MASK], of milk .
Labels: [MASK], = store; [MASK], = gallon



Thank you!

e Questions?



Backup



ELBO Derivation pt. 1
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ELBO derivation pt. 2
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