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Technical Notes and Correspondence

Transmission Scheduling for Remote State Estimation Over Packet
Dropping Links in the Presence of an Eavesdropper

Alex S. Leong , Daniel E. Quevedo , Daniel Dolz , and Subhrakanti Dey

Abstract—This paper studies transmission scheduling for re-
mote state estimation in the presence of an eavesdropper. A sensor
transmits local state estimates over a packet dropping link to a re-
mote estimator, while an eavesdropper can successfully overhear
each sensor transmission with a certain probability. The objective
is to determine when the sensor should transmit, in order to mini-
mize the estimation error covariance at the remote estimator, while
trying to keep the eavesdropper error covariance above a certain
level. This is done by solving an optimization problem that min-
imizes a linear combination of the expected estimation error co-
variance and the negative of the expected eavesdropper error co-
variance. Structural results on the optimal transmission policy are
derived, and shown to exhibit thresholding behavior in the estima-
tion error covariances. In the infinite horizon situation, it is shown
that with unstable systems one can keep the expected estimation
error covariance bounded while the expected eavesdropper error
covariance becomes unbounded, for all eavesdropping probabili-
ties strictly less than one.

Index Terms—Eavesdropping, packet drops, state estimation.

I. INTRODUCTION

With the ever increasing amounts of data being transmitted wire-
lessly, the need to protect systems from malicious agents has become
increasingly important. Traditionally, information security has been
studied in the context of cryptography. However, due to the often lim-
ited computational power available at the transmitters (e.g., sensors
in wireless sensor networks) to implement strong encryption, as well
as the increased computational power available to malicious agents,
achieving security using solely cryptographic methods may not be
sufficient. Thus, alternative ways to implement security using infor-
mation theoretic and physical layer techniques, complementary to the
traditional cryptographic approaches, have attracted significant recent
interest [2].

In communications theory, the notion of information theoretic secu-
rity has been around for many years, in fact dating back to the work
of Shannon in the 1940s [3]. Roughly speaking, a communication
system is regarded as secure in the information theoretic sense if the
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mutual information between the original message and what is received
at the eavesdropper is either zero or becomes vanishingly small as the
block length of the codewords increases [4]. The term “physical layer
security” has been used to describe ways to implement information
theoretic security using physical layer characteristics of the wireless
channel such as fading, interference, and noise, see, e.g., [5] and [6].

Motivated in part by the ideas of physical layer security, the consider-
ation of security issues in signal processing systems has also started to
gain the attention of researchers. For a survey on works in detection and
estimation in the presence of eavesdroppers, focusing particularly on
detection, see [7]. In estimation problems with eavesdroppers, studies
which use physical layer security ideas include [8]–[11]. The objective
is to minimize the average mean squared error at the legitimate receiver,
while trying to keep the mean squared error at the eavesdropper above
a certain level, by using techniques such as stochastic bit flipping [8],
transmit filter design [9], and power control and addition of artificial
noise [10], [11].

The above works deal with estimation of either constants or i.i.d.
sources. In contrast, the focus of the current paper is to consider the
more general problem of state estimation of dynamical systems when
there is an eavesdropper, where we try to achieve security by adaptively
scheduling the transmissions. For unstable systems, it has recently been
shown that when using uncertain wiretap channels, one can keep the
estimation error of the legitimate receiver bounded while the estima-
tion error of the eavesdropper becomes unbounded for sufficiently large
coding block length [12]. In the current work, we do not assume coding,
which can introduce large delays. In a similar setup to the current work,
but transmitting measurements and without using feedback acknowl-
edgements, Tsiamis et al. [13] derived mechanisms for keeping the
expected error covariance bounded while driving the expected eaves-
dropper covariance unbounded, provided the reception probability is
greater than the eavesdropping probability. By allowing for feedback
and clever scheduling of the transmissions, in this work, we show that
the same behavior can be achieved for all eavesdropping probabilities
strictly less than one.

In information security, the two main types of attacks are gener-
ally regarded as: 1) passive attacks from eavesdroppers, and 2) active
attacks such as Byzantine attacks or Denial of Service attacks. This
paper is concerned with passive attacks from eavesdroppers. However,
estimation and control problems in the presence of active attacks have
also been studied. Works in this area include [14]–[19], just to mention
a few. Another related area deals with privacy issues in estimation and
control, see [20] and [21] and the references therein.

In this paper, a sensor makes noisy measurements of a linear dynam-
ical process. The sensor transmits local state estimates to the remote
estimator over a packet dropping link. At the same time, an eaves-
dropper can successfully eavesdrop on the sensor transmission with a
certain probability, see Fig. 1. Within this setup, we consider the prob-
lem of dynamic transmission scheduling, i.e., deciding at each instant
whether the sensor should transmit. We seek to minimize a linear com-
bination of the expected error covariance at the remote estimator and
the negative of the expected error covariance at the eavesdropper. This
scheduling is done at the remote estimator and fed back to the sensor.
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Fig. 1. Remote state estimation with an eavesdropper.

Structural results on the optimal transmission policy will be derived.
In the case where knowledge of the eavesdropper’s error covariances
are available at the remote estimator, our results show that 1) for a
fixed value of the eavesdropper’s error covariance, the optimal policy
has a threshold structure: the sensor should transmit if and only if the
remote estimator’s error covariance exceeds a certain threshold, and 2)
for a fixed value of the remote estimator’s error covariance, the sensor
should transmit if and only if the eavesdropper’s error covariance is
below a certain threshold. A similar result can be derived in the case
where information regarding the eavesdropper’s error covariances are
unavailable at the remote estimator. Such threshold policies are similar
to schemes considered in event triggered estimation, e.g., [22]–[25].
Furthermore, for unstable systems, it is shown that in the infinite hori-
zon situation there exist transmission policies that can keep the expected
estimation error covariance bounded while the expected eavesdropper
error covariance is unbounded. This behavior can be achieved for all
eavesdropping probabilities strictly less than one.

This paper is organized as follows. Section II describes the system
model. Section III considers the case where knowledge of the eaves-
dropper’s error covariances is available at the remote estimator, while
Section IV studies the case where this information is unavailable. Nu-
merical studies are given in Section V. Section VI draws conclusions.

II. SYSTEM MODEL

A diagram of the system model is shown in Fig. 1. Consider a discrete
time process

xk+1 = Axk + wk (1)

where xk ∈ Rn x and wk is i.i.d. Gaussian with zero mean and covari-
ance Q > 0.1 The sensor has measurements

yk = Cxk + vk (2)

where yk ∈ Rn y and vk is i.i.d. Gaussian with zero mean and covari-
ance R > 0. The noise processes {wk } and {vk } are assumed to be
mutually independent, and independent of the initial state x0 .

The sensor transmits local state estimates x̂sk |k [26] to the remote
estimator. This requires the sensor to have some computational capa-
bilities (i.e., the sensor is “smart”) to run a local Kalman filter. The
local state estimates and error covariances

x̂sk |k−1 � E[xk |y0 , . . . , yk−1 ], x̂sk |k � E[xk |y0 , . . . , yk ]

P s
k |k−1 � E[(xk − x̂sk |k−1 )(xk − x̂sk |k−1 )

T |y0 , . . . , yk−1 ]

P s
k |k � E[(xk − x̂sk |k )(xk − x̂sk |k )

T |y0 , . . . , yk ]

can be computed at the sensor using the standard Kalman filtering
equations. We will assume that the pair (A,C) is detectable and the pair
(A,Q1/2 ) is stabilizable. Let P̄ be the steady-state value ofP s

k |k as k →
∞, which exists due to the detectability assumption. To simplify the
presentation, we will assume that this local Kalman filter is operating
in the steady-state regime, so that P s

k |k = P̄ , ∀k. In general, the local
Kalman filter will converge to steady state at an exponential rate.

Let νk ∈ {0, 1} be decision variables such that νk = 1 if and only
if x̂sk |k is to be transmitted at time k. The decision variables νk are

1For a symmetric matrix X , we say that X > 0 if it is positive definite, and
X ≥ 0 if it is positive semidefinite.

determined at the remote estimator, which is assumed to have more
computational capabilities than the sensor, using information available
at time k − 1, and then fed back without error to the sensor before
transmission at time k.2

At time instances when νk = 1, the sensor transmits its local state
estimate x̂sk |k over a packet dropping channel to the remote estimator.
Let γk be random variables such that γk = 1 if the sensor transmission
at time k is successfully received by the remote estimator, and γk = 0
otherwise. We will assume that {γk } is i.i.d. Bernoulli [28] with

P (γk = 1) = λ ∈ (0, 1).

The sensor transmissions can be overheard by an eavesdropper over
another packet dropping channel. Let γe,k be random variables such
that γe,k = 1 if the sensor transmission at time k is overheard by the
eavesdropper, and γe,k = 0 otherwise. We will assume that {γe,k } is
i.i.d. Bernoulli with

P (γe,k = 1) = λe ∈ (0, 1).

The processes {γk } and {γe,k } are assumed to be mutually
independent.3

At instances where νk = 1, it is assumed that the remote estimator
knows whether the transmission was successful or not, i.e., the remote
estimator knows the value γk , with dropped packets discarded. Define

Ik � {ν0 , . . . , νk , ν0γ0 , . . . , νk γk , ν0γ0 x̂
s
0 |0 , . . . , νk γk x̂

s
k |k }

as the information set available to the remote estimator at timek. Denote
the state estimates and error covariances at the remote estimator by

x̂k |k−1 � E[xk |Ik−1 ], x̂k |k � E[xk |Ik ]
Pk |k−1 � E[(xk − x̂k |k−1 )(xk − x̂k |k−1 )T |Ik−1 ]

Pk |k � E[(xk − x̂k |k )(xk − x̂k |k )T |Ik ]. (3)

Similarly, the eavesdropper knows if it has eavesdropped successfully.
Define

Ie ,k � {ν0 , . . . , νk , ν0γe,0 , . . . , νk γe,k , ν0γe,0 x̂
s
0 |0 , . . . , νk γe,k x̂

s
k |k }

as the information set available to the eavesdropper at time k, and the
state estimates and error covariances at the eavesdropper by4

x̂e ,k |k−1 � E[xk |Ie ,k−1 ], x̂e ,k |k � E[xk |Ie ,k ]
Pe,k |k−1 � E[(xk − x̂e ,k |k−1 )(xk − x̂k |e ,k−1 )T |Ie ,k−1 ]

Pe,k |k � E[(xk − x̂e ,k |k )(xk − x̂e ,k |k )T |Ie ,k ]. (4)

For simplicity of presentation, we will assume that the initial covari-
ances P0 |0 = P̄ and Pe,0 |0 = P̄ .

As stated before, the decision variables νk are determined at the
remote estimator and fed back to the sensor. In Section III, we con-
sider the case where νk depends on both Pk−1 |k−1 and Pe,k−1 |k−1 ,
while in Section IV, we consider the case where νk depends only on
Pk−1 |k−1 and the remote estimator’s belief of Pe,k−1 |k−1 constructed
from knowledge of previous νk ’s. In either case, the decisions do not
depend on the statexk (or the noisy measurement yk ). Thus, the optimal

2The case of imperfect feedback links can also be handled, see [27, Sec. II-C]
for details.

3In wireless communication experiments, it has been shown that channel
fading becomes approximately independent for receivers separated by distances
greater than half a wavelength of the transmitted signal [29, p. 71]. For the
transmission frequencies currently in use in 3G/4G mobiles and Wi-Fi, such
wavelengths are on the order of centimeters.

4We will assume that the eavesdropper knows the system parameters
A,C,Q, R, which gives a bound on the best performance that the eavesdropper
can achieve. Such an assumption is similar in spirit to Kerckhoff’s principle in
cryptography [30], where a cryptosystem should be secure even if the enemy
knows everything about the system except the secret key.
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remote estimator can be shown to have the form

x̂k |k =
{
Ax̂k−1 |k−1 , νk γk = 0

x̂sk |k , νk γk = 1

Pk |k =
{
f (Pk−1 |k−1 ), νk γk = 0

P̄ , νk γk = 1 (5)

where

f (X) � AXAT + Q (6)

while at the eavesdropper, the optimal estimator has the form

x̂e ,k |k =
{
Ax̂e,k−1 |k−1 , νk γe,k = 0

x̂sk |k , νk γe,k = 1

Pe,k |k =
{
f (Pe,k−1 |k−1 ), νk γe,k = 0

P̄ , νk γe,k = 1.

Define the countable set of matrices

S � {P̄ , f (P̄ ), f 2 (P̄ ), . . .} (7)

where fn (.) is the n-fold composition of f (.), with the convention
that f 0 (X) = X . The set S consists of all possible values of Pk |k
at the remote estimator, as well as all possible values of Pe,k |k at
the eavesdropper. Given two symmetric matrices X and Y , we say
that X ≤ Y if Y −X is positive semidefinite, and X < Y if Y −X
is positive definite. As shown in [31], see also [27], there is a total
ordering on the elements of S given by

P̄ ≤ f (P̄ ) ≤ f 2 (P̄ ) ≤ . . .

III. EAVESDROPPER ERROR COVARIANCE KNOWN AT

REMOTE ESTIMATOR

In this section, we consider the case where the transmission de-
cisions νk can depend on the error covariances of both the remote
estimator Pk−1 |k−1 and the eavesdropper Pe,k−1 |k−1 . While knowl-
edge of Pe,k−1 |k−1 at the remote estimator may be difficult to achieve
in practice, this case nevertheless serves as a useful benchmark on the
achievable performance. The situation where Pe,k−1 |k−1 is not known
at the remote estimator will be considered in Section IV.

A. Optimal Transmission Scheduling

The approach to security taken in this paper is to minimize the
expected error covariance at the remote estimator, while trying to
keep the expected error covariance at the eavesdropper above a cer-
tain level.5 To accomplish this, we will formulate a problem that min-
imizes a linear combination of the expected estimation error covari-
ance and the negative of the expected eavesdropper error covariance.
The problem we wish to solve is the finite horizon (of horizon K)
problem

min
{νk }

K∑
k=1

E[βtrPk |k − (1 − β)trPe,k |k ] (8)

for some β ∈ (0, 1).6 The design parameter β in problem (8) controls
the Pareto tradeoff between estimation performance at the remote esti-
mator and at the eavesdropper, with a larger β placing more importance
on keeping E[Pk |k ] small, and a smaller β placing more importance on

5Similar notions have been used in [8]–[11], which studied the estimation of
constant parameters or i.i.d. sources in the presence of an eavesdropper.

6One can also consider the equivalent problem min{νk }
∑K

k=1 E[trPk |k −
αtrPe,k |k ] for some α > 0, with α being a Lagrange multiplier.

keeping E[Pe,k |k ] large (or −E[Pe,k |k ] small). We can write (8) as

min
{νk }

K∑
k=1

E
[
E[βtrPk |k−(1−β)trPe,k |k |P0 ,0 , Pe,0 |0 , Ik−1 , Ie ,k−1 , νk]

]

= min
{νk }

K∑
k=1

E
[
E[βtrPk |k −(1 − β)trPe,k |k |Pk−1 |k−1 , Pe,k−1 |k−1 , νk]

]

= min
{νk }

K∑
k=1

E
[
β(νkλtrP̄ + (1 − νkλ)trf (Pk−1 |k−1 ))

− (1 − β)(νkλe trP̄ + (1 − νkλe )trf (Pe,k−1 |k−1 ))
]
. (9)

The first equality in (9) holds since Pk−1 |k−1 (similarly for Pe,k−1 |k−1 )
is a deterministic function of P0 |0 and Ik−1 , and Pk |k is a func-
tion of Pk−1 |k−1 , νk , and γk . The second equality in (9) follows
from computing the conditional expectations E[Pk |k |Pk−1 |k−1 , νk ] and
E[Pe,k |k |Pe.k−1 |k−1 , νk ].

Problem (8) can be solved numerically using dynamic programing.
For that purpose, define the functions Jk (·, ·) : S × S → R recursively
as

JK +1 (P, Pe ) = 0

Jk (P, Pe ) = min
ν∈{0 ,1}

{
β(νλtrP̄ + (1 − νλ)trf (P ))

− (1 − β)(νλe trP̄ + (1 − νλe )trf (Pe )) + νλλe Jk+1 (P̄ , P̄ )

+ νλ(1 − λe )Jk+1 (P̄ , f (Pe )) + ν(1 − λ)λe Jk+1 (f (P ), P̄ )

+
(
ν(1 − λ)(1 − λe ) + 1 − ν

)
Jk+1 (f (P ), f (Pe ))

}
(10)

for k = K, . . . , 1. Then, problem (8) is solved by computing
Jk (Pk−1 |k−1 , Pe,k−1 |k−1 ) for k = K,K − 1, . . . , 1 [32, p. 23].

Remark III.1: Note that problem (8) can be solved exactly numeri-
cally since, for any horizonK , the possible values of (Pk |k , Pe,k |k ) will
lie in the finite set {P̄ , f (P̄ ), . . . , fK (P̄ )} × {P̄ , f (P̄ ), . . . , fK (P̄ )},
which has finite cardinality (K + 1)2 .

B. Structural Properties of Optimal Transmission Schedules

In this section, we will derive some structural properties on the
optimal solution to problem (8). In particular, we will show that 1) for a
fixedPe,k−1 |k−1 , the optimal policy is to transmit if and only ifPk−1 |k−1
exceeds a threshold (which in general depends on k on Pe,k−1 |k−1 ),
and 2) for a fixed Pk−1 |k−1 , the optimal policy is to transmit if and only
if Pe,k−1 |k−1 is below a threshold (which depends on k and Pk−1 |k−1 ).
Knowing that the optimal policies are of threshold-type gives insight
into the form of the optimal solution, with characteristics of event
triggered estimation, and can also provide computational savings when
solving problem (8) via finding the thresholds numerically, see [33,
Remark 4.4].

Definition III.1: A function F (.) : S → R is increasing if

X ≤ Y ⇒ F (X) ≤ F (Y ).

Lemma III.2: For any n ∈ N, trfn (P ) is an increasing function
of P .

Proof: We have

trfn (P ) = tr

(
AnP (An )T +

n−1∑
m=0

AmQ(Am )T
)

which is increasing with P . �
The following result proves some structural properties of the optimal

solution. Part 1) shows that for fixed Pe,k−1 |k−1 , the optimal policy is
to transmit if and only if Pk−1 |k−1 exceeds a threshold. Part 2) shows
that for fixed Pk−1 |k−1 , the optimal policy is to transmit if and only if
Pe,k−1 |k−1 is below a threshold.
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Theorem III.3: 1) For fixed Pe,k−1 |k−1 , the optimal solution to
problem (8) is a threshold policy on Pk−1 |k−1 of the form

ν∗k (Pk−1 |k−1 , Pe,k−1 |k−1 ) =
{

0, if Pk−1 |k−1 ≤ P ∗
k

1, otherwise

where the threshold P ∗
k ∈ S depends on k and Pe,k−1 |k−1 .

2) For fixedPk−1 |k−1 , the optimal solution to problem (8) is a thresh-
old policy on Pe,k−1 |k−1 of the form

ν∗k (Pk−1 |k−1 , Pe,k−1 |k−1 ) =
{

0, if Pe,k−1 |k−1 ≥ P ∗
e ,k

1, otherwise

where the threshold P ∗
e ,k ∈ S depends on k and Pk−1 |k−1 .

Proof: See Appendix A. �
Remark III.4: Part 1) of Theorem III.3 is quite intuitive, and similar

to threshold-based scheduling policies in event triggered estimation
[23], [27]. Part 2) is perhaps less intuitive, and one should think of it as
saying that it is better to not transmit when the eavesdropper covariance
is high, in order to increase the eavesdropper covariance even further
at the next time step. By combining parts 1) and 2) of Theorem III.3,
we see that at each time k, the values of (Pk−1 |k−1 , Pe,k−1 |k−1 ) can be
divided into a “transmit” and “don’t transmit” region separated by a
staircase-like threshold, see Fig. 2.

C. Infinite Horizon

We now consider the infinite horizon situation. Let us first give a
condition on when E[Pk |k ] will be bounded. If A is stable, this is
always the case. In the case where A is unstable, consider the policy
with νk = 1, ∀k, which transmits at every time instant, and is similar
to the situation where local state estimates are transmitted over packet
dropping links [26], [34]. From the results of [26] and [34], we have
that E[Pk |k ] is bounded if and only if

λ > 1 − 1
|σm ax (A)|2 (11)

where |σm ax (A)| is the largest magnitude of the eigenvalues ofA (i.e.,
the spectral radius ofA). Thus, condition (11) will ensure the existence
of policies, which keep E[Pk |k ] bounded.

We will show in Theorem III.6 that for unstable systems, in the
infinite horizon situation, there exists transmission policies that can
drive the expected eavesdropper error covariance unbounded while
keeping the expected estimator error covariance bounded. This can be
achieved for all probabilities of successful eavesdropping λe strictly
less than one. First, we have a preliminary result.

Lemma III.5: Suppose that A is unstable, and that λ > 1 −
1

|σm a x (A ) |2 . Consider the threshold policy that transmits at time k if

and only if Pk−1 |k−1 ≥ f t (P̄ ) for some t ∈ N, where f (.) is defined
in (6). Then, limK→∞ 1

K

∑K
k=1 trE[Pk |k ] < ∞ for all finite t ∈ N, and

can be computed as

lim
K→∞

1
K

K∑
k=1

trE[Pk |k ]

=
t∑

j=0

λ

λt+ 1
tr(f j (P̄ )) +

∞∑
j= t+1

(1 − λ)j−tλ
λt+ 1

tr(f j (P̄ )).

Proof: This can be shown using results from [27, Section IV-C].
Theorem III.6: Suppose that A is unstable, and that λ > 1 −

1
|σm a x (A ) |2 . Then, for any λe < 1, there exist transmission policies in

the infinite horizon situation such that lim supK→∞
1
K

∑K
k=1 trE[Pk |k ]

is bounded and lim infK→∞ 1
K

∑K
k=1 trE[Pe,k |k ] is unbounded.

Proof: The proof is by construction of a policy with the required
properties. Consider the threshold policy that transmits at time k if
and only if Pk−1 |k−1 ≥ f t (P̄ ) for some t ∈ N. By Lemma III.5, we
have that for this policy limK→∞ 1

K

∑K
k=1 trE[Pk |k ] < ∞ for all finite

t ∈ N.

Now choose a horizonK > t. Consider the eventωwhere each trans-
mission is successfully received at the remote estimator, and unsuccess-
fully received by the eavesdropper. Using an argument similar to [35],
we will show that the contribution of this event ω will already cause the
expected eavesdropper covariance to become unbounded. Now under
this event ω, and using the threshold policy above, the number of trans-
missions that occur over the horizon K is 
K/(t+ 1)�, and the eaves-
dropper error covariances are given byPe,k |k = fk (P̄ ), k = 1, . . . , K .
By independence of the estimator and eavesdropper channels, the prob-
ability of this event occurring is (λ(1 − λe ))
K/ (t+1)�. Let ωc denote
the complement of ω. Then

1
K

K∑
k=1

trE[Pe,k |k ]

=
1
K

K∑
k=1

trE[Pe,k |k |ω]×P (ω) +
1
K

K∑
k=1

trE[Pe,k |k |ωc ]×P (ωc )

>
1
K

K∑
k=1

trE[Pe,k |k |ω]P (ω)

=
1
K

K∑
k=1

tr
(
Ak P̄ (Ak )T +

k−1∑
m=0

AmQ(Am )T
)
(λ(1 − λe ))
K/ (t+1)�

>
1
K

tr(AK P̄ (AK )T )(λ(1 − λe ))K/ (t+1)

→ ∞ as K → ∞
where the last line holds if |σm ax (A)|(λ(1 − λe ))1/2(t+1) > 1, or
equivalently if

λe < 1 − 1
λ|σm ax (A)|2(t+1) . (12)

Since |σm ax (A)| > 1, the condition (12) will be satisfied for any λe <

1 when t is sufficiently large. As 1
K

∑K
k=1 trE[Pk |k ] remains bounded

for every finite t ∈ N by Lemma III.5, the result follows. �
In summary, the threshold policy that transmits at time k if and

only if Pk−1 |k−1 ≥ f t (P̄ ), with t large enough that condition (12) is
satisfied, will have the required properties.

Remark III.7: In a similar setup, but transmitting measurements
and without using feedback acknowledgements, mechanisms were de-
rived in [13] for making the expected eavesdropper error covariance
unbounded while keeping the expected estimation error covariance
bounded, under the more restrictive condition that λe < λ. In a slightly
different context with coding over uncertain wiretap channels, it was
shown in [12] that for unstable systems one can keep the estimation
error at the legitimate receiver bounded while the eavesdropper esti-
mation error becomes unbounded for a sufficiently large coding block
length.

Remark III.8: It is perhaps instructive to give an intuitive expla-
nation for why Theorem III.6 holds, even for instance in cases where
λe > λ. The main point is that the times of transmission are not i.i.d.
or some arbitrary random distribution, but cleverly scheduled based
on current system information. First, the threshold policy constructed
in the proof of Theorem III.6 will transmit whenever the error co-
variance at the remote estimator is above a threshold, thus intuitively
such a policy should keep the expected estimation error covariance
bounded no matter how large the threshold is set (provided condition
(11) is satisfied). On the other hand, from the eavesdropper’s view-
point, by independence of the estimator and eavesdropper channels,
and since the threshold policy does not depend on the eavesdropper
covariances, the times at which these transmissions occur look “ran-
dom” to the eavesdropper. By increasing the threshold, these “random”
times of transmission will occur less and less often, until eventually the
expected eavesdropper covariance becomes unbounded, and this will
happen no matter how large λe is (as long as λe < 1).
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Remark III.9: Condition (12) for determining a sufficiently large
threshold requires knowledge of λe . However, the result in Theorem
III.6 can still apply even without exact knowledge of λe . For instance,
suppose we only know an upper bound on λe , so that λe ≤ λe ,m ax .7

Let t∗ be the smallest t satisfying condition (12) for the true value λe ,
and t+ be the smallest t satisfying condition (12) for λe ,m ax . It is easy
to see that t+ ≥ t∗. Then, using f t

+ (P̄ ) as the threshold, one will still
have limK→∞ 1

K

∑K
k=1 trE[Pk |k ] being bounded by Lemma III.5, and

limK→∞ 1
K

∑K
k=1 trE[Pe,k |k ] being unbounded, since

|σm ax (A)|(λ(1 − λe ))1/2(t+ +1)

≥ |σm ax (A)|(λ(1 − λe ))1/2(t∗+1) > 1.

IV. EAVESDROPPER ERROR COVARIANCE UNKNOWN

AT REMOTE ESTIMATOR

In order to construct Pe,k |k at the remote estimator as per Section III,
the process {γe,k } for the eavesdropper’s channel needs to be known,
which in practice may be difficult to achieve. In this section, we consider
the situation where the remote estimator knows only the probability of
successful eavesdropping λe (see also Remark III.9) and not the actual
realizations γe,k . Thus, the transmit decisions νk can only depend on
Pk−1 |k−1 and our beliefs of Pe,k−1 |k−1 constructed from knowledge
of previous νk ’s. We will first derive the recursion for the conditional
distribution of error covariances at the remote estimator (i.e., the “be-
lief states” [32, p. 258]), and then consider the optimal transmission
scheduling problem.

A. Conditional Distribution of Error Covariances
at Eavesdropper

Define the belief vector

πe,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

π
(0)
e ,k

π
(1)
e ,k

...

π
(K )
e ,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎣

P
(
Pe,k |k = P̄ |ν0 , . . . , νk

)
P
(
Pe,k |k = f (P̄ )|ν0 , . . . , νk

)
...

P
(
Pe,k |k = fK (P̄ )|ν0 , . . . , νk

)

⎤
⎥⎥⎥⎥⎥⎦
. (13)

We note that by our assumption of Pe,0 |0 = P̄ , we have π
(K )
e ,k �

P (Pe,k |k = fK (P̄ )|ν0 , . . . , νk ) = 0 for k < K . Denote the set of all
possible πe,k ’s by Πe ⊆ RK +1 .

The vector πe,k represents our beliefs on Pe,k |k given the trans-
mission decisions ν0 , . . . , νk . In order to formulate the transmission
scheduling problem as a partially observed problem in the next section,
we first want to derive a recursive relationship between πe,k+1 and
πe,k given the next transmission decision νk+1 . When νk+1 = 0, we
have Pe,k+1 |k+1 = f (Pe,k |k ) with probability one, and thus πe,k+1 =
[ 0 π(0)

e ,k . . . π
(K −1)
e ,k

]T . When νk+1 = 1, then Pe,k+1 |k+1 = P̄ with
probability λe and Pe,k+1 |k+1 = f (Pe,k |k ) with probability 1 − λe ,

and thus πe,k+1 = [ λe (1 − λe )π
(0)
e ,k . . . (1 − λe )π

(K −1)
e ,k

]T .
Hence, defining

Φ(πe , ν)

�

⎧⎪⎨
⎪⎩
[
0 π

(0)
e . . . π

(K −1)
e

]T
, ν = 0[

λe (1 − λe )π
(0)
e . . . (1 − λe )π

(K −1)
e

]T
, ν = 1

we obtain the recursive relationship πe,k+1 = Φ(πe,k , νk+1 ).

7If we regard λe as a decreasing function of the distance from the sensor to the
eavesdropper, upper bounding λe corresponds to there being no eavesdropper
within a certain radius of the sensor.

B. Optimal Transmission Scheduling

We again wish to minimize a linear combination of the expected er-
ror covariance at the remote estimator and the negative of the expected
error covariance at the eavesdropper. Since Pe,k−1 |k−1 is not available,
the optimization problem will now be formulated as a partially ob-
served one with νk dependent on (Pk−1 |k−1 , πe,k−1 ). We then have the
following problem [cf., (8)]:

min
{νk }

K∑
k=1

E

[
β(νkλtrP̄ + (1 − νkλ)trf (Pk−1 |k−1 ))

− (1 − β)

(
νkλe trP̄ + (1 − νkλe )

K∑
i=0

trf i+1 (P̄ )π(i)
e ,k−1

)]
.

(14)

Problem (14) can be solved by using the dynamic programing algo-
rithm for partially observed problems [32, p. 256]. Let the functions
Jk (·, ·) : S × Πe → R be defined recursively as

JK +1 (P, πe ) = 0

Jk (P, πe ) = min
ν∈{0 ,1}

{
β(νλtrP̄ + (1 − νλ)trf (P ))

− (1 − β)
(
νλe trP̄ + (1 − νλe )

K∑
i=0

trf i+1 (P̄ )π(i)
e

)

+ νλJk+1
(
P̄ ,Φ(πe , 1)

)
+ ν(1 − λ)Jk+1

(
f (P ),Φ(πe , 1)

)

+ (1 − ν)Jk+1
(
f (P ),Φ(πe , 0)

)}
(15)

for k = K, . . . , 1. Then, problem (14) is solved numerically by com-
puting Jk (Pk−1 |k−1 , πe,k−1 ) for k = K,K − 1, . . . , 1.

Remark IV.1: In the finite horizon situation, the number of
possible values of (Pk |k , πe,k ) is again finite, but now of cardinality
(K + 1) × (1 + 2 + · · · + 2K ) = (K + 1)(2K +1 − 1). This is ex-
ponential in K , which may be very large when K is large. To reduce
the complexity, one could consider instead probability distributions

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π
(0)
e ,k

π
(1)
e ,k

...

π
(N −1)
e ,k

π
(N )
e ,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

P
(
Pe,k |k = P̄ |ν0 , . . . , νk

)
P
(
Pe,k |k = f (P̄ )|ν0 , . . . , νk

)
...

P
(
Pe,k |k = fN −1 (P̄ )|ν0 , . . . , νk

)
P
(
Pe,k |k ≥ fN (P̄ )|ν0 , . . . , νk

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

for some N < K , and update the beliefs via

ΦN (πe , ν)

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 π

(0)
e . . . π

(N −2)
e π

(N −1)
e + π

(N )
e

]T
, ν = 0[

λe (1 − λe )π
(0)
e . . . (1 − λe )π

(N −2)
e

(1 − λe )(π
(N −1)
e + π

(N )
e )

]T
, ν = 1.

Discretizing the space of πe,k to include the cases with up to N − 1
successive packet drops or nontransmissions, with the remaining cases
grouped into the single component π(N )

e ,k , will then give a state space
of cardinality (K + 1)(2N +1 − 1).
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C. Structural Properties

We have the following:
Theorem IV.2: For fixed πe,k−1 , the optimal solution to problem

(14) is a threshold policy on Pk−1 |k−1 of the form

ν∗k (Pk−1 |k−1 , πe,k−1 ) =
{

0, if Pk−1 |k−1 ≤ P ∗

1, otherwise

where the threshold P ∗ depends on k and πe,k−1 .
Proof: Denote the difference in the values of Jk (P, πe ) when the

minimizing ν∗ are 0 and 1 by

ψk (P, πe ) � βλtrf (P ) − βλtrP̄

− (1 − β)λe

(
K∑
i=0

trf i+1 (P̄ )π(i)
e − trP̄

)
+ Jk+1

(
f (P ),Φ(πe , 0)

)

− λJk+1
(
P̄ ,Φ(πe , 1)

) − (1 − λ)Jk+1
(
f (P ),Φ(πe , 1)

)
. (16)

Theorem IV.2 will be proved by showing that for fixed πe , the func-
tions ψk (P, πe ) defined by (16) are increasing functions of P for
k = 1, . . . , K . This will be the case if we can show that

Jk

(
f (P ),Φ(πe , 0)

) − (1 − λ)Jk

(
f (P ),Φ(πe , 1)

)
is an increasing function of P for all k. Using a similar induction
argument as in the proof of Theorem III.3(i), we can establish the
slightly more general statement that

Jk

(
fn (P ), πe

) − (1 − λ)Jk

(
fn (P ), π′

e

)
is increasing in P for all k, all n ∈ N and all πe , π′

e ∈ Πe .

D. Infinite Horizon

In the infinite horizon situation, we note that Theorem III.6 will
still hold, as the threshold policy constructed in the proof does not
require knowledge of the eavesdropper error covariances. In addition,
by Remark III.9, exact knowledge of the eavesdropping probability is
also not required.

V. NUMERICAL STUDIES

We consider an example involving the Pendubot, which is a two-link
planar robot, see [36] and [37] for details. A linearized continuous time
model for balancing the Pendubot in the “top” position can be found
on [37, p. 22]. Using a sampling time of 15 ms, we can then obtain the
following discrete time model:

A =

⎡
⎢⎣

1.0058 0.0150 −0.0016 0.0000
0.7808 1.0058 −0.2105 −0.0016
−0.0060 0.0000 1.0077 0.0150
−0.7962 −0.0060 1.0294 1.0077

⎤
⎥⎦

C =
[

1 0 0 0
0 0 1 0

]
, R = 0.001 × I,

Q = qqT , q =
[
0.003 1.0000 −0.005 −2.150

]T
where the values for the Q and R matrices are taken from [28]. The
eigenvalues of A are (1.1516, 1.0882, 0.9189, 0.8683). The steady-
state error covariance P̄ is easily computed as

P̄ =

⎡
⎢⎣

0.0003 0.0077 −0.0002 −0.0148
0.0077 1.3150 −0.0130 −2.8174
−0.0002 −0.0130 0.0007 0.0289
−0.0148 −2.8174 0.0289 6.0613

⎤
⎥⎦ .

A. Finite Horizon

We will here solve the finite horizon problem with K = 10. The
packet reception probability is chosen to be λ = 0.6, and the eaves-
dropping probability λe = 0.6. Note that the condition (11) on the

Fig. 2. ν∗k for different values of Pk−1 |k−1 = fn (P̄ ) and Pe,k−1 |k−1 =
fn e (P̄ ), at time k = 4.

Fig. 3. Expected error covariance at estimator versus expected error
covariance at eavesdropper. Finite horizon.

packet reception probability for stability at the remote estimator is
λ > 0.2460. Assuming that the eavesdropper error covariance is avail-
able, and using the design parameter β = 0.7, Fig. 2 plots ν∗k for dif-
ferent values of Pk−1 |k−1 = fn (P̄ ) and Pe,k−1 |k−1 = fn e (P̄ ), at the
time step k = 4. We observe a threshold behavior in both Pk−1 |k−1 and
Pe,k−1 |k−1 , in agreement with Theorem III.3. In general, the thresholds
will be different for different times k.

Next, we consider the performance as β is varied, both when the
eavesdropper error covariance is known and unknown. Fig. 3 plots
the trace of the expected error covariance at the estimator trE[Pk |k ]
versus the trace of the expected error covariance at the eavesdropper
trE[Pe,k |k ]. Each point is obtained by averaging over 105 Monte Carlo
runs. We see that by varying β, we obtain a tradeoff between trE[Pk |k ]
and trE[Pe,k |k ], with the tradeoff being better when the eavesdropper
error covariance is known.

B. Infinite Horizon

We next present results for the infinite horizon situation. Fig. 4 plots
some values of trE[Pk |k ] and trE[Pe,k |k ], obtained by taking the time
average of a Monte Carlo run of length 106 , using the threshold pol-
icy in the proof of Theorem III.6, which transmits at time k if and
only if Pk−1 |k−1 ≥ f t (P̄ ). In the case λ = 0.6, λe = 0.6, condition
(12) for unboundedness of the expected eavesdropper covariance is
satisfied when t ≥ 5, and in the case λ = 0.6, λe = 0.8 (where the
eavesdropping probability is higher than the packet reception proba-
bility), condition (12) is satisfied for t ≥ 7. We see that in both cases,
by using a sufficiently large t, one can make the expected error covari-
ance of the eavesdropper very large, while keeping the expected error
covariance at the estimator bounded.
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Fig. 4. Expected error covariance at estimator versus expected error
covariance at eavesdropper. Infinite horizon.

VI. CONCLUSION

In this paper, we have studied the scheduling of sensor transmissions
for remote state estimation, where each transmission can be overheard
by an eavesdropper with a certain probability. The scheduling is done
by solving an optimization problem that minimizes a combination of
the expected error covariance at the remote estimator and the negative
of the expected error covariance at the eavesdropper. We have derived
structural results on the optimal transmission scheduling, which show
a thresholding behavior in the optimal policies. In the infinite horizon
situation, we have shown that with unstable systems, one can keep
the expected estimation error covariance bounded while the expected
eavesdropper error covariance becomes unbounded. Extensions to the
basic framework can also be considered, such as alternative measures
of security [38] and Markovian packet drops [39].

APPENDIX

A. Proof of Theorem III.3

1) From the definition of Jk (., .) in (10), we know that if the mini-
mizer ν∗ = 0, then

Jk (P, Pe ) = βtrf (P ) − (1 − β)trf (Pe ) + Jk+1 (f (P ), f (Pe ))
(17)

and if the minimizer ν∗ = 1 then

Jk (P, Pe )

= β(λtrP̄ + (1 − λ)trf (P )) − (1 − β)(λe trP̄ + (1 − λe )trf (Pe ))

+ λλe Jk+1 (P̄ , P̄ ) + λ(1 − λe )Jk+1 (P̄ , f (Pe ))

+ (1 − λ)λe Jk+1 (f (P ), P̄ ) + (1 − λ)(1 − λe )Jk+1 (f (P ), f (Pe )).
(18)

Denote the difference of (17) and (18) as

φk (P, Pe )

� βλtrf (P ) − βλtrP̄ − (1 − β)λe trf (Pe ) + (1 − β)λe trP̄

+ [1 − (1 − λ)(1 − λe )]Jk+1 (f (P ), f (Pe )) − λλe Jk+1 (P̄ , P̄ )

− λ(1 − λe )Jk+1 (P̄ , f (Pe )) − (1 − λ)λe Jk+1 (f (P ), P̄ ). (19)

Note that when ν∗k = 1, i.e., the optimal decision at time k is to transmit,
we have φk (P, Pe ) > 0.

Since νk only takes on the two values 0 and 1, Theorem III.3(i)
will be proved if we can show that the functions φk (P, Pe ) defined in
(19) are increasing functions of P for k = 1, . . . , K . As trf (P ) is an
increasing function of P by Lemma III.2, it is sufficient to show that

[1 − (1 − λ)(1 − λe )]Jk (f (P ), f (Pe )) − (1 − λ)λe Jk (f (P ), P̄ )

is an increasing function of P for all k. We will prove this using
induction. In order to make the induction argument work, we will
prove the slightly more general statement that

[1 − (1 − λ)(1 − λe )]Jk (fn (P ), Pe ) − (1 − λ)λe Jk (fn (P ), P ′
e )

is an increasing function of P for all k, all n ∈ N and all Pe , P ′
e ∈ S.

The case of k = K + 1 is clear. Now assume that, for P ≥ P ′

[1 − (1 − λ)(1 − λe )]Jl (fn (P ), Pe ) − (1 − λ)λe Jl (fn (P ), P ′
e )

− [1 − (1 − λ)(1 − λe )]Jl (fn (P ′), Pe ) + (1 − λ)λe Jl (fn (P ′), P ′
e )

≥ 0 (20)

holds for l = K + 1, K, . . . , k + 1. Then,

[1 − (1 − λ)(1 − λe )]Jk (fn (P ), Pe ) − (1 − λ)λe Jk (fn (P ), P ′
e )

− [1 − (1 − λ)(1 − λe )]Jk (fn (P ′),Pe ) + (1 − λ)λe Jk (fn (P ′),P ′
e )

≥ min
ν∈{0 ,1}

{
[1 − (1 − λ)(1 − λe )]

{
β[νλtrP̄ + (1 − νλ)trfn+1 (P )]

− (1 − β)[νλe trP̄ + (1 − νλe )trf (Pe )]

+ νλλe Jk+1 (P̄ , P̄ ) + νλ(1 − λe )Jk+1 (P̄ , f (Pe ))

+ ν(1 − λ)λe Jk+1 (fn+1 (P ), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ), f (Pe ))
}

− (1 − λ)λe
{
β[νλtrP̄ + (1 − νλ)trfn+1 (P )]

− (1 − β)[νλe trP̄ + (1 − νλe )trf (P ′
e )]

+ νλλe Jk+1 (P̄ , P̄ ) + νλ(1 − λe )Jk+1 (P̄ , f (P ′
e ))

+ ν(1 − λ)λe Jk+1 (fn+1 (P ), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ), f (P ′
e ))
}

− [1 − (1 − λ)(1 − λe )]
{
β[νλtrP̄ + (1 − νλ)trfn+1 (P ′)]

− (1 − β)[νλe trP̄ + (1 − νλe )trf (Pe )]

+ νλλe Jk+1 (P̄ , P̄ ) + νλ(1 − λe )Jk+1 (P̄ , f (Pe ))

+ ν(1 − λ)λe Jk+1 (fn+1 (P ′), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ′), f (Pe ))
}

+ (1 − λ)λe
{
β[νλtrP̄ + (1 − νλ)trfn+1 (P ′)]

− (1 − β)[νλe trP̄ + (1 − νλe )trf (P ′
e )]

+ νλλe Jk+1 (P̄ , P̄ ) + νλ(1 − λe )Jk+1 (P̄ , f (P ′
e ))

+ ν(1 − λ)λe Jk+1 (fn+1 (P ′), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ′), f (P ′
e ))
}}

= min
ν∈{0 ,1}

{
[1 − (1 − λ)(1 − λe )]

{
β(1 − νλ)trfn+1 (P )

+ ν(1 − λ)λe Jk+1 (fn+1 (P ), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ), f (Pe ))
}

− (1 − λ)λe
{
β(1 − νλ)trfn+1 (P )



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 9, SEPTEMBER 2019 3739

+ ν(1 − λ)λe Jk+1 (fn+1 (P ), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ), f (P ′
e ))
}

− [1 − (1 − λ)(1 − λe )]
{
β(1 − νλ)trfn+1 (P ′)

+ ν(1 − λ)λe Jk+1 (fn+1 (P ′), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ′), f (Pe ))
}

+ (1 − λ)λe
{
β(1 − νλ)trfn+1 (P ′)

+ ν(1 − λ)λe Jk+1 (fn+1 (P ′), P̄ )

+ [ν(1 − λ)(1 − λe ) + (1 − ν)]Jk+1 (fn+1 (P ′), f (P ′
e ))
}

≥ 0

where the last inequality holds (for both cases ν∗ = 0 and ν∗ = 1) by
Lemma III.2 and the induction hypothesis (20).

2) As −trf (Pe ) is a decreasing function of Pe , it is now sufficient
to show that

[1 − (1 − λ)(1 − λe )]Jk (f (P ), f (Pe )) − λ(1 − λe )Jk (P̄ , f (Pe ))

is a decreasing function of Pe for all k. Using similar techniques as
in the proof of part 1), we can prove by induction the slightly more
general statement that

[1 − (1 − λ)(1 − λe )]Jk (P, fn (Pe )) − λ(1 − λe )Jk (P ′, fn (Pe ))

is a decreasing function of Pe for all k, all n ∈ N and all P, P ′ ∈ S.
The details are omitted for brevity.
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