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a b s t r a c t

In many cyber–physical systems, we encounter the problem of remote state estimation of geo-
graphically distributed and remote physical processes. This paper studies the scheduling of sensor
transmissions to estimate the states of multiple remote, dynamic processes. Information from the
different sensors has to be transmitted to a central gateway over a wireless network for monitoring
purposes, where typically fewer wireless channels are available than there are processes to be
monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately,
i.e., at each time instant one needs to decide which sensors have network access and which ones do
not. To address this scheduling problem, we formulate an associated Markov decision process (MDP).
This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm
that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling
algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to
significantly outperform these algorithms for many example scenarios.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–physical systems (CPS) are systems built through in-
tegration of sensors, communication networks, controllers, dy-
namic (physical) processes and actuators. They are playing an
increasingly important role in modern society, in areas such as
energy, transportation, manufacturing, and healthcare. The scale
of typical CPS such as smart-grids, vehicular traffic networks and
smart factories is large. The realization of these systems faces
substantial challenges arising in diverse disciplines, ranging from
communications and control to computing (Poovendran et al.,
2012). Supporting estimation and control applications over wire-
less networks has posed considerable challenges for the opera-
tion of networks and the design of protocols (Johansson, Pappas,
Tabuada & Tomlin, 2014).

Fig. 1 illustrates an example of a networked cyber–physical
system for the purposes of remote state estimation. A number
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of processes are observed by sensors, with the sensors sending
information via a shared wireless network (consisting of M wire-
less channels) to a gateway, that computes state estimates of
each of these processes. Such situations could, for instance, occur
if a central controller wishes to monitor a number of different
processes in an industrial plant. From a networking perspective,
one challenge lies in scheduling transmissions from the sensors
to the gateway, because of both the volatile nature of wireless
channels and the need to carefully schedule transmissions over
a shared medium (Molisch, 2011). While such channels provide
the opportunity for diversity, they also aggravate the dynamic
scheduling problem: which channel should be assigned to which
sensor, and when? The problem of scheduling is further exacer-
bated by estimation and control requirements, which may be at
odds with typical communication performance parameters such
as waiting times and throughput (Chaskar & Madhow, 2003; Wu,
Srikant, & Perkins, 2007).

The sensor scheduling problem wherein a single dynamic pro-
cess is observed by multiple sensors has been studied in e.g. Hov-
areshti, Gupta, and Baras (2007), Leong, Dey, and Quevedo (2017),
Mo, Garone, and Sinopoli (2014) and Zhao, Zhang, Hu, Abate, and
Tomlin (2014). More recently, sensor scheduling problems where
multiple processes are observed by different sensors have also
been investigated (Han, Wu, Zhang, & Shi, 2017; Wu, Ren, Dey,
& Shi, 2018). In the case of single channel systems (M = 1),
optimal sensor scheduling problems without packet drops have
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been previously studied in Han et al. (2017). For the case M >
1 and additionally with packet transmission length constraints,
some structural results were derived in Wu et al. (2018), however
numerical results were only provided for the M = 1 case. The
focus of the current paper is on the case M > 1, where each
wireless channel can also experience packet drops. In particular,
we want to provide computationally scalable methods for solving
optimal sensor scheduling problems.

For the dynamic scheduling problem, the gateway selects at
each discrete time instant a subset (of size M) of the N sen-
sors which communicate the sensor readings to the gateway, to
update its estimates. We assume that the gateway has knowl-
edge of the process dynamics observed by each sensor, to allow
Kalman filter-type estimation algorithms to be run. The schedul-
ing decision could be informed by knowledge about the quality
of the estimates as well as by conjectures about channel state
and probability of success of transmitting the readings to the
gateway. Knowledge of the channel states or channel statistics
is not assumed to be known to the gateway (i.e. scheduling
is done in a model-free manner), as such knowledge may be
expensive to obtain (requiring e.g. the transmission of pilot sig-
nals), and furthermore since channel statistics are often also
time-varying (Eisen, Gatsis, Pappas, & Ribeiro, 2018).

As previously mentioned, the scale of a CPS is typically large.
For our scheduling problem, this leads to an associated MDP with
large state and action spaces. Traditional reinforcement learning
based algorithms such as Q -learning cannot be used to solve
such MDPs due to Bellman’s curse of dimensionality (Bertsekas,
2005). The curse of dimensionality can be overcome by the use of
function approximations (Sutton & Barto, 2018). Deep Q-Network
(DQN) (Mnih et al., 2013, 2015) is one such algorithm using
deep neural networks as function approximators, that has shown
tremendous promise in solving large MDPs in a scalable, model-
free manner. Deep reinforcement learning techniques have also
been recently used to study difficult problems arising in control.
The work (Demirel, Ramaswamy, Quevedo, & Karl, 2018) stud-
ies a similar problem in controller scheduling, however it does
not consider packet drops, and requires extra overhead in the
transmission of information from the sensors to the scheduler
at every time step. The work of Baumann, Zhu, Martius, and
Trimpe (2018) studies event-triggered control problems where
the communication and control policies are learnt from scratch
using an actor-critic approach.

The paper is organized as follows. The system model is pre-
sented in Section 2. The sensor scheduling problem and associ-
ated MDP is described in Section 3, together with derivation of
a stability condition and discussion of computational issues. The
proposed deep reinforcement learning approach to the schedul-
ing problem is given in Section 4. Numerical studies can be found
in Section 5.

2. System model

2.1. Sensing model

A diagram of the system model is shown in Fig. 1. We consider
N independent, linear, discrete-time processes

xi,k+1 = Aixi,k + wi,k, i = 1, . . . ,N (1)

where xi,k ∈ Rnxi is the state of process i at time k, and the
process noise wi,k is i.i.d. (in time) Gaussian with zero mean and
covariance matrix Wi ≥ 0.1 Each process is measured by a sensor
as

yi,k = Cixi,k + vi,k, i = 1, . . . ,N (2)

1 For a symmetric matrix X , we say that X > 0 if it is positive definite, and
X ≥ 0 if it is positive semi-definite.

Fig. 1. Remote state estimation with sensor scheduling.

where yi,k ∈ Rnyi is the measurement of process i at time k, and
the measurement noise vi,k is i.i.d. Gaussian with zero mean and
covariance matrix Vi > 0. The noise processes {wi,k} and {vj,k} are
assumed to be mutually independent for all i and j.

We assume that each sensor has the computational capability
to run a Kalman filter, i.e., each sensor i can compute local state
estimates2 and estimation error covariance matrices
x̂si,k|k−1 ≜ E[xi,k|yi,0, . . . , yi,k−1]

x̂si,k ≜ E[xi,k|yi,0, . . . , yi,k]

P s
i,k|k−1 ≜ E[(xi,k − x̂si,k|k−1)(xi,k − x̂si,k|k−1)

T
|yi,0, . . . , yi,k−1]

P s
i,k ≜ E[(xi,k − x̂si,k)(xi,k − x̂si,k)

T
|yi,0, . . . , yi,k],

using the Kalman filter equations (Anderson & Moore, 1979).
We will assume that every pair (Ai, Ci) is observable, and every
pair (Ai,W

1/2
i ) is controllable. Then, the steady-state value of P s

i,k
for k → ∞ exists for each sensor, and will be denoted by P i.
For convenience of presentation, we will assume that the local
Kalman filters at the sensors have reached steady state,3 so that
P s
i,k = P i,∀i = 1, . . . ,N,∀k.

2.2. Scheduling and channel model

The sensors wish to transmit their local state estimates x̂si,k to
a central gateway, which aims to estimate all of the N processes
{xi,k}, i = 1, . . . ,N . Sensor transmissions are over a shared wire-
less network with M channels. In typical applications, M ≪ N
due to limited resources. Thus, (at most) only M out of the N
sensors can transmit at any given time. At each time step k, a
scheduler will allocate each of the M channels to one of the
sensors. We assume that each channel is allocated to a different
sensor, although the case where multiple channels are allocated
to the same sensor (e.g. as in Mesquita, Hespanha, and Nair
(2012)) can also be handled using our techniques. Define decision
variables am,k ∈ {1, . . . ,N} for m = 1, . . . ,M as

am,k ≜ i if sensor i is scheduled to transmit on

channel m at time k. (3)

Channel transmissions can experience packet drops. Define
γm,k ∈ {0, 1} for m = 1, . . . ,M such that

γm,k ≜

{1, if transmission on channel m at time k
is successfully received at gateway

0, otherwise.

2 In situations where channels experience packet drops, transmission of local
state estimates in general gives better estimation performance than transmission
of raw measurements (Xu & Hespanha, 2005). It is worth noting that the
situation where raw measurements are transmitted can also be handled using
the deep Q -learning technique considered in the present work.
3 Convergence to steady state in general occurs at an exponential

rate (Anderson & Moore, 1979).
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Each channel is modelled using the Gilbert–Elliott (or Markovian
packet drop (Huang & Dey, 2007)) model, with

pm ≜ P(γm,k = 0|γm,k−1 = 1),
qm ≜ P(γm,k = 1|γm,k−1 = 0), m = 1, . . . ,M,

and with the channels being independent of each other. pm and
qm are also known, respectively, as the failure rate and recov-
ery rate. As mentioned in the Introduction, we will not assume
knowledge of the channel parameters pm, qm,m = 1, . . . ,M at
the scheduler. We note that our model-free approach can also
be readily extended to handle more general finite state Markov
channels (Quevedo, Østergaard, & Ahlén, 2014; Sadeghi, Kennedy,
Rapajic, & Shams, 2008).

2.3. Protocol assumptions

Scheduling is assumed to be done at the gateway, with the
decisions am,k fed back to the sensors.4 We assume that this
(downlink) transmission from gateway to sensor works without
errors. We justify this by using all M stochastically independent
channels to transmit this signalling information, resulting in an
exponentially reduced error probability. Error performance can
be further improved by coding across channels (rather than just
simple repetition coding) and time (since signalling information
is relatively small, time overhead can be invested) (Molisch, 2011;
Proakis & Salehi, 2008).

After these channel assignments have been received by the
sensors, they send their respective data (local state estimates) to
the gateway. Once these (uplink) transmissions are complete, we
move to the next time period k+ 1.

2.4. Remote estimation at gateway

At the gateway, state estimates and estimation error covari-
ances of each of the processes are computed similar to Shi,
Epstein, and Murray (2010) and Xu and Hespanha (2005), as
follows:

x̂i,k =
{

x̂si,k, if ∃m s.t. am,k = i and γm,k = 1
Aix̂i,k−1, otherwise

Pi,k =
{

P i, if ∃m s.t. am,k = i and γm,k = 1
hi(Pi,k−1), otherwise,

(4)

where hi(.), i = 1, . . . ,N , is defined as

hi(X) ≜ AiXAT
i +Wi. (5)

As mentioned in the Introduction, the gateway is assumed to have
knowledge of the parameters for each of the N processes, which
allows (4) to be (causally) computed for each process.

3. Problem description

The gateway wishes to find a scheduling policy to minimize
the average sum of the trace of the estimation error covariance
matrices across all sensors and all times. We will formulate a
Markov decision process (MDP) to solve the associated sequential
decision making problem:

min
{(a1,k,...,aM,k)}

lim sup
T→∞

1
T
E

[
T−1∑
k=0

N∑
i=1

trPi,k

]
. (6)

4 Scheduling can also be done inside the network (e.g., at a wireless access
point) provided γm,k−1 are fed back to the network to allow Pi,k−1, i = 1, . . . ,N
to be reconstructed. This makes no difference for the approach considered here.

We assume that the channel allocations at time k can depend
on

(P1,k−1, . . . , PN,k−1, γ1,k−1, . . . , γM,k−1), (7)

namely the estimation error covariances and channel transmis-
sion outcomes at the previous time step, which is information
that is available to the gateway. From (4) we see that Pi,k is always
of the form hn

i (P i) for some n ∈ N, where hn
i (.) denotes the n-

fold composition of hi(.) given in (5), with h0
i (.) being the identity.

Define the holding time of sensor i at time k as

τi,k ≜ min{τ ≥ 0 : ∃m s.t. am,k−τ = i and γm,k−τ = 1},

which represents the amount of time since the last successful
transmission of sensor i to the gateway. Then we can express Pi,k
as

Pi,k = hτi,k
i (P i),

and therefore the channel allocations at time k can, equivalently,
depend on

(τ1,k−1, . . . , τN,k−1, γ1,k−1, . . . , γM,k−1), (8)

which is of smaller dimension than (7), as each τi,k−1 is scalar
while each Pi,k−1 is a matrix. Below we will describe more for-
mally problem (6) as an MDP.

3.1. Formulation as a Markov decision process

State space: From the discussion above, the vector (8) can be
regarded as the state5 of the MDP (6) at time k, and thus the
state space is NN

× {0, 1}M (where we include 0 in the natural
numbers N).

Action space: Next, we have a finite action space

{(a1,k, . . . , aM,k)|a1,k, . . . , aM,k all distinct},

corresponding to the N!
(N−M)! different ways of allocating the M

channels to the N sensors.

Cost function: Finally, the single stage cost at time k is

Jk =
N∑
i=1

trPi,k. (9)

Remark 1. As the channel parameters pm, qm,m = 1, . . . ,M are
assumed to be unknown, we do not include the transition prob-
abilities in our formulation of the MDP, and indeed their knowl-
edge is not required when solving the MDP using reinforcement
learning methods.

3.2. Stability condition

We will derive a sufficient condition on when the optimal
solution to the MDP (6) has bounded average cost, expressed in
terms of the process and channel parameters. Such a stability con-
dition is important for reliable monitoring of all of the processes.
We first make the following assumption:

Assumption 1. Define ρmax ≜ maxi=1,...,N ρ(Ai) and qmax ≜
maxm=1,...,M qm, where ρ(Ai) denotes the spectral radius of Ai. We
assume that

ρ2
max(1− qmax) < 1. (10)

5 Note that the state of the MDP is different from the states xi,k of the
processes. From now on we will mostly use the word ‘‘state’’ to refer to the
state of an MDP.
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Theorem 1. Under Assumption 1, the optimal solution to the MDP
(6) has bounded average cost.

Proof. See the Appendix. ■

Remark 2. For the case of a single process and a single Gilbert–
Elliott channel (with transition parameters p and q), when local
state estimates are transmitted, a necessary and sufficient condi-
tion for bounded expected estimation error covariance is that q
satisfies (Gupta, Hassibi, & Murray, 2007):

ρ(A)2(1− q) < 1. (11)

The condition (10) can be regarded as a generalization of (11)
to multiple processes and multiple channels, and intuitively says
that the overall system has bounded cost provided the best chan-
nel (in terms of having the largest recovery rate qm) can keep
the expected estimation error covariance of the most unstable
process (i.e., having the largest spectral radius) bounded.

3.3. Computational issues

Considering first the case where the channel parameters pm,

qm,m = 1, . . . ,M are known, numerical solution of (6) using
dynamic programming techniques (e.g. using policy iteration or
relative value iteration) is in principle possible, after truncating
the countable state space NN

×{0, 1}M to a finite state space. How-
ever in practice, even for relatively small N and M , the sizes of
both the state and action spaces can still be considerable, making
exact numerical solution infeasible. For the case M = 1 without
packet drops (and relatively small N in numerical computation),
a similar average cost problem has been previously studied (Han
et al., 2017). For M > 1 and additionally also considering packet
transmission length constraints, some structural results were de-
rived in Wu et al. (2018), however numerical results were only
provided for the M = 1 case.

If the channel parameters pm, qm,m = 1, . . . ,M , are unknown
(and hence the MDP transition probabilities are also unknown),
as is assumed in the current work, then standard dynamic pro-
gramming approaches for solving MDPs cannot be used.

In order to overcome the above mentioned problems of large
state space and unknown channel parameters, we will use re-
cently developed reinforcement learning (Q -learning) methods
utilizing deep neural networks for function approximation (Mnih
et al., 2013, 2015), which will be described in the next section.

4. Sensor scheduling using deep reinforcement learning

Consider the discounted cost problem

min
{(a1,k,...,aM,k)}

lim sup
T→∞

E

[
T−1∑
k=0

N∑
i=1

δktrPi,k

]
(12)

where δ < 1 is a discount factor. In this paper we will approx-
imate the solution to problem (6) by solving (12) using rein-
forcement learning techniques, with a discount factor δ close to
1 (Hernández-Lerma & Lasserre, 1996). While Q -learning type al-
gorithms for average reward maximization problems exist
(Abounadi, Bertsekas, & Borkar, 2001; Bertsekas, 2012), most
reinforcement learning algorithms assume a discounted setting,
in particular the deep reinforcement learning techniques of Mnih
et al. (2013, 2015). A more formal justification for solving the
discounted cost problem will be given in Section 4.2.

4.1. Solving the discounted cost problem using deep reinforcement
learning

Let us rewrite (12) as the equivalent discounted reward max-
imization problem:

max
{(a1,k,...,aM,k)}

lim inf
T→∞

E

[
T−1∑
k=0

N∑
i=1

−δktrPi,k

]
. (13)

The Q -factor or action–value function Q (s, a) represents the
expected future reward associated with taking action a when
at state s (Bertsekas, 2012; Sutton & Barto, 2018). The Q -factor
version of the Bellman equation for problem (13) is:

Q ∗(s, a) = E
[
r + δ max

a′
Q ∗(s′, a′)

⏐⏐⏐s, a] ,

where s′ represents the value of the next state given the current
state s and action a, and Q ∗(., .) are the optimal Q -factors. If
we know Q ∗(., .), then we can find a corresponding optimal
stationary policy, with action a∗(s) for each state s as follows:

a∗(s) = argmaxaQ
∗(s, a).

The well-known Q -learning algorithm will, in principle, con-
verge to the optimal Q -factors, but in practice the convergence is
rather slow and requires both the state and action spaces to be
small in order for the method to be feasible. For large MDPs one
can approximate Q ∗(s, a) by a function Q (s, a; θ ) parameterized
by a set of weights θ (Sutton & Barto, 2018), and then learning
these weights. Deep reinforcement learning refers to the case
where the function approximation Q (s, a; θ ) uses a (deep) neural
network, which has been crucial in recent key breakthroughs in
artificial intelligence such as in the playing of Go (Silver et al.,
2016). The deep Q -learning techniques introduced in Mnih et al.
(2013, 2015) also included a number of important innovations
aimed at stabilizing the learning algorithm, in particular (1) the
notion of experience replay6 (see step 9 of Algorithm 1), and (2)
fixing the target Q -network at regular intervals7 (see step 12
of Algorithm 1). Based on these ideas, our approach to solving
problem (13) is given as Algorithm 1.

In Algorithm 1,

at = (a1,t , . . . , aM,t ),

c.f. (3), corresponds to the allocation of the M channels at time t ,
and the single stage reward is given by

rt =
N∑
i=1

−trPi,t .

The state st could be chosen as

st = (τ1,t−1, . . . , τN,t−1, γ1,t−1, . . . , γM,t−1)

as in Section 3.1, however for the simulations in Section 5 we
further augment the state to

st =
(
τ1,t−1, . . . , τN,t−1, tr(h1(P1,t−1)), . . . ,

tr(hN (PN,t−1)), γ1,t−1, . . . , γM,t−1
)
, (14)

where tr(hi(Pi,t−1)) is directly related to the reward function at
time t when we do not receive transmission from sensor i, which
we have found in some cases gives faster convergence for the

6 In experience replay we store the agent’s experiences at each time-step,
pooled over many episodes, into a replay memory. During the minibatch
updates, random samples from the replay memory are drawn. Such a technique
can reduce correlations in the observation data.
7 This technique can reduce correlations between the Q -factors and the

target.
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Algorithm 1 Deep Q -network for wireless sensor scheduling
1: Initialize replay memory D to capacity K
2: Initialize network Q with random weights θ0
3: Initialize target network Q̂ with weights θ− = θ0
4: Initialize s0
5: for t = 0, 1, . . . , T do
6: With probability ε select a random action at , otherwise

select at = argmaxaQ (st , a; θt )
7: Execute at , and observe rt and st+1
8: Store (st , at , rt , st+1) in D
9: Sample random mini-batch of transitions (sj, aj, rj, sj+1)

from D
10: Set zj = rj + δ maxa′ Q̂ (sj+1, a′; θ−) for each sample in

mini-batch
11: Perform a mini-batch gradient descent step on (zj −

Q (sj, aj; θt ))2 to obtain θt+1
12: Every c steps set θ− = θt
13: end for

algorithm. For details of the hyper-parameters for Algorithm 1
used in this paper, see Section 5. We note that Algorithm 1 can be
run online, and is model-free in that it does not need knowledge
of the channel parameters pm, qm,m = 1, . . . ,M .

4.2. Relationship to average cost problem

As stated in Section 3, the aim of the scheduler is to find a
scheduling policy that minimizes the average estimation error
covariances, i.e., solves an associated average cost problem. If the
communication channels satisfy Assumption 1, then it follows
from Theorem 1 that there exists a scheduling policy that ensures
that the cost is bounded. In this subsection, we show that the
policy found by solving the associated discounted cost problem is
an ϵ-optimal policy for the average cost problem.8 Furthermore,
ϵ can be made arbitrarily small by controlling the discount factor,
δ, of the associated MDP.

Recall that Jk given by (9) is the single stage cost associ-
ated with problem (6). Before proceeding, we state Abel’s the-
orem (Hernández-Lerma & Lasserre, 1996) for our setting:

Theorem 2 (Abel). Let {Jk}k≥0 be a sequence of positive real numbers.
Then

lim inf
T→∞

1
T

T−1∑
k=0

Jk ≤ lim inf
δ↑1

(1− δ)
∞∑
k=0

δkJk

≤ lim sup
δ↑1

(1− δ)
∞∑
k=0

δkJk ≤ lim sup
T→∞

1
T

T−1∑
k=0

Jk.

From Theorem 1 it follows that there exist (stabilizing)
scheduling policies with finite associated average costs. It now
follows from Abel’s theorem that:

lim
T→∞

1
T

T−1∑
k=0

Jk = lim
δ↑1

(1− δ)
∞∑
k=0

δkJk <∞. (15)

Furthermore, given ϵ > 0, there exists an δ(ϵ) ≈ 1, dependent on
ϵ, such that:

lim
δ↑1

(1− δ)
∞∑
k=0

δkJk ≤ (1− δ(ϵ))
∞∑
k=0

δ(ϵ)kJk + ϵ,

8 Note that ϵ here is different from the exploration parameter ε of Algorithm
1.

⇒ lim
T→∞

1
T

T−1∑
k=0

Jk ≤ (1− δ(ϵ))
∞∑
k=0

δ(ϵ)kJk + ϵ.

In addition to ϵ, δ(ϵ) also depends on the actual realizations
of the single stage cost sequences {Jk}k≥0. If one wishes to find
an ϵ-optimal policy, then one can choose a discount factor δ(ϵ),
provided the ‘‘orders’’ of these single stage costs are known. In
our problem, the single stage costs are unbounded. However, it
is clear that the discount factor δ ↑ 1 as ϵ ↓ 0. Hence, in our
numerical experiments, we choose a discount factor close to 1.

5. Numerical studies

We consider an example with N = 6 sensors and M = 3
channels. Each process has state dimension 2 (i.e. nxi = 2, i =
1, . . . ,N) and scalar measurements (nyi = 1, i = 1, . . . ,N). The
process parameters Ai, Ci,Wi, Vi, i = 1, . . . ,N and channel transi-
tion probabilities pm, qm,m = 1, . . . ,M are randomly generated.
The eigenvalues of Ai are drawn uniformly from the range (0, 1.3).
The entries of Ci are drawn uniformly from the range (0, 1), and
Wi and Vi are generated by random orthogonal transformations of
a diagonal matrix with random diagonal entries drawn uniformly
from the range (0.2, 1.0). The channel transition probabilities pm
and qm are uniformly generated from the range (0, 1).

The following hyper-parameters for Algorithm 1 are used in
our simulations. In the deep-Q network, the augmented state (14)
of dimension 2N + M is fed in as input, i.e. there is an input
layer with 2N + M = 15 nodes. We use two hidden layers,
with each hidden layer having 1024 nodes, and a fully connected
layer with outputs for each of the N!/(N − M)! = 120 actions.
The discount factor is set to δ = 0.95. The experience replay
memory has size K = 20 000. The exploration parameter ε in
step 6 of Algorithm 1 is attenuated from 1 to 0.01 at the rate
of 0.999, i.e. ε ← max(0.999ε, 0.01) after every iteration. In
the neural network training (step 11 of Algorithm 1) the ADAM
optimizer (Kingma & Ba, 2015) is used with an initial learning rate
of e−4 and a learning rate decay of 0.001.9 The size of each mini-
batch is 32. The target Q -network is updated once every c = 100
time steps.

Algorithm 1 is run to train our deep Q -network. In order to
get a better idea of the training quality over time, we will reset
the process after each T = 500, which we will refer to as an
episode (Sutton & Barto, 2018). Running on a standard Intel Core
i7 4790 with 8 Gb RAM (without GPU), each episode of training
when using the above hyper-parameters took around 30 s to
complete. The empirical average cost

1
T

T−1∑
k=0

N∑
i=1

trPi,k

over different episodes for one randomly generated set of param-
eters is plotted in Fig. 2.

We stopped training after 200 episodes. We then use the
trained Q (., .; θ ) to generate a policy according to

a∗(s) = argmaxaQ (s, a; θ ).

Using the trained policy, simulating the process over 50000 time
steps then gives an empirical average cost of around 17.8. We
compare this performance with the following policies:

(1) A random policy that at each time k randomly allocates M
out of the N sensors to the M channels.

9 If αt represents the learning rate at iteration t , α0 the initial learning rate,
and d the decay, then αt =

α0
1+dt .
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Table 1
Empirical average costs for 10 randomly generated sets of parameters.
Param. Random Round Greedy holding Greedy error Deep RL No replay,
Set Robin time covariance no target Q

1 29151 954 55.7 26.2 21.5 22.1
2 1612 415 80.8 49.4 36.4 41.2
3 2358 722 80.4 51.7 32.8 44.3
4 136 82.7 47.4 39.9 34.3 36.7
5 102 42.8 17.1 13.5 10.4 10.6
6 119 34.9 19.3 18.1 15.7 16.8
7 10097 2576 58.4 42.1 35.8 39.5
8 65630 12555 136 77.4 28.7 29.3
9 37.2 30.7 25.9 23.2 21.8 22.5
10 29321 9049 99.4 64.6 36.7 37.7

Fig. 2. Empirical average cost over different training episodes. The long term
average performances of other suboptimal algorithms are also shown for
comparison.

(2) A round robin policy where M successive sensors (modulo
N) are randomly allocated to the M channels at every time
instance.10

(3) A greedy policy on the holding times, where at each time
k we allocate the M sensors with the largest τi,k−1 (in the
case of ties we take the sensors with smallest indices)
randomly to the M channels.

(4) A greedy policy on the error covariance, where at each
time k we allocate the M sensors with the largest trPi,k−1
randomly to the M channels.

Simulation over 50000 time steps gives an empirical average cost
of around 62.7 for the random policy, 42.7 for the round robin
policy, 31.3 for the greedy policy on holding times, and 22.4 for
the greedy policy on error covariances. The performances of these
policies are also shown in Fig. 2 for comparison. We see that our
deep reinforcement learning approach consistently outperforms
these policies after around 40–50 episodes of training.

In Table 1 we report further comparisons between the random
policy, round robin policy, greedy policies, and the performance
using deep reinforcement learning, for 10 different randomly gen-
erated sets of parameters Ai, Ci,Wi, Vi, pm, qm, i = 1, . . . ,N,m =
1, . . . ,M (making sure that condition (10) is satisfied), while
keeping N = 6 and M = 3. The same hyper-parameters for
training the deep Q -network as in the above were used. We can
see that the random policy and round robin policy generally do

10 Round robin schedules are similar to periodic schedules commonly studied
in the control literature when there are no packet drops (Mo et al., 2014; Zhao
et al., 2014).

not perform well (although the performance of the round robin
policy seems to be better than the purely random policy), and
in fact appear to lead to instability in some of the scenarios.
The greedy policy on the error covariances performs better than
the greedy policy on the holding times, due to the use of more
knowledge of the system parameters. We also see that in each
scenario the approach using deep reinforcement learning per-
forms significantly better than all the other considered policies.
The last column of Table 1 gives the performance when the
techniques from Mnih et al. (2013) and Mnih et al. (2015) of
experience replay and fixing the target Q -network are not used.
We see that without using these techniques, while in some cases
the performance is similar, in other cases there is a significant
performance loss.

Remark 3. Existing non-control aware scheduling strategies
include random, round robin, or greedy strategies with respect
to a given parameter, which are also used to, e.g., reduce wait-
ing/holding times. However, in estimation and control applica-
tions such strategies do not perform as well as strategies which
take into account the dynamics of the processes, as can be seen
in Table 1.

6. Conclusion

This paper has studied a sensor scheduling problem for allo-
cating wireless channels to sensors, for the purposes of remote
state estimation of multiple dynamical systems. With the aim
of providing a method which can handle larger problems than
previous work in the literature, we have proposed an approach
based on modern deep reinforcement learning ideas. The re-
sulting scheduling algorithm can be run online, and is model-
free with respect to the wireless channel parameters. Numer-
ical results have demonstrated that our approach consistently
and significantly outperforms other suboptimal sensor schedul-
ing policies. Future work will include the study of model-based
reinforcement learning techniques (Pong, Gu, Dalal, & Levine,
2018), to possibly improve the speed of learning when additional
knowledge about the channel parameters is available.

Appendix. Proof of Theorem 1

In the case ρmax < 1, condition (10) is always satisfied. Indeed,
in this case each process is stable and so the MDP (6) has bounded
average cost even when there are no sensor transmissions.

Thus we concentrate on the case ρmax ≥ 1. Let

m∗ ≜ arg max
m=1,...,M

qm.

First assume a single channel system where only channel m∗
is available. Consider a suboptimal policy where at each time
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instant the sensor with the largest holding time is chosen to
transmit, provided that this holding time is greater than some
L > 2N (Mesquita et al., 2012). Using an argument similar to the
proof of the first part of Theorem 3 in Mesquita et al. (2012), we
can show that this policy has bounded average cost if

ρ2
maxP

1/L
L < 1, (A.1)

where PL can be expressed as

PL =
∑
n<N

P(n successful transmissions in L time steps).

The rest of the argument in Theorem 3 of Mesquita et al.
(2012) assumes i.i.d. packet dropping channels. To extend the
argument to Markovian packet drops as considered in the current
work, we make the following observation: Given that there are n
successful transmissions, then there will be L−n failed transmis-
sions in these L time steps. Of these L − n failed transmissions,
at most n of them will have followed a successful transmission (or
equivalently at least L − 2n of them will have followed a failed
transmission). From this observation, we have

PL =
∑
n<N

P(n successful transmissions in L time steps)

≤

∑
n<N

(
L
n

)
(max(qm∗ , 1− pm∗ ))n

× (max(pm∗ , 1− qm∗ ))n(1− qm∗ )L−2n

≤ (N − 1)
(

L
N − 1

)
(1− qm∗ )L−2n.

(A.2)

In the first inequality in (A.2), the term (max(qm∗ , 1− pm∗ ))n up-
per bounds the probability of having n successful transmissions,
while the term (max(pm∗ , 1−qm∗ ))n(1−qm∗ )L−2n upper bounds the
probability of having L−n failed transmissions, with at least L−2n
also having the previous transmission fail. The second inequality
in (A.2) holds as

(L
n

)
≤

( L
N−1

)
for all n < N if L > 2N . Taking limits

in (A.2) gives

lim
L→∞

P1/L
L ≤ lim

L→∞
(N − 1)1/L

(
L

N − 1

)1/L

(1− qm∗ )(L−2n)/L

= 1− qm∗ .

Then by Assumption 1, the condition (A.1) can always be satisfied
for L sufficiently large, and so the suboptimal policy has bounded
average cost. Thus the MDP (6) with only the single channel
m∗ has bounded optimal average cost. As utilizing additional
channels does not increase the optimal average cost, the result
follows.
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