



## Prioritisation:

- Masters thesis
- Project work

#### **Topic**

# Development of a method for wireless energy transmission in the far field using beamforming

#### Question

Which amounts of energy can be transmitted wirelessly at which distances using electromagnetic waves and beamforming?

#### **Tasks**

- Literature and research in the field of antenna technology and wireless power transmission in the far field
- Investigation of different frequencies and antenna designs for wireless far field power transmission with beamforming
- Simulation of a test setup with a transmit and receive antenna in CST Studio Suite
- Analysis of the thermal behaviour of the antenna structure and assessment of the maximum performance in continuous operation
- Comparison of different designs of antenna structure on electromagnetic radiation and thermal behavior
- Conversion of the beamforming of an antenna array to increase and direct the radiated energy
- Evaluation of the results as a function of the radiation angle, the receiving power and the thermal behaviour in the simulation environment
- Creation of a report and lecture



#### **Contact**

Sven Lange Fraunhofer ENAS Department: Advanced System Engineering Phone: 05251 / 60-5643

Mail: sven.lange@enas-pb.fraunhofer.de

Dr.-Ing. Denis Sievers
University of Paderborn
Theoretical Electrical Engineering (TET)
05251 / 60-3010
sievers@tet.upb.de







Ortungsspule

Prioritisation:

Project work

#### **Topic**

# Development of locating coils for inductive locating at 13.56 MHz

#### Question

How do the locating coils have to be designed in order to achieve the best possible inductive locating of a miniaturized sensor (Sens-o-Sphere, diameter 8 mm) in a volume of 50 cm x 30 cm x 30 cm?

#### Idea

- Simulation of different planar coil designs
- Moving the object to be located in the entire volume
- Calculation of the coupling between the locating coils and the Sens-o-Sphere
- Comparison of different coil designs

#### **Tasks**

- Literature
- Become familiar with CST Studio Suite
- Set-up of different simulation models in CST Studio Suite
- Calculation of the mutual inductance between the Sens-o-Sphere and a locating coil
- Simulation of the complete locating environment with six locating coils and the Sens-o-Spheres
- Shift and rotation of the Sens-o-Spheres in the simulation environment
- Evaluation of the different coil designs and their optimal positions
- Creation of a report and presentation

# Sens-o-Spheres Model Locating environment $\bigcup u_{\text{ind}_{S1}} = j\omega M_{S1}i_{S}$ $()u_{ind_{1S}}=j\omega M_{1S}i_1$ Locating coil

#### **Contact**

Sven Lange Fraunhofer ENAS Department: Advanced System Engineering Phone: 05251 / 60-5643

Mail: sven.lange@enas-pb.fraunhofer.de

Dr.-Ing. Denis Sievers
University of Paderborn
Theoretical Electrical Engineering (TET)
05251 / 60-3010
sievers@tet.upb.de

Electrical equivalent circuit diagram







### Prioritisation:

- Project work
- Bachelor thesis

#### **Topic**

# Analysis of UWB technology (ultra-wideband) and its application for indoor positioning

#### Question

Which applications are possible with the UWB method and for which environments is a location with UWB suitable?

#### **Tasks**

- Literature and research of the UWB procedure and its application in localization
- Characterization of the UWB properties to different environmental parameters
- Comparison of different UWB modules available on the market
- Selection of a suitable UWB module for first tests
- Creation of the electronics for the locating module
- Simulation of the UWB antenna in CST Studio Suite
- Characterization of the UWB Process in CST Studio Suite
- Creation of a software for reading out relevant data of the UWB module for a localization
- Measurement and calculation of the distance between two UWB modules
- Creation of a method for 3D localization with UWB
- Verification of the procedure with real measurement data
- Assessment of the UWB technology for localization
- Preparation of a report and lecture



#### **Contact**

Sven Lange Fraunhofer ENAS Department: Advanced System Engineering Phone: 05251 / 60-5643

Mail: sven.lange@enas-pb.fraunhofer.de

University of Paderborn Theoretical Electrical Engineering (TET) 05251 / 60-3010 sievers@tet.upb.de

