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Pricing and Selection of Channels for Remote State
Estimation Using a Stackelberg Game Framework
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Abstract—We consider the communication channel pricing and
selection problem in a networked control system. To encompass the
sequentialized nature of the decision-making process, we use game
theory and formulate a Stackelberg game framework, where the
server first determines the channel pricing strategy, and the clients
then make channel selection decisions. Both single-server-single-
client (SSSC) scenario and single-server-multi-client (SSMC) sce-
nario are discussed. The existence of an optimal stationary and
deterministic policy for the clients is proved. We show that for
the SSSC scenario, the server’s optimal pricing strategy in terms
of maximizing revenue is to ensure that the client uses the good
channel all the time. For the SSMC scenario, it is assumed that
the channel price remains invariant. As a consequence, each client
has an optimal policy with threshold structure. Some properties of
the optimal policy pair for both scenarios are obtained. Simulation
results confirm the structure and properties of both the server and
clients’ optimal strategies.

Index Terms—Networked control system, Stackelberg game,
Markov decision process, pricing mechanism.

I. INTRODUCTION

IN VARIOUS control systems, such as manufacturing indus-
tries, aerospace vehicles, public transportation and intelligent

homes, a real-time network is utilized to exchange information
between sensors and estimators, and controllers and actuators
[1]–[3]. A control loop is called a networked control system
(NCS) when it is closed through wireless communication chan-
nels [4]. Compared to traditional wired systems, NCSs are well
known for a lower cost in installment, diagnosis, debugging and
maintenance.

For the implementation of NCSs, feasible candidate networks
are DeviceNet, Ethernet, and FireWire [2]. The performance
of NCSs largely depends on the communication networks. For
example, packet dropouts, delay and quantization may happen
when sensors with sensing and wireless communication abilities
transmit their measurements to a remote estimator [5]. Therefore
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network servers should charge appropriately for the communica-
tion services with different transmission qualities they provide.

The Internet-of-Things (IoT) has brought new business mar-
kets. For example, Sun et al. [6] proposed a new business model
for service provision in a wireless sensor network. Three roles
exist in their scenario: the sensors, the service providers which
gather the sensing data and provide service to users, and end
users. In addition, the development of 5G wireless networks
leads to many discussions regarding pricing models for resource
management, as summarized in the survey [7]. Since 5G involves
multiple rational stakeholders and entities that may have differ-
ent objectives, e.g., utility maximization, cost minimization, and
revenue maximization, studies on incorporating economic im-
plications into the solutions, i.e., the pricing mechanism design,
are vital for practical applications.

To the best of our knowledge, pricing mechanism design for
communication channels in NCSs has not been addressed. One
major challenge is how to formulate the problem. In this work,
we consider a scenario with a server and some clients in NCSs.
The server, which is the communication service provider, should
determine the channel price to make the most profits. The clients,
which mean the sensors in the NCSs scenario considered in the
present work, should ponder between the benefits from selecting
good channels to transmit data packets and the resulting costs.
The server and clients can thus be regarded as playing a game
for the communication resources.

For the scenario where a rational and selfish stakeholder (e.g.,
a server who profits by providing communication service) and
entities (e.g., clients who may increase their utilities by paying
for communication service) are involved, a Stackelberg game
is useful to model the interactions between such two players
with unequal status. Generally, a Stackelberg game is a strategic
game where players make decisions sequentially. The first player
usually occupies a dominant position and moves first, and the
second player makes a choice after observing the first player’s
action. This class of games has been utilized to analyze pric-
ing and selection problems in state-of-the-art works in various
fields. For example, in software-defined networks, Gu et al. [8]
considered a payoff optimization problem involving an Internet
service provider (ISP) and network subscribers. The ISP decides
the price according to the real-time network traffic load first,
and network subscribers then specify the amount of bandwidth
to be reserved based on the price offered. A Stackelberg game
was constructed to analyze the interactions between the ISP
and subscribers. In heterogeneous wireless access networks,
Yun et al. [9] constructed a Stackelberg game framework to
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address the joint pricing and load distribution problem of multi-
homing where a service provider and users were involved. The
service provider makes a pricing strategy to impose a cost on
the users, whereas the users make rate-allocation decisions to
maximize their utilities based on the given pricing strategy. In
NCSs, a Stackelberg game framework for pricing and selection
of “parallel channels” with a remote estimator was formulated in
our recent conference contribution [10]. Structural results over a
finite time horizon were derived. Thus in our channel pricing and
selection problem with infinite time horizon, a Stackelberg game
is still used to model the interactions between the channel server
and the sensor clients. The channel server aims at maximizing
its revenue, while each sensor client aims at minimizing a linear
combination of the remote estimation error covariance and the
communication cost, in a sequential order.

Our current work is mainly based on [10] and extends the
results to the infinite time horizon. Differences are summarized
as follows. First, in [10], the optimal strategy pair and the Stack-
elberg equilibrium exist trivially since the time horizon is finite.
However, the infinite time horizon induces a countable but not
finite state space, where there may not exist an optimal strategy
pair, not to mention an equilibrium [11] since the minimum
average cost is not guaranteed to be bounded. The optimiza-
tion problem with infinite time horizon may be theoretically
unsolvable. Although the problem becomes challenging, we
succeed in proving the existence of an equilibrium under some
assumptions. Second, [10] showed the server’s nondecreasing
pricing policy by backward induction. In the infinite time hori-
zon case, the backward induction method does not work any
more. We overcome this technical difficulty and characterize the
properties of the server’s optimal pricing policy. Furthermore, a
closed-form expression is obtained. Third, single-server-multi-
client (SSMC) scenario is considered in our paper. Properties
regarding both players’ optimal strategies are analyzed. How-
ever, [10] only studied the single-server-single-client (SSSC)
case. In summary, recalling the drawbacks of the finite horizon
problem, e.g., the rapidly increasing computational complexity
when timeN grows, and the dependence on the initial value, our
current work studies the infinite horizon case to have a thorough
understanding of this pricing and selection problem.

The remainder of the paper is organized as follows: Section II
introduces the system model and the main problem and
Section III presents preliminaries regarding a Stackelberg game.
Section IV provides the equilibrium result in the SSSC scenario
as well as the perturbation analysis. Section V focuses on the
SSMC scenario and proves that the optimal strategy pair for the
server and clients is attainable. Section VI provides simulations
and interpretations. Section VII draws conclusions.

Notation: For a matrix X , we use X�, Tr{X} and ρ(X)
to denote its transpose, trace and spectral radius, respectively.
Sn
+ is the set of n× n positive semi-definite matrices. When

X ∈ Sn
+, it is written as X � 0. For two symmetric ma-

trices X and Y , X � Y means X − Y � 0. Rn is the n-
dimensional Euclidean space. E[·] is the expectation operator
and E[·|·] denotes conditional expectation. The notation P [·]
refers to probability. For functions f, f1, f2, f1 ◦ f2 is defined

Fig. 1. System block diagram.

as f1 ◦ f2(X) � f1(f2(X)) and fk, k ∈ {0, 1, . . . }, is defined
as fk(X) � f ◦ f · · · f

︸ ︷︷ ︸

k times

(X) with f0(X) = X .

II. REMOTE STATE ESTIMATION WITH CHANNEL

PRICING AND SELECTION

Consider the system in Fig. 1. The discrete linear time-
invariant (LTI) process for k ≥ 0 is as follows:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ Rn is the process state vector, wk ∈ Rn is the
process noise which is i.i.d. zero-mean white Gaussian with
covariance Q � 0. The measurement collected by the sensor is
yk ∈ Rm. The measurement noise vk ∈ Rm is i.i.d. zero-mean
white Gaussian with covariance R � 0. The initial state x0 is a
zero-mean Gaussian random variable with covariance Π0 � 0,
which is uncorrelated withwk andvk. The pair (A,C) is assumed
to be observable and (A,√Q) is controllable.

A. Smart Sensor

The smart sensor in Fig. 1 is capable of running a local Kalman
filter. Its minimum mean-squared error state estimate x̂s

k|k and
the corresponding error covariance P s

k|k for k ≥ 1 are denoted
as:

x̂s
k|k = E [xk | y1, . . . , yk] ,

P s
k|k = E[(xk − x̂s

k|k)(xk − x̂s
k|k)

� | y1, . . . , yk],
which are computed via a Kalman filter as follows:

x̂s
k|k−1 = Ax̂s

k−1|k−1,

P s
k|k−1 = AP s

k−1|k−1A
� +Q,

Kk = P s
k|k−1C

�(CP s
k|k−1C

� +R)−1,

x̂s
k|k = x̂s

k|k−1 +Kk(yk − Cx̂s
k|k−1),

P s
k|k = P s

k|k−1 −KkCP s
k|k−1.

The initial states are x̂s
0|0 and P s

0|0. From [12], the estimation
error covariance of the Kalman filter converges to a unique
value P no matter what the initial value is. Define the Lyapunov
operator h(·) : Sn

+ → Sn
+ as

h(X) � AXA� +Q,
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and Riccati operator g̃(·) : Sn
+ → Sn

+ as

g̃(X) � X −XC� (CXC� +R
)−1

CX.

We assume that the error covariance at the smart sensor has
already reached steady state and let

P s
k|k = P , k ≥ 0,

where P is the unique positive semi-definite solution to g̃ ◦
h(X) = X , as [12] shows.

Lemma 1: The error covariance P satisfies:

hk1(P ) � hk2(P ) (3)

for any k1 ≥ k2 ≥ 0. Furthermore,

Tr
{

hk1
(

P
)} ≥ Tr

{

hk2
(

P
)}

. (4)

This well-ordering of the estimation error covariance is
helpful for the subsequent analysis. The proof is provided in
Appendix A.

B. Channel Pricing and Selection

Fig. 1 portrays a two-player scenario. The process equipped
with the smart sensor is the “client” and the communication
network belongs to the “server”. At each time k, the server
decides the price Wk of the high quality channel 1. The price
of the low quality channel 2 is normalized to 0. Without loss
of generality, we assume Wk > 0. Here the “price” represents
the cost the client needs to pay when choosing the transmission
service. The pricing is to incentivize clients to use channel 1.
After a price is decided, it is then the client’s turn to decide
whether to use channel 1 or channel 2. If using channel 1, the
probability that x̂s

k|k arrives error-free at the remote estimator
is fixed at λ1. While using channel 2, the error-free arrival
probability is λ2, where 1 > λ1 > λ2 > 0.

Thus the transmission choice of x̂s
k|k in the communication

network can be characterized by a binary variable γk:

γk =

{

1, if the client uses channel 1,

0, if the client uses channel 2.
(5)

Furthermore, the arrival of packets at the remote estimator can
be characterized by a binary random sequence {δk}:

δk =

{

1, if x̂s
k|k arrives error-free at time k,

0, otherwise.

Based on the error-free arrival probabilities of the two channels,
we have

P [δk = 1] = γkλ1 + (1− γk) λ2.

C. Remote Estimator

Since the smart sensor sends the local minimum mean square
error estimates instead of raw measurements, the optimal remote
estimator can be shown to have the following form [13]. Denote
x̂k and Pk as the state estimate and error covariance at the
remote estimator. If the packet x̂s

k|k arrives error-free at time k,
the estimator synchronizes x̂k with x̂s

k|k from the smart sensor;

otherwise, it just uses the time update value based on the system
model (1). The recursion of x̂k is

x̂k =

{

x̂s
k|k, if δk = 1,

Ax̂k−1, if δk = 0.
(6)

Correspondingly, the recursion of Pk is

Pk =

{

P , if δk = 1,

h(Pk−1), if δk = 0.
(7)

To simplify the problem, we assume that the initial state P0 =
P . At each time k, Pk takes a value from the countable set
{P , h(P ), h2(P ), . . . , hk(P )}. Note that the server is the owner
of the communication network and it has good knowledge of the
channel transmission process. The server always knows exactly
whether x̂s

k|k arrives at the remote estimator successfully or not.
We assume that the remote estimator sends Acknowledgments
(ACKs) of receipt to the client. Thus this is a causal perfect-
information case for both the server and the client.

In the remainder of this work, we will present the preliminaries
regarding a Stackelberg game and the optimal server pricing
strategies and client channel selection strategies for both the
SSSC and SSMC scenarios.

III. STACKELBERG GAMES

In this section, we introduce the Stackelberg game, which is
a key supporting concept for our problem formulation.

Let Θ1 and Θ2 be the sets of admissible strategies for players
1 and 2, respectively. Let the cost functions J1(θ1, θ2) and
J2(θ1, θ2) be two functions mapping Θ1 ×Θ2 → R such that
player 1 wishes to maximize J1 and player 2 wishes to minimize
J2. In a Stackelberg game, the player 1 who selects his strategy
first is called the leader. The player 2 who selects his strategy
second is called the follower. The definitions of a Stackelberg
optimal strategy pair and the Stackelberg game equilibrium are
stated as follows, mainly based on [14]–[16].

Definition 1: If there exists a mapping Φ : Θ1 → Θ2 such
that, for any fixed θ1 ∈ Θ1, J2(θ1,Φθ1) ≤ J2(θ1, θ2) for all
θ2 ∈ Θ2, and if there exists a θ�1 ∈ Θ1 such that J1(θ�1 ,Φθ

�
1) ≥

J1(θ1,Φθ1) for all θ1 ∈ Θ1, then the pair (θ�1 , θ
�
2) ∈ Θ1 ×Θ2,

where θ�2 = Φθ�1 , is called a Stackelberg optimal strategy pair.
An equilibrium in the Stackelberg game is reached under this
optimal strategy pair.

IV. SINGLE-SERVER-SINGLE-CLIENT GAME

In the infinite time horizon single-server-single-client (SSSC)
case as shown in Fig. 1, for the client sensor, its objective
function JC is a linear combination of the trace of expected
estimation error covariance and the cost when using high trans-
mission quality channel 1:

min
{γk}

JC � lim sup
N→∞

1

N

N
∑

k=1

[ζTr {E [Pk]}+ (1− ζ)γkWk] ,

(8)
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for some weight parameter ζ ∈ (0, 1). A larger ζ attaches more
importance to the error covariance and a smaller ζ attaches more
importance to the channel costs. For every policy {Wk} which
depends on the estimation error covariance and is given by the
server, the client needs to determine the optimal action {γk} to
minimize its cost JC . For the server, its objective function JS is
the total revenue:

max
{Wk}

JS � lim inf
N→∞

1

N

N
∑

k=1

γkWk. (9)

The server is at the leading position in this Stackelberg game.
At each time k ≥ 1, it sets the price Wk first and then the
follower, the client, decides γk sequentially. We define IS

k as
the information set available to the server up to time k, i.e.,
IS
k � {P0, P1, . . . , Pk−1} ∪ {W1,W2, . . . ,Wk−1}, and IC

k �
{P0, P1, . . . , Pk−1} ∪ {W1,W2, . . . ,Wk} as the information
set for the client. Assume both players are rational, which means
that they take the optimal actions based on their information sets,
respectively.

Since there exist few unstable systems in the real case, here
we consider an asymptotically stable system, i.e., ρ(A) < 1.
Thus, even if δk = 0 all the time, the recursion Pk = h(Pk−1)
will converge and the trace of the error covariance at the remote
estimator will always be upper bounded. Furthermore, define
the remote estimator’s state set as

S =
{

Tr
{

P
}

,Tr
{

h
(

P
)}

,Tr
{

h2
(

P
)}

, . . .
}

� {s0, s1, s2, . . . }
where 0 ≤ s0 ≤ s1 ≤ s2 ≤ · · · because of Lemma 1. The tran-
sition probabilities of the states at the remote estimator are given
by:

pk (Tr {Pk} | Tr {Pk−1} , γk)

�

⎧

⎪
⎪
⎨

⎪
⎪
⎩

γkλ1 + (1− γk)λ2, if Pk = P ,

1− γkλ1 − (1− γk)λ2, if Pk = h(Pk−1),

0, otherwise.

(10)

The one-stage cost function for the client at time k = 1, 2, . . .
is

ck (Tr {Pk−1} , γk) = ζTr {E [Pk]}+ (1− ζ)γkWk. (11)

This two-player non-zero-sum stochastic game will be stud-
ied under the long-run expected average cost criterion. In our
problem, we assume that the server’s price setting strategy is
stationary and deterministic at the current estimation state; see
Assumption 1. A stationary policy only depends on the current
state, and a deterministic policy is to choose the action with
probability 1 [11].

Assumption 1: The pricing strategy of the server is stationary
and deterministic.

In view of Assumption 1 and with a slight abuse of notation,
we will henceforth denote the stationary and deterministic pric-
ing decision made by the network server, at time k and given
stateTr {Pk−1} = si, byWi. For the decision made by the client
sensor, we shall use a similar notation, i.e., γi corresponding to

Tr {Pk−1} = si and Wk = Wi, since we will prove that there
exists an optimal stationary and deterministic policy for the
client under Assumption 1.

Our main result is to find a Stackelberg optimal strategy pair
for both the server and the client, under which the equilibrium
is achieved.

A. Client’s Optimal Policy

In this subsection, we prove that, for any stationary and
deterministic policy of the server, the client has an optimal
stationary and deterministic policy.

We formulate this optimization problem as a Markov decision
process (MDP) problem. An MDP (S,AC , p (· | ·, ·) , c(·, ·))
consists of the state space S, the action space AC , the stage
transition probability p (· | ·, ·), and one-stage cost c(·, ·). Let
ΓS(S) and ΓC(S) denote the set of stationary and determinis-
tic strategies for the server and client. Due to the Markovian
structure of the problem setting, past states and actions are
irrelevant for the player to take actions. For any given policy
{Wi} ∈ ΓS(S), the client’s action set is AC = {0, 1}. Here Wi

refers to the price determined at the state si, and {Wi} refers to
the set of all prices Wi for i = 0, 1, 2, . . . . The action 0 means
using channel 2, while action 1 means using the good channel 1.
The action taken at state si is γi. It is obvious that the transition
probabilities pk(· | ·, ·) in (10) are stationary, which means that
they only depend on the states and the actions, thus we can
substitute p(· | ·, ·) for them, and write:

p (s0 | si, γi) = γiλ1 + (1− γi) λ2, (12)

p (si+1 | si, γi) = 1− γiλ1 − (1− γi) λ2, (13)

for i = 0, 1, 2, . . . . The induced one-stage cost in (11) is station-
ary, in that the server’s policy only depends on the current state.
The incurred cost at state si is

c (si, γi) = ζ [p (s0|si, γi) s0 + p (si+1|si, γi) si+1]

+ (1− ζ)γiWi.
(14)

The average cost optimality equation (ACOE) for problem (8)
is

c̄+ f(si) = min
γi∈AC

{c (si, γi) + p (s0|si, γi) f(s0)

+ p (si+1|si, γi) f (si+1)} (15)

where c̄ is the optimal average cost per stage and f(·) is the
relative value function (See Chapter 7 in [11]).

The following existence theorem is the basic result for the
client in this subsection. The proof is provided in Appendix B.

Theorem 1: For any given stationary and deterministic pol-
icy {Wi} ∈ ΓS(S) of the server, there exists a stationary and
deterministic policy which is optimal for the client.

Theorem 1 provides a theoretic basis for further analysis of
the server’s optimal policy and the equilibrium. Together with
Assumption 1, this theorem guarantees that given any server’s
policy {Wi} ∈ ΓS(S), there exists an optimal client’s policy
{γi} ∈ ΓC(S), where {γi} is the set of actions γi for i =
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0, 1, 2, . . . . The latter induces a stationary probability distribu-
tion {πi} over the states. Under every policy pair ({Wi}, {γi}),
the objective functions of both the client and server can be
transformed into

JC =

∞
∑

i=0

πi [ζsi + (1− ζ) γiWi] , (16)

JS =

∞
∑

i=0

πiγiWi, (17)

where
∑∞

i=0 πi = 1.

B. Server’s Optimal Policy

In this subsection, we narrow the scope of feasible optimal
strategies for the server, and then provide a method for the
computation of an optimal server policy.

Theorem 2 characterizes the properties of the server’s optimal
policy. Lemma 2 and Assumption 2 are preliminary steps. The
proof is provided in Appendix C.

Lemma 2: Let {mj} and {nj} be non-negative real-valued
sequences with

∞
∑

j=0

mj =

∞
∑

j=0

nj = 1, (18)

and
∞
∑

j=k

mj ≥
∞
∑

j=k

nj (19)

for all non-negative k. Then for any nondecreasing but bounded
sequence {sj}, we have

∞
∑

j=0

mjsj ≥
∞
∑

j=0

njsj . (20)

Assumption 2: If at any state si, with the price Wi set by
the server, the client incurs the same long run average cost JC
whether using channel 1 or channel 2, then the client chooses to
use channel 1 and the server makes a profit Wi at the state si.

The following theorem is the major result of this subsection. It
rules out many varieties of strategies in the sense of the server’s
optimality and leading position in this Stackelberg game.

Theorem 2: A pricing policy {W �
i }, under which the client’s

optimal policy is to use channel 1 at all the states, i.e., γi = 1 for
i = 0, 1, 2, . . . , and the resulting scheduling cost is a constant
J�
C as described in (21), is an optimal server’s policy.

Proof: We present this proof in three steps. First, we show
that under any pricing policy {Wi} and the incurred optimal
scheduling policy {γi}, the client’s cost is upper bounded by
some constant J�

C . Furthermore, the server can obtain the max-
imum revenue when the client’s cost reaches this upper bound
J�
C . The relation between the server’s revenue and the induced

state probability distribution is displayed in (22). Second, we
prove that a pricing policy {W �

i }, which incentivizes the client

to use channel 1 at all the states, minimizes
∑∞

i=k
πi for

arbitrary non-negative k. Finally, according to Lemma 2 and

Fig. 2. Markov chain of always using channel 2.

Fig. 3. Client’s policies differing only at sj+1.

Equation (22), the maximum revenue is proved to be attained
under the pricing policy {W �

i }, which shows the optimality of
{W �

i }.
First, the upper bound of the client’s cost is derived as fol-

lows. Considering that our system is asymptotically stable, si
is bounded by some non-negative constant. For some server’s
policy {Wi} where each element is large enough, the client’s
optimal strategy is never to use channel 1. The resulting Markov
chain is in Fig. 2. The induced stationary probability distribution
{πchannel_2

i } is

πchannel_2
i = λ2 (1− λ2)

i , i = 0, 1, . . . .

In this situation, the client’s cost is

J�
C = ζ

∞
∑

i=0

πchannel_2
i si. (21)

For any server’s policy {Wi} and the incurred client’s policy
{γi}, if the induced client’s cost JC < J�

C , the server can always
raise the prices at some states so that the client’s policy {γi} re-
mains unchanged but JC = J�

C . Due to Assumption 2, the server
will profit more by taking this pricing adjustment. However, the
server cannot improve these values too much. If so, the server
can profit nothing since the client is always willing to choose
channel 2. And therefore, JC > J�

C will never happen, which
makes J�

C an upper bound.
As a consequence, J�

C acts as a constraint for the server.
According to the “constraint” J�

C , the server’s revenue in this
Stackelberg game, with a policy pair ({Wi}, {γi}) and the
induced state probability distribution {πi}, is denoted as:

JS =
1

1− ζ
J�
C − ζ

1− ζ

∞
∑

i=0

πisi. (22)

Second, we show that a pricing policy {W �
i }, under which

γi = 1 for i = 0, 1, . . . , minimizes
∑∞

i=k πi for arbitrary non-
negative k. We prove this by dividing into two cases. Consider
a client’s policy {γi} and its corresponding probability distribu-
tion {πi}. As Fig. 3 shows, the policy {γ�

i} refers to keeping all
the other actions unchanged but only changing at the state sj+1,
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Fig. 4. Client’s policies differing only at sj−1.

where γj = 1 and γj+1 = 0. The corresponding probability dis-
tribution is denoted as {π�

i}. In the figure, “×” means the action
is either 0 or 1. We want to prove that

∑∞
i=k πi ≥

∑∞
i=k π

�
i for

any arbitrary non-negative k. Assume that

πj+1 = μ, π�
j+1 = μ�.

Then

πj+2 = μ (1− λ2) , π�
j+2 = μ� (1− λ1) .

The actions at the other states remain the same and we have

j+1
∑

i=0

πi = μσ1,

j+1
∑

i=0

π�
i = μ�σ1,

where σ1 is a positive constant. Similarly,

∞
∑

i=j+3

πi = μ (1− λ2)σ2,

∞
∑

i=j+3

π�
i = μ� (1− λ1)σ2,

where σ2 is also a positive constant. The following equations
hold for the stationary probability distributions:

μσ1 + μ (1− λ2) + μ (1− λ2)σ2 = 1, (23)

μ�σ1 + μ� (1− λ1) + μ� (1− λ1)σ2 = 1. (24)

Conditioned on Equation (23) and Equation (24), the channel
transmission quality condition 1 > λ1 > λ2 > 0 indicates that

μ < μ�, (25)

μ (1− λ2) > μ� (1− λ1) . (26)

Then,

∞
∑

i=k

πi ≥
∞
∑

i=k

π�
i

can be derived from these two inequalities (25) and (26) for any
non-negative k.

For the case shown in Fig. 4, we can similarly derive that
∑∞

i=k πi ≥
∑∞

i=k π
�
i for any non-negative k, where γj−1 = 0,

γj = 1 and γ�
j−1 = 1.

According to the above two cases, we conclude that using
channel 1 at all the states, which means γi = 1 for i = 0, 1, . . . ,
minimizes

∑∞
i=k πi. We denote this policy as {γ�

i }, and the
induced probability distribution as {π�

i }. A price setting policy
which induces {γ�

i } is marked as {W �
i }, and the server’s revenue

is J�
S . For any server policy {Wi} and the corresponding client’s

optimal policy {γi} with the induced probability distribution

Fig. 5. Markov chain of only using channel 1 at si.

{πi} and server’s revenue JS , the following inequality holds:

J�
S − JS =

(

1

1− ζ
J�
C − ζ

1− ζ

∞
∑

i=0

π�
i si

)

−
(

1

1− ζ
J�
C − ζ

1− ζ

∞
∑

i=0

πisi

)

=
ζ

1− ζ

( ∞
∑

i=0

πisi −
∞
∑

i=0

π�
i si

)

≥ 0. (27)

The last inequality holds because of Lemma 2. Finally, we
finish the proof by comparing J�

S and JS . {W �
i } maximizes

the server’s revenue and therefore, this is an optimal policy. �
As for the server, Theorem 2 shows that an optimal {W �

i }
should be made to incentivize the client sensor such that the
client’s optimal policy {γ�

i } is always to use channel 1 and the re-
sulting cost is J�

C . Under this optimal policy pair ({W �
i }, {γ�

i }),
the probability distribution {π�

i } is

π�
i = λ1 (1− λ1)

i , i = 0, 1, . . . . (28)

The server’s optimal revenue is

J�
S =

1

1− ζ
J�
C − ζ

1− ζ

∞
∑

i=0

π�
i si

=
ζ

1− ζ

∞
∑

i=0

[λ2 (1− λ2)
i − λ1 (1− λ1)

i]si.

(29)

After characterizing the properties of an optimal server’s
strategy, we provide a method to find such an optimal strategy.
Notice that under an optimal {W �

i }, whether the client uses
channel 1 at all the states does not change the client’s average
cost J�

C . Then the optimal price at each state i can be calculated
assuming that the client’s optimal scheduling policy is to use
channel 1 only at the state i. For notation simplicity, we define
a function φ(·) as

φ(i) =
λ2

1− (λ1 − λ2) (1− λ2)
i
.

For a state si, we assume that the client’s optimal scheduling
policy is γi = 1while γj = 0 for j 
= i, and the induced Markov
chain is shown in Fig. 5. Consequently, the induced stationary
probability distribution {π̄i} is shown in Table I. It is trivial to
verify that the summation of the stationary probabilities in the
second column is equal to 1. Thus the designed optimal price
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TABLE I
STATIONARY PROBABILITY DISTRIBUTION {π̄i}

W �
i at state si can be calculated as follows:

W �
i =

1

π̄i (1− ζ)

(

J�
C − ζ

∞
∑

j=0

π̄jsj

)

. (30)

Interestingly, this optimal pricing policy features some mono-
tone structures as stated in the following theorem:

Theorem 3: In the SSSC scenario, the server’s optimal strat-
egy {W �

i } is nondecreasing in the state si.
Proof: For any i ≥ 0, it can be calculated by combining (21)

and (30):

W �
i =

ζ

1− ζ

λ1 − λ2

(1− λ2)i

⎡

⎣−
i
∑

j=0

(1− λ2)
j+isj

+

∞
∑

j=i+1

(1−λ2)
j−1[1−(1−λ2)

i+1]sj

⎤

⎦.

Then we make the comparison between W �
i and W �

i+1:

W �
i+1 −W �

i =
ζ

1− ζ

λ1 − λ2

(1− λ2)
i+1

⎡

⎣

∞
∑

j=i+2

λ2 (1− λ2)
j−1 sj

− (1− λ2)
i+1 si+1

⎤

⎦

≥ ζ

1− ζ

λ1 − λ2

(1− λ2)
i+1

si+1

⎡

⎣

∞
∑

j=i+2

λ2 (1− λ2)
j−1

− (1− λ2)
i+1

⎤

⎦

= 0.

(31)

The inequality holds due to the well-ordering of si. Thus an op-
timal strategy designed using this mechanism is nondecreasing
in the states. �

So far, we have shown that the server’s optimal strategy is
to drive the client to use the good channel 1 all the time. This
is also an equilibrium of this Stackelberg game. An optimal
strategy of the server can be computed, and the optimal price is
nondecreasing in the state. This indicates that when the remote
estimation error covariance is larger, the server can set higher
prices and profit more. However, the price cannot be set too high.
It must guarantee the existence of the “constraint” J�

C .
Remark 1: This is a Stackelberg game model, where the

server has priority over the client. For both the server and the
client, they make decisions based on the current state. In the first
period, the server determines the channel pricing strategy {Wi}.
This decision is irreversible. In the second period, the client
makes the channel scheduling strategy {γi} after observing the
pricing strategy given by the server. From the above analysis, we
can find that the server’s optimal strategy restricts the actions of
the client. The client has no choice but to pay J�

C all the time.
The server is taking advantage of being the “first mover” [17].
This case is similar to a monopoly.

C. Perturbation Analysis

In this subsection, we mainly focus on how J�
C and J�

S

change when perturbing the weight parameter ζ. Recall that the
client’s objective value under the Stackelberg optimal strategy
pair ({W �

i }, {γ�
i }) is

J�
C = ζ

∞
∑

i=0

λ2 (1− λ2)
i si,

and the server’s maximum revenue is given by

J�
S =

ζ

1− ζ

∞
∑

i=0

[

λ2 (1− λ2)
i − λ1 (1− λ1)

i
]

si,

where ζ ∈ (0, 1). It can be concluded that both J�
C and J�

S are
strictly increasing in the parameter ζ, which means that the
increase of ζ brings more benefits to the server and squeezes
more out of the client. A larger ζ implies that the client attaches
more importance to the estimation quality. Consequently, the
client needs to pay more for such concerns since this is actually
a monopoly market held by the server. On the contrary, if the
client does not pay much attention to the estimation quality and
is easily contented, the server can do nothing but earn a meager
profit. The analysis with regard to the weight parameter ζ again
emphasizes the server’s monopoly position in this Stackelberg
game.

V. EXTENSION TO MULTIPLE PROCESSES:
SINGLE-SERVER-MULTI-CLIENT GAME

In this extension section, consider a single-server-multi-client
(SSMC) scenario as portrayed in Fig. 6. There exist M in-
dependent processes, which are all asymptotically stable, i.e.,
ρ(A�) < 1. For each client 
, its LTI process is

x�
k+1 = A�x

�
k + w�

k, (32)

y�k = C�x
�
k + v�k. (33)
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Fig. 6. SSMC scenario.

In the infinite time horizon case, each client 
 has its own
objective function J�

C , which is still a linear combination of
the trace of expected estimation error covariance and the cost
when using channel 1:

min
{γ�

k}
J�
C � lim sup

N→∞
1

N

N
∑

k=1

[

ζ�Tr
{

E
[

P �
k

]}

+ (1− ζ�)γ�
kWk

]

,

(34)

for some weight parameter ζ� ∈ (0, 1). For every policy {Wk}
given by the server, each client 
 needs to determine the optimal
action {γ�

k} to minimize itsJ�
C . While for the server, its objective

function JS is the total revenue from all the M clients:

max
{Wk}

JS � lim inf
N→∞

1

N

N
∑

k=1

M
∑

�=1

γ�
kWk. (35)

Assumption 3: The server’s pricing strategy is a “constant”
one, i.e., {W}.

Remark 2: In this SSMC scenario, if the server can set the
price {W �

k} independently for each client, then the pricing and
selection method in the SSSC scenario can be applied here.
However, such kind of pricing policy may undermine the market
fairness since the server provides different charging policies
for different clients. Besides, a general time-varying pricing
policy {Wk}makes the problem intractable since the state space
S1 × S2 × · · · × SM grows quickly with the number M of
clients. The server needs to take into account the states of all
clients when making a decision. It becomes quite difficult for the
server to set optimal prices based on such a state space whose
size increases exponentially. To get some insights regarding
the pricing and selection strategies in the SSMC scenario, we
assume that once the price Wk is determined, it cannot be
changed at other times or other states, which implies a constant
pricing policy. Thus the server needs to design the variable W
to maximize its benefits. While for the clients, once the channel
1 price W is determined, they are totally independent of each
other. Although this assumption seems to be a little bit strong, it
makes the analysis about optimal strategy pair possible. Some
theoretic results regarding this Stackelberg game equilibrium
are presented in the following subsections.

A. Client’s Optimal Policy

In this subsection, we prove that for any given W , each client
has an optimal stationary and deterministic policy, which is
nondecreasing in its state.

Define the remote estimator’s state set for the client 
 as

S� �
{

s�0, s
�
1, s

�
2, . . .

}

where 0 ≤ s�0 ≤ s�1 ≤ s�2 . . . according to Lemma 1. The action
set is AC� = {0, 1}, where the action 0 means using channel 2
while action 1 means using the good channel 1. The action taken
at state s�i is γ�

i . The transition probabilities of the states at the
remote estimator are given by:

p
(

s�0 | s�i , γ�
i

)

= γ�
iλ1 +

(

1− γ�
i

)

λ2,

p
(

s�i+1 | s�i , γ�
i

)

= 1− γ�
iλ1 −

(

1− γ�
i

)

λ2,

for i = 0, 1, 2, . . . . The one-stage cost function for the client 

at state s�i is

c
(

s�i , γ
�
i

)

= ζ
[

p
(

s�0|s�i , γ�
i

)

s�0 + p
(

s�i+1|s�i , γ�
i

)

s�i+1

]

+ (1− ζ)γ�
iW.

For each client 
, Theorem 1 holds under any given strategyW
by the server in this SSMC scenario. That means there always
exists an optimal stationary and deterministic policy for each
client. Furthermore, we will show that the optimal strategy
is nondecreasing in the state. The following Definition 2 is
necessary for the proof of Theorem 4.

Definition 2: For the well ordered sets X and Y and a real-
valued function g (x, y) on X × Y , g is superadditive if for
x+ ≥ x− in X and y+ ≥ y− in Y ,

g(x+, y+) + g(x−, y−) ≥ g(x+, y−) + g(x−, y+).

If the reverse inequality holds, g is subadditive [18].
Theorem 4: Each client 
′s optimal stationary and determin-

istic policy has a threshold structure under each fixed W given
by the server. This means only when the remote estimation
error covariance is beyond some threshold, the client sensor will
choose to use channel 1.

Proof: Here we prove that client 
′s optimal strategy is
nondecreasing in the state s�i .

Theorem 8.11.4 in [18] states that if the one stage cost and
the transition probability satisfy the following conditions in the
countable state space model under the average reward criteria,
then there exists an optimal monotone policy.

1) c
(

s�i , γ
�
i

)

is nondecreasing in s�i for all γ�
i ∈ AC� ,

2)
∑∞

j=k p
(

s�j | s�i , γ�
i

)

is nondecreasing in s�i for all non-
negative integer k and γ�

i ∈ AC� ;
3) c

(

s�i , γ
�
i

)

is a subadditive function on S × AC� ; and
4)

∑∞
j=0 p

(

s�j | s�i , γ�
i

)

u
(

s�j
)

is a superadditive function on
S × AC� for nonincreasing u.

We verify these conditions point by point: Condition (1) holds
trivially for any given W . As for condition (2),

∞
∑

j=k

p
(

s�j | s�i , γ�
i

)

=

⎧

⎪
⎨

⎪
⎩

1, k = 0,

1− γ�
iλ1 − (1− γ�

i )λ2, 1 ≤ k≤ i+1,

0, k > i+ 1,
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is invariant in s�i . For the one stage cost function, we have
[

c
(

s�i+1, 1
)

+ c
(

s�i , 0
)]− [

c
(

s�i+1, 0
)

+ c
(

s�i , 1
)]

= ζ
[

λ1s
�
0 + (1− λ1)s

�
i+2

]

+ (1− ζ)W

+ ζ
[

λ2s
�
0 + (1− λ2)s

�
i+1

]− ζ
[

λ2s
�
0 + (1− λ2)s

�
i+2

]

− ζ
[

λ1s
�
0 + (1− λ1)s

�
i+1

]− (1− ζ)W

= −ζ(λ1 − λ2)
(

s�i+2 − s�i+1

)

≤ 0.

This inequality implies the subadditivity of c
(

s�i , γ
�
i

)

, which
verifies condition (3). The superadditivity in condition (4) is
shown as follows:
⎡

⎣

∞
∑

j=0

p
(

s�j | s�i+1, 1
)

u
(

s�j
)

+

∞
∑

j=0

p
(

s�j | s�i , 0
)

u
(

s�j
)

⎤

⎦

−
⎡

⎣

∞
∑

j=0

p
(

s�j | s�i+1, 0
)

u
(

s�j
)

+

∞
∑

j=0

p
(

s�j | s�i , 1
)

u
(

s�j
)

⎤

⎦

= λ1u
(

s�0
)

+ (1−λ1)u
(

s�i+2
)

+λ2u
(

s�0
)

+ (1−λ2)u
(

s�i+1
)

− [

λ2u
(

s�0
)

+ (1− λ2)u
(

s�i+2

)]

− [

λ1u
(

s�0
)

+ (1− λ1)u
(

s�i+1

)]

= (λ1 − λ2)
[

u
(

s�i+1

)− u
(

s�i+2

)]

≥ 0, (36)

where the last line holds since u(·) is a nonincreasing function.
As all the conditions are verified, this completes the proof. �

Intuitively, Theorem 4 indicates that, once the price W is
designed, the client’s optimal policy is to choose to use channel
1 when the trace of the remote estimation error covariance is
larger than some threshold.

B. Server’s Optimal Policy

In the last subsection, we obtained the threshold structure of
each client’s optimal strategy once the server’s price strategy W
is set. We will next show that the threshold is nondecreasing in
the price W .

Theorem 5: The threshold of each client’s optimal strategy
is nondecreasing in W .

Proof: Suppose that when the server’s policy isW ′, client 
’s
optimal threshold structure strategy is {γi}� and it begins to use
channel 1 at the state s�j . The induced probability distribution of
the states is denoted by {πi}�. Due to the optimality of {γi}�,

J�
C =

∞
∑

i=0

πis
�
i +

∞
∑

i=j

πiW
′ ≤

∞
∑

i=0

π�
is

�
i +

∞
∑

i=j−1

π�
iW

′, (37)

where {π�
i}� is induced by the policy {γ�

i}� as illustrated in
Fig. 7. {γ�

i}� means starts to use channel 1 at s�j−1.
Suppose that the server increases the price to W ′ + ε, where

ε > 0. We need to prove that the client’s cost cannot be smaller
if the threshold is less than s�j . We compare the average cost
induced by {γi}� and {γ�

i}� under W ′ + ε. First, we show that

Fig. 7. Illustration of the nondecreasing threshold.

∑∞
i=j−1 π

�
i −

∑∞
i=j πi ≥ 0 by direct calculation:

∞
∑

i=j−1

π�
i −

∞
∑

i=j

πi

=
λ1λ2

λ1 − (λ1 − λ2)(1− λ2)j−1

(1− λ2)
j−1

λ1

− λ1λ2

λ1 − (λ1 − λ2)(1− λ2)j
(1− λ2)

j

λ1

=
λ1λ

2
2(1− λ2)

j−1

[λ1 − (λ1 − λ2)(1− λ2)j−1] [λ1 − (λ1 − λ2)(1− λ2)j ]

≥ 0.

(38)

And then we show that the client 
’s average cost induced by the
scheduling policy {γi}� is no larger than that induced by {γ�

i}�
under the pricing W ′ + ε:

∞
∑

i=0

π�
is

�
i +

∞
∑

i=j−1

π�
i (W

′ + ε)

=
∞
∑

i=0

π�
is

�
i +

∞
∑

i=j−1

π�
iW

′ +
∞
∑

i=j−1

π�
i ε

≥
∞
∑

i=0

πis
�
i +

∞
∑

i=j

πiW
′ +

∞
∑

i=j−1

π�
i ε

≥
∞
∑

i=0

πis
�
i +

∞
∑

i=j

πiW
′ +

∞
∑

i=j

πiε

=
∞
∑

i=0

πis
�
i +

∞
∑

i=j

πi (W
′ + ε) . (39)

The first inequality holds by virtue of (37) and the second
inequality is deduced from (38). For any other threshold which
is less than s�j , the argument is similar and we omit it here. As a
result, when the price W increases, the client cannot pay less if
the threshold becomes smaller. Thus the threshold of the client’s
optimal strategy is nondecreasing in W . �

For any given W , client 
’s threshold is denoted as T�(W ),
which is a nondecreasing function inW . Intuitively, it means that
the higher the price is set, the lower the chance of using the high
transmission quality channel is. In this asymptotically stable
system scenario, once the priceW is higher than some valueW�,
the client 
 will never use channel 1. Thus the revenue from this
client is 0 for the server. LetWmax = max{W1,W2, . . . ,WM}.
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Fig. 8. An optimal price setting strategy.

Fig. 9. Reduce the prices at some states.

The server’s total revenue is

JS = sup
W∈[0,Wmax]

M
∑

�=1

λ2(1− λ2)
T�(W )

λ1 − (λ1 − λ2)(1− λ2)T�(W )
W, (40)

where the supremum always exists. In other words, there exists
an optimal W � such that the server benefits most.

VI. SIMULATION

In this section, numerical examples are provided to illustrate
the scenarios of both the SSSC and SSMC Stackelberg game
frameworks.

Consider a single-process case with

A =

[

0.85 0

0 0.9

]

, C =
[

1 0
]

,

Q =

[

0.3 0

0 0.3

]

, R = 0.3,

and communication network channels given by λ1 = 0.9, λ2 =
0.2. Let the weight parameter in (8) be ζ = 0.5, which means
attaching the same importance to both the estimation error co-
variance and channel costs. In this scenario, Fig. 8 shows that the
critical optimal price setting curve of the server is nondecreasing
in the state. The resulting client’s optimal strategy is to use
channel 1 all the time. The server’s optimal revenue under this
policy pair ({W �

i }, {γ�
i }) is J�

S = 0.4489.
Suppose now that the server reduces the prices at states

s1, s5, s10 and s15 by 0.3, respectively. The resulting client’s
optimal strategy is then as shown in Fig. 9. The server’s revenue
is JS = 0.2213 i.e., is reduced by half. On the contrary, if the
server increases the prices at states s1, s5, s10 and s15 by 0.3,

Fig. 10. Improve the prices at some states.

Fig. 11. Client �’s threshold and the server’s revenue from �.

respectively, the resulting client’s optimal strategy is as shown
in Fig. 10. The server’s revenue is JS = 0.4214. We notice that
the client uses channel 2 at those states due to the expensive
prices. These two cases illustrate the optimality of {W �

i }.
In the SSMC scenario (multiple-processes), consider a three

clients case with system parameters as follows:

A1 =

[

0.85 0

0 0.9

]

, C1 =
[

1 0
]

,

Q1 =

[

0.3 0
0 0.3

]

, R1 = 0.3,

A2 =

[

0.85 0
0 0.89

]

, C2 =
[

1 0
]

,

Q2 =

[

0.28 0

0 0.28

]

, R2 = 0.28,

A3 =

⎡

⎢

⎣

0.85 0 0

0 0.87 0

0 0 0.85

⎤

⎥

⎦ , C3 =
[

0 1 0
]

,

Q3 =

⎡

⎢

⎣

0.27 0 0

0 0.27 0

0 0 0.27

⎤

⎥

⎦ , R3 = 0.27.

Let all the weight parameters ζ� in (34) be 0.5. The relative
value iteration algorithm (See Chapter 8.5.5 in [18]) is applied
to solve the MDP problem. Fig. 11 portrays the nondecreasing
threshold of the client 
 with respect to the price W given by
the server, and the server’s revenues from 
, 
 = {1, 2, 3}. In



NI et al.: PRICING AND SELECTION OF CHANNELS FOR REMOTE STATE ESTIMATION USING A STACKELBERG GAME FRAMEWORK 667

Fig. 12. Client �’s cost J�
C under the optimal selection policy for each W .

this SSMC scenario, we can directly find from Fig. 11 that the
optimal pricing strategy is W � = 0.3925, and the maximum
total revenue is J�

S = 0.5541. Fig. 12 displays the client 
’s
cost J�

C under its optimal selection policy for each W given
by the server. As W increases, the client 
’s minimum cost J�

C

converges to J��
C , which can be calculated using Equation (21)

in the SSSC scenario. It can be seen that under some priceW , its
resulting minimum J�

C can be smaller thanJ��
C . This implies that

Assumption 3 on the server’s “constant” pricing strategy breaks
the absolute monopoly and brings more vitality to clients.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented a Stackelberg game-theoretic
framework for communication channel pricing and selection.
The server aims to reap the most revenue, while the clients
aim to minimize the remote estimation error covariance and the
communication cost. In both the SSSC and SSMC scenarios, we
proved the existence of an optimal stationary and deterministic
strategy for each client. Our results further showed that the
optimal policy pair of the server and clients features special
structures (under suitable assumptions).

There are several directions from which this work can
progress. First, if the processes of some clients are unstable (i.e.,
ρ(A�) > 1), then it may be possible that the server’s maximum
revenue will become extremely large if the successful channel
transmission probabilities are quite small. Second, the single
server is a monopoly player and thus clients have little freedom.
One may consider scenarios with multiple servers. Finally, im-
perfect information Stackelberg games can be explored when
clients cannot receive ACKs reliably.

APPENDIX A
PROOF OF LEMMA 1

Proof: Lemma A.1 in [19] shows that the inequality (3)
holds. Since the trace of a positive semi-definite matrix is always
non-negative, it is trivial to verify that the inequality (4) holds.�

APPENDIX B
PROOF OF THEOREM 1

Proof: When the state space S of an MDP is countable,
instead of finite, an optimal stationary and deterministic policy
may not exist and sometimes, the average cost may not be
bounded (See Example 7.1.3 and Example 7.1.4 in [11]). Some
conditions are needed to guarantee the existence of an optimal
stationary and deterministic policy in the countable state space
case. One way to verify the existence is to show that the (SEN)
assumptions in [11] hold. As a consquence, according to Theo-
rem 7.5.6. in [11], the average cost optimality equation (ACOE)

holds, which here refers to Equation (15) in our problem. Hence,
we need to check the three conditions in the (SEN) assumptions
which are stated in [11] as follows. Define the discounted value
function fα under the optimal policy {γk} with the discount
parameter α as:

fα(si) � inf
{γk}

∞
∑

k=1

αkE [ck (Tr{Pk−1}, γk) | Tr{P0} = si] .

Let s0 be a distinguished state. Define a function Δfα(si) �
fα(si)− fα(s0).

(SEN1). The quantity (1− α) fα(s0) is bounded for all α ∈
(0, 1).

(SEN2). There exists a non-negative finite function M such
that Δfα(si) ≤ M(si) for all si ∈ S and α ∈ (0, 1).

(SEN3). There exists a non-negative finite constant L such
that −L ≤ Δfα(si) for all si ∈ S and α ∈ (0, 1).

We verify these three conditions one by one. First, we consider
a simple “always using channel 2” policy, i.e. γk = 0 for all
k ≥ 1. Then the resulting one-stage cost function is

ck (Tr {Pk−1} , 0) = ζTr {E [Pk]}
= ζ

[

λ2Tr{P}+(1−λ2) Tr{h (Pk−1)}
]

.

Since that our problem considers an asymptotically stable sys-
tem, Tr{h (Pk)} is always upper bounded by some positive
constant. And therefore, there exists a positive constant C such
that

lim
N→∞

1

N

N
∑

k=1

E [ck (Tr{Pk−1}, 0)] = C < ∞

for any initial value Tr{P0}. Notice that the discounted cost is
less than the average cost and hence we have

∞
∑

k=1

αkE [ck (Tr{Pk−1}, 0)] < C < ∞

which implies the condition (SEN1).
Second, for any initial value si, the following inequality

always holds:

0 < fα(si) ≤
∞
∑

k=1

αkE [ck (Tr{Pk−1}, 0)] < C < ∞.

It is trivial to see that Δfα(si) has both upper and lower bound
for all si ∈ S andα ∈ (0, 1). The conditions (SEN2) and (SEN3)
are then verified. Once the three conditions are checked, we can
conclude that there exists an optimal stationary and deterministic
sensor selection policy which satisfies the ACOE. �

APPENDIX C
PROOF OF LEMMA 2

Proof: Assume that s−1 = 0 and let k be arbitrary. Then

∞
∑

j=0

mjsj =
∞
∑

j=0

[

mj

j
∑

i=0

(si − si−1)

]
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=
∞
∑

i=0

⎡

⎣(si − si−1)
∞
∑

j=i

mj

⎤

⎦

=
∞
∑

i=1

⎡

⎣(si − si−1)
∞
∑

j=i

mj

⎤

⎦+ s0

∞
∑

j=0

mj

≥
∞
∑

i=1

⎡

⎣(si − si−1)

∞
∑

j=i

nj

⎤

⎦+ s0

∞
∑

j=0

nj

=

∞
∑

j=0

njsj . (41)

Due to the boundedness of sequence {sj} and (18), the limits
∑∞

j=0 mjsj and
∑∞

j=0 njsj always exist. Thus the inequality
(41) makes sense. �
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