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DoS Attacks on Remote State Estimation
With Asymmetric Information
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Subhrakanti Dey , and Ling Shi

Abstract—In this paper, we consider remote state esti-
mation in an adversarial environment. A sensor forwards
local state estimates to a remote estimator over a vulner-
able network, which may be congested by an intelligent
denial-of-service attacker. It is assumed that the acknowl-
edgment information from the remote estimator to the sen-
sor is hidden from the attacker, which, thus, leads to asym-
metric information between the sensor and attacker. Con-
sidering the infinite-time goals of the two agents and their
asymmetric information structure, we model the conflicting
nature between the sensor and the attacker by a stochastic
Bayesian game. Solutions for this game under two different
structures of public information history are investigated,
that is, the open-loop structure (in which players cannot
observe their opponents’ play) and the closed-loop one (in
which players can observe the play causally). For the open-
loop history case, the original game problem is transformed
into a static Bayesian game. We provide the unique mixed-
strategy equilibrium explicitly for this game, and analyze
the sensor’s advantages brought by the extra information.
When it comes to the closed-loop case, the dynamic nature
of history structure introduces additional difficulties solv-
ing the original problem. Thus, to derive stationary optimal
power schemes for each agent, we convert the original game
into a continuous-state stochastic game and discuss the ex-
istence of optimal transmission/jamming power strategies.
Furthermore, an algorithm based on multiagent reinforce-
ment learning is proposed to find such strategies, and nu-
merical examples are provided to illustrate the developed
results.

Index Terms—Asymmetric information, cyber-physical
systems, network security, state estimation.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs) are systems, which
combine dynamic physical processes, sensors and actua-
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tors, communication networks, and software [1]. Due to great
performance improvements (e.g., stability and robustness) pro-
vided by CPSs, they are largely viewed as the next generation of
engineering systems. Their applications range from nation-wide
smart grids to medium-size transportation and water supply sys-
tems, and to small-smart meter and wearable medical devices.

The communication networks provide efficiency for physical
systems, but at the same time introduce technical challenges, in
particular, security issues, into the system design. Since CPSs
are closely related to many safety-critical infrastructures, any in-
tentional attacks on even a single component of a CPS may lead
to severe economic losses. Two typical classes of cyber-attacks
on CPSs are shown in [2]: 1) deception (integrity) attacks; and 2)
denial-of-service (DoS) attacks. The deception attacks focus on
deteriorating the system performance by stealthily manipulating
the transmitted data packets, whereas DoS attacks compromise
the availability of resources by jamming the communication
channels. For instance, in the world’s first power outage inci-
dent caused by a cyber-attack on Ukraine’s power system, an
exotic virus brought down the information flow from the physi-
cal process to the remote management system [3].

In this paper, we focus on remote state estimation (SE) un-
der DoS attacks, which are much easier to implement and are
more likely to be encountered in CPSs. Many existing works
on DoS attacks rely heavily on quantitative analysis of only
one side, such as [4] and [5], which investigated how to launch
DoS attacks wisely under power-expenditure constraints from
the attacker’s perspective. In practice, the sensor should take ra-
tional actions (transmission strategy) to avoid jamming attacks,
while the attacker will try to recognize these actions, and modify
its attack pattern accordingly. Defensive/offensive-scheme de-
signs become complicated when an interaction between the two
agents is taken into account. The game-theoretic approach has
been successfully applied to capture the strategic interactions
between an attacker and a sensor [6]–[9]. The survey conducted
by Agah et al. [6] studied a cooperative game and proposed
a new method for clustering sensors to provide a more reli-
able communication. A novel discussion on the leader–follower
game was presented by Langbort et al. [7], which investigated
the one-step control problem over a vulnerable communication
network under jamming attacks. The latest work by Zhu and
Bacşar [8] considered a cross-layer system in which the robust
control problem was solved by a zero-sum differential game
and a security policy with no power constraints was developed
via a zero-sum stochastic game. Li et al. [9] considered a sce-
nario in which a sensor sends data for remote estimation via
a communication network and the attacker, aiming to degrade
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the estimation quality, jams the channel in an energy-efficient
manner. By employing a two-player zero-sum stochastic game,
the authors introduced stationary defensive/offensive strategies
for each agent (i.e., transmission power and jamming power
schemes) with perfect feedback information. That is, the remote
estimator will inform the sensor of the packet-loss information
via sending back a short acknowledgment (ACK) frame im-
mediately, and the attacker can obtain this online information
with intelligent eavesdropping technologies. A major weakness
of this approach, however, is that in many practical applica-
tion scenarios the ACKs may not be accessible to the attacker.
For example, peer-to-peer communication uses commutative
encryptions to support a secure validation of the ACKs [10];
moreover, current media-access-control protocols and wireless
sensor network hardware provide technical support to encrypt
full-duplex communication and protect the feedback channel
well [11]. Hence, often the sensor knows well about the game
state, whereas the attacker, without the ACK’s knowledge, only
has partial information. Difficulties arise when an attempt is
made to implement the (defensive or offensive) policy consid-
ering this asymmetric information set for the sensor and the
attacker. In this paper, we aim to investigate this asymmet-
ric sensor–attacker game on remote estimation, and study the
transmission/interference power strategy for the sensor/attacker
at equilibrium. Compared with previous works, the main con-
tributions of this paper are summarized as follows.

1) Few studies have investigated the impact of asymmetric
information structures on DoS security issues under the game-
theoretic framework. Taking the goals of the sensor and the at-
tacker into consideration, the strategic interaction between them
is formulated as a stochastic Bayesian game with asymmetric
information (see Problem 1).

2) Considering the solution of the stochastic Bayesian game,
this paper begins with the case under a simple open-loop
structure of public information history (which excludes all
past actions of players). By transforming the original game
into a one-stage (static) sensor–attacker game (see Problem 2),
we show that the equilibrium (optimal) strategies for the two
agents are unique, with the strategy for the sensor having a
simple threshold structure. We also show how the sensor can
benefit from the online information contained in ACKs.

3) For the closed-loop history case, the original security prob-
lem is difficult to solve as the amount of historical information
(namely, the past actions of both players) increases with time.
We convert the problem into a belief-based continuous-state
Markov game with complete information and develop belief-
based rational strategies for both agents. We prove the existence
of the stationary equilibrium for the derived Markov game,
and also provide a modified Q-learning algorithm to obtain the
energy-efficient optimal strategies for the sensor and the at-
tacker.

The remaining paper is organized as follows. Section II con-
tains mathematical models of the system, giving special atten-
tion to the asymmetric information structure between the sensor
and the attacker. Section III demonstrates the framework of
the sensor–attacker game played over an infinite-time horizon.
Section IV shows the main theoretical results for the game
under two different history structures. Section V provides mul-
tiagent Q-learning algorithm to obtain the rational strategies.
Sections VI and VII present some examples and concluding

Fig. 1. System model.

remarks, respectively. The Appendix presents the proofs of
theorems.

Notations: Rn is the n-dimensional Euclidean space. Sn+ (or
Sn++ ) is the set of n-by-n positive semidefinite matrices (or pos-
itive definite matrices). Let N denote the set of natural numbers.
WhenX ∈ Sn+ (orX ∈ Sn++ ), we writeX ≥ 0 (orX > 0). For
functions h and g, h ◦ g is defined as the function composition
h(g(·)). E[·] is the expectation of a random variable (r.v.), Δ(·)
refers to the probability measure space over a set, and Pr(·)
refers to the probability. Tr(·) and ρ(·) denote the trace and the
spectral radius of a matrix, respectively. The superscripts � and
� stand for the matrix transposition and the optimal solution,
respectively, while the superscripts s (or subscript 1) and a (or
subscript 2) denote the sensor and the attacker, respectively.
Moreover, the superscript o represents observation. The capital
Θ is the set of types and the small form θ1 represents the sensor’s
type variable. Moreover, the term θ is a specific value of the sen-
sor’s type. Here, yk0 stands for the sequence (y0 , . . . , yk ) and the
sequence of actions over time k are defined similarly. Further-
more, 1(·) is the indicator function and the Dirac delta function is

δkj =
{

1, if k = j
0, others.

II. PROBLEM FORMULATION

Fig. 1 shows the system model, in which the state information
of the process is sent to the remote estimator in the presence of a
DoS attacker. In this section, essential components of the overall
system structure will be introduced in detail.

A. Local Kalman Filter

Consider the following linear time-invariant system:

xk+1 = Axk + wk (1)

yk = Cxk + vk (2)

where the state vector of the system at time k is denoted
by xk ∈ Rnx , the noisy measurement obtained by the sen-
sor is yk ∈ Rmy , and wk ∈ Rnx and vk ∈ Rmy represent
zero-mean independent identically distributed Gaussian ran-
dom noise with E[wkw�

j ] = δkjQ (Q ≥ 0), E[vkv�j ] = δkjR

(R > 0), and E[wkv�j ] = 0 ∀j, k. The initial state x0 is a zero-
mean Gaussian random vector with covariance Σ0 ≥ 0, which
is uncorrelated with wk and vk . To avoid trivial problems, we
assume the system is unstable, that is, ρ(A) > 1. The time-
invariant pair (A,C) is assumed to be detectable and (A,

√
Q)

is stabilizable.
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With the advanced smart sensors [12], the estimation/control
performance of the current system can be highly improved.
The smart sensors are equipped with memory and embedded
systems-on-chips, which enable them to query for historical
information and execute some simple recursive algorithms on
the collected data. With storage and computing abilities, the
sensor in Fig. 1 is able to process the collected measurements
yk0 by running a Kalman filter, instead of transmitting them
directly, and then estimate the process state xk locally, denoted
by x̂sk . This minimum mean-squared error (MMSE) estimate of
the process state is given by

x̂sk = E[xk |yk0 ]

with its corresponding estimation-error covariance

Ps
k � E[(xk − x̂sk )(xk − x̂sk )

�].

These terms are computed via the Kalman filter [13]. To sim-
plify notations, we define the Lyapunov and Riccati operators h
and g̃ : Sn

+ → Sn
+ as

h(X) � AXA� +Q

g(X) � X −XC�[CXC� +R]−1CX.

Owing to the stabilizability and detectability assumptions, the
estimation-error covariance Ps

k converges exponentially fast to
a unique fixed point P of h ◦ g [13]. For simplicity, we ignore
the transient periods and assume that the Kalman filter at the
sensor has entered the steady state, i.e., we assume that

Ps
k = P , ∀k ≥ 1. (3)

According to [14], the steady-state error covariance P has the
following property.

Proposition 1: For 0 ≤ t1 < t2 , the following inequality
holds:

Tr[P ] ≤ Tr[ht1 (P )] < Tr[ht2 (P )]. (4)

B. Communication Channel

Since most sensor nodes use onboard batteries, which are dif-
ficult to replace or recharge, the energy for sensing, computation,
and transmission is restricted for sensor nodes. Hence, as de-
picted in Fig. 1, the sensor is required to decide the transmission-
energy level at which to send the obtained estimates x̂sk to the
remote estimator. At the same time, by emitting a signal to in-
terfere with the channel, the attacker is capable of sabotaging
the delivery of x̂sk and thus degrading the estimation quality.
Like the sensor, the attacker has a limited energy budget and
has to determine the jamming energy at each time. We denote
the available transmission power set with M power levels as
Es = {es1 , . . . esM } and attack the power set with L levels as
Ea = {ea1 , . . . , eaL}, in which esi , 1 ≤ i ≤M and eaj , 1 ≤ j ≤ L
represent the ith transmission power level and the jth jam-
ming power level, respectively. Let α1,k ∈ Es and α2,k ∈ Ea

denote the transmission power of the sensor and the interference
power of the attacker at time k, respectively. Note that α1,k = 0
and α2,k = 0 represent that the sensor does not transmit data
packet x̂sk (i.e., the sensor is inactive) and that no DoS attack is
launched, respectively. The transmission (or jamming) schedule
of the sensor (or attacker) over the infinite-horizon is denoted
by (α1,0 , α1,1 , α1,2 , . . .) [or (α2,0 , α2,1 , α2,2 , . . .)].

We assume the channel between the sensor and the estima-
tor is memoryless, and that it has independent additive white
Gaussian noises. The transmitted data packet may arrive at the
remote estimator with unknown errors due to channel noise, sig-
nal fading, multipath effects, etc. Some channel-coding methods
can detect these errors, and the incorrect packets will be dropped
before uploading to the estimator (see [15]). We introduce the
packet-error-rate (PER), which is monotonically increasing with
the signal-to-noise-ratio (SNR) for any modulation scheme, to
measure the packet losses. To quantify the packet loss under
DoS attacks, we adopt the signal-to-interference-plus-noise-
ratio (SINR) [15] rather than the SNR

SINRk =
α1,k

α2,k + n0
, PERk = f̂(SINRk ) (5)

in which n0 is the power of the additive white channel noise
and f̂(·) is a nonincreasing function. Without loss of generality,
the channel gain is taken to be unity, and therefore, the received
SINR can be defined based on the transmission powers instead
of the actual received power. Notice that here we use a general
function f̂(·) to describe PERk , which has various forms that
correspond to different modulation modes. Interested readers
are referred to [15].

Under this scenario (the erasure channel), the arrival of the
packet can be characterized by a binary random process, de-
noted by ηk . Let ηk = 0 represents the packet loss, and ηk = 1
otherwise. When given the action of two agents (α1,k and α2,k ),
the packet-arrival probability is defined as follows:

Pr(ηk = 1) = q(α1,k , α2,k ) � 1 − PERk . (6)

In this paper, we consider a communication-feedback mech-
anism between the estimator and the sensor, as shown in Fig. 1.
The remote estimator will inform the sensor of the packet-loss
information ηk via sending back a short ACK frame immedi-
ately, i.e., before instant k + 1. This mechanism is an essential
part of Internet protocols (e.g., the TCP/IP protocol). Since the
sensor has a comprehensive understanding of the communica-
tion dynamics based on the collected ACKs, it can develop an
effective transmission schedule to improve the system perfor-
mance; i.e., α1,k may depend on the previous ACK sequence
ηk−1

1 . Here, the ACK is assumed to be reliably received by
the sensor. We shall assume that the attacker has no access
to the ACKs. Thus, the jamming scheme α2,k adopted by the
attacker depends only on its previous observations: the initial
transmission status, its historical jamming power αk−1

2,0 , and the
historical transmission energy of the sensor αk−1

1,0 . The sen-
sor can access the channel-state information using pilot-aided
channel-estimation techniques [15]. As for the attacker, it will
adopt a full-duplex technology to simultaneously generate in-
terference and monitor the channel. Specifically, it treats the
packet transmission of the sensor as an unknown deterministic
signal and adopts energy-detection technologies to estimate the
transmission power [16], [17]. More details about a practical
hardware implementation of the full-duplex attack can be found
in [18] and [19]. Thus, the sensor and the attacker can monitor
the transmission power and jamming power at each time after
packet transmission. The estimation error of the transmission
energy is not taken into account in this paper.

In conclusion, the decision-making information set of the
attacker is different from that of the sensor. The distinction
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between them arises from the availability of packet ACKs, that
is, the information structure for the sensor is TCPlike, while for
the attacker, it is UDPlike.

C. Remote Estimation

Based on the received data packets, the remote estimator
generates the MMSE estimate of the process xk , denoted by x̂k ,
with corresponding error covariance Pk . The estimate x̂k [14]
is obtained by

x̂k = ηk x̂
s
k + (1 − ηk )Ax̂k−1 . (7)

Consequently, the error covariance Pk at time k is

Pk � E[(xk − x̂k )(xk − x̂k )�]

=
{
P , ηk = 1
h(Pk−1), otherwise

(8)

where P stands for the steady-state error covariance shown
in (3).

Without loss of generality, we assume that the initial packet
x̂s0 is known by the estimator, and hence, P0 = P . From (8), it
follows that at a given time k, Pk can only take values in the
finite set {P , h(P ), h2(P ), . . . , hk (P )}.

D. Problem of Interest

Given a budget of transmission and congestion power, the
strategy designs of the sensor and the attacker are coupled. In
general, the task of the sensor is to make sure that its end user
(i.e., the remote estimator) is sufficiently informed of the pro-
cess, without wasting energy; as for the attacker, it intends to
disrupt the reliable communication between the sensor and the
user, also without expending more energy than required. With
opposite goals, the decision-making procedures of the sensor
and the attacker are interactively linked. The difficulty of de-
signing the power schemes for the two agents arises from their
distinct information structures. In the following sections, we
will investigate the decision-making procedures for the defend-
ing sensor and the malicious attacker with asymmetric infor-
mation. In Section III, an asymmetric-information game played
over time will be developed to model this interactive process
over an infinite-time horizon, and its solutions are demonstrated
in Section IV.

III. GAME MODEL

In this section, the problem of scheduling energy-efficient
actions in an infinite-time scenario, i.e., how to decide the trans-
mission energy (or interference power) for the sensor (or the
attacker) is modeled within a game-theoretic framework.

A. Preliminaries

First, we define an r.v. τk ∈ Z as the holding time1

τk � k − max
0≤l≤k

{l : ηl = 1} (9)

1In the remaining paper, we will omit the subscript of τk when the underlying
time index k is obvious from the context; when it is ambiguous, the subscript
will be indicated.

Fig. 2. Markov chain transition process of holding time τk .

which represents the intervals between the present moment k
and the most recent time when the data packet has been suc-
cessfully received by the estimator. As mentioned before, we
shall assume that the estimator receives the packet x̂s0 at the
beginning of the transmission; i.e., η0 = 1. Based on (8), it is
easy to obtain the relationship between the holding time and the
estimation-error covariance at the remote estimator Pk ,

Pk = hτk (P ), (10)

and the iteration of the holding time

τk =

{
0, if ηk = 1

τk−1 + 1, otherwise.
(11)

Owing to the communication feedback, the sensor will obtain
the online information ηk−1

0 at the end of the (k − 1)th time
interval and then infer the remote error covariance Pk−1 from
(10) before deciding on the transmission power α1,k for time
k. Different from the sensor, the attacker has no access to the
online information ηk−1

0 or the actual Pk−1 , while it will make
a guess about the error covariance Pk−1 (or τk−1) based on its
observations.

Obviously, τk may take values from Zk � {0, 1, 2, . . . , k}.
As k → ∞,Zk will be countably infinite. Notice that the current
state τk depends only on the last state τk−1 and the r.v. ηk from
(11). Hence, the sequence of random states τk forms a Markov
chain, and the transition process is depicted in Fig. 2. With the
powers of the two agents α1,k and α2,k , the transition can be
described by a simple transition probability matrix

T{α1 , k ,α2 , k } =

⎛
⎜⎜⎜⎜⎝

t 1 − t

t 1 − t

t 1 − t

...
. . .

⎞
⎟⎟⎟⎟⎠ (12)

where the entry T(i, j) represents the transition probability from
the state τk = i to τk+1 = j. Notice that the probability t =
q(α1,k , α2,k ) is given by (6) and the other default entries are 0.

To simplify the problem, we truncate Zk and consider a fi-
nite set, that is, Z � ∪k≥1Zk = {0, . . . , N}. The final state N
represents all the states τk ≥ N . The effect of the truncation
operator is analyzed when the nontruncated Markov chain is
bounded, i.e.,

∑∞
k=0 Tr[E(Pk |Zk )] <∞. The effect is negligi-

ble whenN is large enough, which is formalized in the following
lemma. Moreover, the truncation effect on the game solution is
explained directly in Remark 1.

Lemma 1: If the sensor’s transmission and attacker’s jam-
ming strategies are such that the nontruncated Markov chain is
bounded, i.e.,

∑∞
k=0 Tr[E(Pk |Zk )] <∞, then there holds that

as N → ∞, D(N) → 0 with D(N) �
∑∞

k=0 Tr[E(Pk |Zk ) −
E(Pk |Z)] being the performance gap.

Proof: See Appendix A. �
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B. Game Description

A unique feature of the problem is that the two agents
take actions simultaneously based on different information
sets. This leads to a Bayesian-game structure that captures
the asymmetrical-information setting between the sensor and
the attacker. Additionally, considering the dynamic nature
of the underlying physical process, we then model the strategic
interaction process as a stochastic Bayesian game, which can
be viewed as a combination of the Bayesian game and the
stochastic game. The stochastic Bayesian game, denoted by
GB , is characterized by a sextuplet (IB ,AB ,S,Θ,Δ(Θ),RB ).
Each item is elaborated as follows.

1) Player: IB = {1, 2} is the set of players, in which i = 1
represents the sensor and i = 2 stands for the attacker. The two
players are assumed to be rational players,2 i.e., each of them
makes the best choice in terms of their own benefits among
all actions available to them. Each player knows that the other
player is rational. Furthermore, they also know that their oppo-
nent knows that they know this, and so on, ad infinitum.

2) Action: AB = AB
1 ×AB

2 where AB
i , i = 1, 2 is the

action (or pure-strategy) space for player i. Note that the sen-
sor/attacker selects the transmission/attack power from the cor-
responding power set. Hence, AB

1 = Es and AB
2 = Ea . More-

over, the mixed action for each player, denoted by AB
i ∈

Δ(AB
i ), i = 1, 2, is a probability distribution over the pure ac-

tion space AB
i .

3) State: S = {0, 1, . . . , N} is the state space, with element
sk ∈ S representing the state of the game at time step k. We view
the Markov state τk as the state of the game sk with the transition
matrix shown in (12). As presented in (10), the state is closely
related to the estimation-error covariance.

4) Type: Θ = {Θi , i ∈ I} illustrates the set of types for
each player. The type is the private information for each player
that is relevant to his decision making. In this game, the state τ
of the Markov chain is known by the sensor only, and hence, it
is regarded as the (finite) type of the sensor, denoted by θ1 ∈ Z.
Suppose that the sensor is sure that the attacker cannot access
the well-protected ACKs or obtain the exact state τ (i.e., the
type of the sensor θ1). Hence, the information collected by the
attacker is visible to the sensor completely. In other words,
the type of the attacker is known by the sensor, and θ2 is a
singleton.

5) Belief: Bk ∈ Δ(Θ1) is a joint probability distribution
over the sensor’s type Θ1 assigning θ1 with probability (w.p.)
Bk (θ1) at time k. The initial belief is B0 = b0 , which is as-
sumed to be the common knowledge3 shared by all players.
Recall that the type θ1 is known by the sensor only, and the
attacker will build a belief of the sensor’s type based on Bayes’
rule.

6) Reward: RB = {rBi , i ∈ I} is the one-stage reward set,
and rBi represents the reward function for player i. Rewards are
computed by each player via taking expectations over types un-
der its own conditional beliefs about opponents’ types, thus,
rBi : Θi × Δ(Θ−i) ×AB → R. As Θ2 is a singleton, the

2The rationality assumption is a necessary condition for our subsequent equi-
librium analysis.

3In game theory, the common knowledge is stated in an informal way, that
is, every player knows them, knows that all the others know them, and so on.

reward functions for each player can be simplified, namely,
rB1 : Θ1 ×AB → R and rB2 : Δ(Θ1) ×AB → R.

As discussed previously, the sensor focuses on improving
the estimation accuracy, and the attacker hopes to degrade the
system performance. By quantifying the benefit of each player
as the trace of the expected estimation-error covariance and
taking the energy cost into account, we can obtain that

rB1 (θ1,k , α1,k , α2,k )

= −q(α1,k , α2,k )Tr[P ]

− (1 − q(α1,k , α2,k ))Tr[hθ1 +1(P )] − δ1α1,k (13)

and

rB2 (Bk , α1,k , α2,k ) =
∑
θ1 ∈Z

Bk (θ1)r̃B2 (θ1 , α1,k , α2,k ) (14)

with

r̃B2 (θ1 , α1,k , α2,k ) � q(α1,k , α2,k )Tr[P ]

+ (1 − q(α1,k , α2,k ))Tr[hθ1 +1(P )] − δ2α2,k , (15)

in which δ1 ≥ 0 and δ2 ≥ 0 represent the proportions of the
energy term in the reward functions. The sensor’s reward func-
tion depends on its type, whereas the attacker’s reward function
is an expectation developed, based on the player’s belief. This
demonstrates the difference between the Nash equilibrium (NE)
and the Bayesian NE (BNE).

In general, the information available to all players throughout
the play is described by the public information history. Here,
we denote H as the set of all histories and hk as the public
information history at time step k. The game can be carried out
under two different history structures [20] as follows.

1) Open-loop structure. Both players have the knowledge
of the prior distribution B0 = b0 and the time k, i.e., hok =
{b0 , k}.

2) Closed-loop structure. Players can observe the actions
of their opponents. This history concerns the prior distribu-
tion b0 and the history of all players’ actions, i.e., hck =
{b0 , α1,1 , α2,1 , . . . , α1,k , α2,k}.

Recall that the private information of player i is contained
in Θi . Here, we use πi : H× Θi → Δ(AB

i ) to represent the
strategy (or decision rule) for player i, and πi(αi,k |hk , θi,k ) is
the probability with which the specific action αi,k is played by
player i based on public information history hk and the current
type information θi,k . The scenarios that the game is played
under these two history structures are analyzed in details in the
next section.

The game is played as follows:
1) In state sk , the players’ types are determined, and each

player is informed only about its own type.
2) Based on the history hk and its own type θi,k , each player

i chooses an action αi,k according to a randomized strategy πi .
3) Each player receives an immediate reward rBi , and the

game moves to a new state sk+1 ∈ S with a transition probabil-
ity T{α1 , k ,α2 , k }(sk , sk+1).

In an abuse of notation, we use the same notation rBi (·) to
denote, at time k, the sensor’s reward to the randomized strategy
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π1 when the attacker uses π2 , which is given by

rB1 (π1 , π2 |hk , θ1,k ) =
∑

αB1 ∈AB
1

∑
αB2 ∈AB

2

{
π1(αB1 |hk , θ1,k )

× π2(αB2 |hk , θ2,k )rB1 (θ1,k , α
B
1 , α

B
2 )

}

in which θ2,k ∈ ∅,∀k ≥ 0. Similarly, we can obtain the at-
tacker’s reward to the pair of mixed strategies {π1 , π2}, denoted
by rB2 (π1 , π2 |hk ).

As for this game, from the long-term point of view, the
infinite-time discounted payoff of the ith player under the strate-
gies π1 and π2 is

J1(b0 , π1 , π2) =
∞∑
k=0

δkrB1 (π1 , π2 |hk , θ1,k )

J2(b0 , π1 , π2) =
∞∑
k=0

δkrB2 (π1 , π2 |hk ) (16)

where b0 is the initial prior belief distribution, and the parameter
δ ∈ [0, 1) stands for the discount factor. Each player’s objective
is to maximize its own payoff function. Here, we consider the
discounted sum of rewards since we put more weight on the
rewards obtained in the early periods. The sensor–attacker se-
curity problem is summarized as follows.

Problem 1: Find a pair of strategies (π�1 , π
�
2 ) such that for

any π1 and π2 the following hold:

J1(b0 , π
�
1 , π

�
2 ) ≥ J1(b0 , π1 , π

�
2 )

J2(b0 , π
�
1 , π

�
2 ) ≥ J2(b0 , π

�
1 , π2). (17)

Remark 1: This pair of strategies (π�1 , π
�
2 ) is called an NE

of the truncated game (the truncation operation is discussed in
Section III-A). Notice that if a pair of policies leads to an un-
bounded discounted payoff for each player, then the game is
dominated by the attacker since it can adopt the corresponding
jamming scheme to obtain an unbounded expected-error co-
variance. To avoid such trivial cases, in this paper, we focus on
the pairs of policies under which the discounted payoff func-
tions are bounded. Notice that the bounded payoff implies the
bounded sum of discounted estimation-error covariance, i.e.,∑∞

k=0 δ
kTr[E(Pk |Zk )] <∞. Next, we show that the trunca-

tion effect on the game equilibrium is negligible when N is
large enough. Let Ji(b0 , π1 , π2 |Zk ) and Ji(b0 , π1 , π2 |Z) de-
note the discounted payoff of the ith player under the strategies
(π1 , π2) for the nontruncated and truncated games, respectively.
From Lemma 1 and (17), we have for i = 1, 2

Ji(b0 , π
�
i , π

�
−i |Zk ) − Ji(b0 , π

�
i , π−i |Zk )

= lim
N→+∞

Ji(b0 , π
�
i , π

�
−i |Z) − Ji(b0 , π

�
i , π−i |Z) ≥ 0.

Thereby, we conclude that (π�1 , π
�
2 ) is also an NE of the nontrun-

cated game when the truncation parameter N goes to infinity.

IV. MAIN RESULTS

In this section, we present some results of Problem 1 under
two different history structures hok and hck .

A. Open-Loop Structure

As mentioned previously, the information available to a player
at time k is the initial prior distribution B0 = b0 and time k.
Note that the players’ strategies are determined by the pub-
lic information history hok , of which the total amount remains
constant, and Bk = b0 ,∀k ≥ 0. Accordingly, the strategies for
the sensor and the attacker are reduced to πB1 : Δ(Θ) × Θ1 →
Δ(AB

1 ) and πB2 : Δ(Θ) → Δ(AB
2 ) with ΠB

i , i = 1, 2 denoting
the set of strategies for player i. Thus, we can simplify the multi-
stage game (see Problem 1) to the following one-stage problem,
which can be solved easily.

Problem 2: Find a pair of strategies (πB,�1 , πB ,�2 ) ∈ ΠB
1 ×

ΠB
2 to maximize the one-stage reward function for each player

with B0 = b0 , i.e.,

max
π1 ,π2

rB1 (π1 , π2 |b0 , θ1), ∀θ1 ∈ Θ

max
π1 ,π2

rB2 (π1 , π2 |b0).

Next, we define the solution for Problem 2, called BNE.
Definition 1 (BNE): In this attacker–sensor one-stage game

with a finite number of types for the sensor and a prior distri-
bution B0 , the strategy profile (πB,�1 , πB ,�2 ) for the players is a
BNE if no player can benefit from changing strategies, while the
other keeps its own unchanged, i.e., for any type of the sensor

r�1 (B0 , θ1) � rB1 (πB,�1 , πB ,�2 |B0 , θ1)

≥ rB1 (πB1 , π
B ,�
2 |B0 , θ1),∀πB1 ∈ ΠB

1

and

r�2 (B0) � rB2 (πB,�1 , πB ,�2 |B0)

≥ rB2 (πB,�1 , πB2 |B0),∀πB2 ∈ ΠB
2 .

The attacker could use its belief B0(θ1) to compute the ex-
pected benefit of each action choice and, thus, find its opti-
mal response. By [21], the existence of a BNE with a mixed
strategy for Problem 2 is an immediate consequence as the
type space Θ is finite. The uniqueness and structure of a BNE
with a mixed-strategy form is analyzed in Theorem 1. To sim-
plify the problem, in this section, we suppose that the pure
action set of the sensor is AB

1 = {0, e1}, in which the action
αB1 = 0 means no packet is sent. Similarly, the attacker also
has two possible actions —to attack or not to attack, that is,
AB

2 = {0, e2}. This scenario is representative, (see [22] and
[5]); due to the limited available communication energy, the
sensor/attacker has to decide to send/jam or not. For notational
convenience, we define the packet-arrival rate in different cases
as λ1 � q(α2 = e1 , α2 = e2) and λ2 � q(α1 = e1 , α2 = 0), in
which we have λ1 < λ2 .

Theorem 1: Consider the attacker–sensor static game
Problem 2 with the aforementioned action sets. If there exists
an m ∈ N that satisfies the inequality

∑n
θ=m+1 B(θ)f(θ) ≤

δ2e2 ≤ ∑n
θ=m B(θ)f(θ), then the mixed-strategy BNE is

unique. In particular, in the mixed-strategy BNE, the sensor
transmits the packets w.p. q�1,θ , which has the following thresh-
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old structure:

q�1,θ =

⎧⎨
⎩

0, if θ < m
δ2 e2 −

∑ n
θ = m + 1 B(θ)f (θ)

B(m )f (m ) , if θ = m

1, otherwise
(18)

where f(θ) = (λ2 − λ1)Tr[hθ+1(P ) − P ]. Moreover, the at-

tacker jams the channel w.p. q�2 =
δ1 e1 − λ2

λ2 −λ1
f (m )

f (m ) .
Proof: See Appendix B. �

The Bayesian game is the partially observable counterpart
of the normal-form game. The one-stage sensor–attacker game
with symmetric information can be regarded as a normal-form
game. Comparing the sensor’s optimal reward in the asymmetric
game with that in the normal-form game, we can see that the sen-
sor will earn extra benefits by protecting the ACK information
from the attacker.

Theorem 2: Denote the optimal reward for the sensor in the
normal-form game (obtained by the NE) by rNE

1 (θ), and that of
the Bayesian game GB by rBNE

1 (B0 , θ). We then have for any
initial belief B0 ∈ Δ(Θ)

rNE
1 (θ) ≤ rBNE

1 (B0 , θ), ∀θ ∈ Z.

Proof: See Appendix C. �

B. Closed-Loop Structure

In the previously discussed open-loop case, the attacker
makes decisions based on an a priori guess (i.e., initial belief
B0) at the sensor’s type. In contrast to this, the guesses in the
closed-loop case are made based on historical (observed) actions
up to time k applied both by the attacker and the sensor (i.e.,
Bk = B0 for k > 0). Obviously, these dynamic guesses allow
the attacker to make better decisions in the future. Clearly, the
sensor may notice this and take actions with the consideration of
the attacker’s guess. Therefore, both players design their opti-
mal power strategies (i.e., the BNE) with the history information
taken into account. Unfortunately, the total information amount
increases with k for each player (i.e., hk increases with time).
However, not all information accumulated up to time k turns
out to be relevant for the decision-making process. Motivated
by this, next, we attempt to circumvent the complexities in-
duced by an increasing information set, and investigate easy-to-
implement strategies (i.e., stationary strategies as shown below)
for both players.

This game between the sensor and the attacker is played with
the property that at each stage k, two players simultaneously
select actions that will be revealed at the end of the stage k.
Moreover, the sensor can directly obtain the underlying online
information τk 4 from the observed ACKs, whereas the attacker
cannot. Hence, as illustrated in Fig. 3, the planning problem for
the sensor is akin to a Markov decision process (MDP), and that
of the attacker is like a partially observed MDP (POMDP). To
overcome difficulties arising from the absence of online infor-
mation, the conventional treatment to POMDP consists in taking
the internally generated belief as the state of the new MDP, since

4In the open-loop game, we use θ1 to represent the type of the sensor. In the
closed-loop case, to distinguish from the open-loop game, let τk denotes that of
the sensor at stage k.

Fig. 3. Dynamic game with asymmetric information. At each stage, the
belief is updated by the SE device.

the belief is sufficient statistic (i.e., satisfies the Markov prop-
erty [23]). Inspired by the idea of the “belief-based” MDP, we
construct a stochastic game with complete information, which
is composed of five tuples: GS � (I,B,A,Q, r)5; details are
demonstrated as follows.

1) Player: I = {0, 1, . . . , N + 1}, where each player type
is treated as a separate player. Specifically, i = N + 1 repre-
sents the attacker, and the other i ∈ {0, . . . , N} stands for the
respective “type player” of the sensor. In effect, when the type of
the sensor at stage k is τk = m, the sensor will adopt the strategy
of the mth type player correspondingly. The general idea is to
view the different types of sensor as different “individuals,” and
one of them is selected by nature to “appear” when the game
is played. The different “individuals” can make their strategies
at the “interim” stage (i.e., after knowing their type), which is
equivalent to a single sensor making ex ante decisions before
learning its type.

2) Belief State Space: B = Δ(S) stands for the continu-
ous belief state space defined on S with S = [0, . . . , N ]. Let
Bk (m) denote the probability that sk � τk = m. The distinc-
tion between the belief state and the original state sk is that the
former is a public knowledge for all players I, whereas the latter
is only observed by the type players. Let B be endowed with
the topology of weak convergence, then it is a Polish space (i.e.,
complete and separable metric space) [24].

3) Action: A =
∏

i∈I Ai is the joint action set. The ac-
tion set for the attacker AN+1 = Δ(AB

2 ) and each type player
share the same action set: Ai = Δ(AB

1 ) ∀i ∈ {0, . . . , N}. We
let Ai,k ∈ Ai denote the action for the ith player at stage k:
Ai,k (αi) represents the probability of the pure action αi taken
by the ith player at stage k. Notice that unlike in games with fully
observable states, the distributions of actions that are not taken
affect the evolution of belief state, we thus consider such an ac-
tion space. As for belief state space, we let Ai be endowed with
the topology of weak convergence. Let a = {a0 , . . . ,aN+1} be
the extended joint action. We then define the metric for action
space A as d(a,a′) = maxi∈I{dP (ai ,a′

i)}, where dP (·, ·) is
the Prokhorov metric [24] that induces the weak convergence
topology for Ai .

4) Transition Probability: Denote the extended joint ac-
tion at time k by Ak = {A0,k , . . . ,AN+1,k}. The transition

5In the remaining paper, we will omit the superscript of S without ambiguity.
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function Q : B ×A× B → [0, 1] is defined as Q(b′|b,a) �
Pr(Bk+1 = b′|Bk = b,Ak = a) ∀k, i.e., Q gives the proba-
bility of state at the next time conditioned on the current belief
state and the joint action.

The update of the belief consists of two parts: correction and
prediction.

Correction: At stage k, based on the actual transmission en-
ergy αo1,k adopted by the sensor, the attacker will correct its a

priori belief Bk using Bayes’ rule. Let B+
k denote the corrected

(posterior) belief, which is computed by the following: equation
(19–21) as shown at the bottom of this page.

Note that in (19), am (αo1),m ∈ {0, . . . , N} is the probability
that the mth type player takes action αo1 .

Prediction: Then, the attacker will predict the belief Bk+1
based on the posterior belief B+

k and the observed joint action
αok � {αo1,k , αo2,k}

Bk+1 � ϕ2(B+
k , α

o
k ) = (B+

k )�T{αo1 , k ,αo2 , k } (22)

in which αo2,k is the actual jamming energy adopted by
the attacker, and T{αo1 ,αo2 } is the transition matrix defined
in (12).

In summary, the belief state Bk transitions deterministically
given the public observations, and we can obtain transition prob-
abilities Q as (20), in which

Pr(αok = αo |Bk = b,Ak = a) =
N+1∑
i=1

b(i)ai(αo1)aN+1(αo2).

The element of the initial belief state is b0(s0) =
1{m 0 }(s0) ∀s0 ∈ S, in which m0 is the initial state known by
each player.

5) Reward: The one-stage reward function for each player
ri : B ×A → R is given as follows. For i ≤ N , we have

ri(Bk = b,Ak = a)

�
∑

α1 ∈AB
1

∑
α2 ∈AB

2

ai(α1)aN+1(α2)rB1 (i, α1 , α2). (23)

For the attacker

rN+1(Bk = b,Ak = a)

�
∑

α1 ∈AB
1

∑
α2 ∈AB

2

N∑
i=0

ai(α1)aN+1(α2)b(i)r̃B2 (i, α1 , α2).

(24)

Recall that rB1 (·) and r̃B2 (·) are given in (13) and (15).
Notice that we limit our attention to easy-to-implement sta-

tionary strategies, which are defined as time-independent map-
pings from the belief state space into the players’ actions, i.e.,
π : B → A. We denote by π(b)[αi ] the probability given to en-
ergy choice αi ∈ AB

1 (or αi ∈ AB
2 ) by the ith player when the

joint strategy π is adopted and the current state is b ∈ B.
As for this game, from the long-term viewpoint, the infinite-

time discounted payoff of the ith player under the joint
stationary strategy π is

Ji(b0 , π) =
∞∑
k=0

δkri(Bk = b, π(b)), i ∈ {0, . . . , N + 1}

in which the parameter δ ∈ [0, 1) stands for the discount fac-
tor. Each player’s objective is to maximize its own payoff
function. Here, we consider the discounted sum of rewards
since we put more weight on the rewards obtained in the early
periods.

The belief-based stochastic game at any given time every
player knows the belief state. Consequently, the dynamic sensor-
attacker game with asymmetric information structure is con-
verted into a stochastic game GS with a continuous state space
(akin to how POMDPs are converted into continuous belief-
space MDPs). Hence, the strategy-design problem for the two
agents is equivalent to finding the NE of the stochastic game.
Many preliminary works have investigated the existence of sta-
tionary equilibria in stochastic games with a finite number of
states and actions [21]. However, when extending noncoopera-
tive stochastic games to the case where the state and the actions

B+
k (m+) � ϕ1(Bk ,Ak , α

o
1,k ) � Pr(sk = m+ |Bk = b,Ak = a, αo1,k = αo1)

=
Pr(sk = m+ , αo1,k = αo1 |Bk = b,Ak = a)∑N
m=0 Pr(sk = m,αo1,k = αo1 |Bk = b,Ak = a)

=
Pr(αo1,k = αo1 |sk = m+ ,Bk = b,Ak = a)Pr(sk = m+ |Bk = b,Ak = a)∑N
m=0 Pr(α

o
1,k = αo1 |sk = m,Bk = b,Ak = a)Pr(sk = m|Bk = b,Ak = a)

=
am+ (αo1)b(m+)∑N
m=0 am (αo1)b(m)

(19)

Q(b′|b,a) =

{
Pr(αok = αo |Bk = b,Ak = a), if b′ = ϕ2(ϕ1(b,a, αo1), α

o) for some αo ∈ AB
1 ×AB

2

0, otherwise
(20)

Q̂(b′|b,a, α) =

{
Pr(αok = αo |Bk = b, αk = α), if b′ = ϕ2(ϕ1(b,a, αo1), α

o) for some αo ∈ AB
1 ×AB

2

0, otherwise
(21)
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are in uncountable (e.g., continuous) sets, the existence of sta-
tionary equilibria is much harder to access.

Next, we prove the existence of a stationary equilibrium for
this game. Recall that, an NE is a probability distribution over
actions for each player, from which no agent is motivated to de-
viate unilaterally. We also concentrate on the class of stationary
policy, and let π� � {π�0 , . . . , π�N+1} denote the joint stationary
equilibrium. Hence, at each time k, the players obtain the current
belief state Bk = b and choose their (transmission/jamming)
energies independently. That is to say, the energy choice αi
for the ith player is sampled as a mode of play w.p. π�(b)[αi ] .
At a stationary NE, no player adopting a meta-strategy (de-
noted by a transition ψ(π�i )) can improve its expected payoff,
if the others are assumed to play according to the equilib-
rium policy (denoted by π�−i). Hence, we have the following
definition:

Definition 2 (Stationary NE): For this stochastic game GS ,
a policy π�i ,∀i ∈ I is a stationary NE if

Ji(B0 , [π�i , π
�
−i ]) ≥ Ji(B0 , [ψ(π�i ), π

�
−i ]), ∀i ∈ I, ∀B0 ∈ B.

(25)

The corresponding optimal game value for each player is de-
noted by J �

i . �
To investigate the existence of stationary equilibrium strate-

gies for the players in the continuous-state stochastic game, we
have the following results.

Theorem 3: The game GS has a stationary NE.
Proof: See Appendix D. �

Even though the existence of a stationary NE is proved, it
is difficult to build practically a lookup table about the pairs of
continuous state and optimal strategy (namely, stationary NE).
Therefore, we consider the practical implementation in the next
section.

V. PRACTICAL IMPLEMENTATION

In the previous section, we have shown how Problem 1 with
the open-loop history can be simplified into a static Bayesian
game and also demonstrated its solution explicitly. When it
comes to the closed-loop case, We have proved that the for-
mulated stochastic game GS has a stationary NE based on the
results in [25]. Notice that both the state space and the action
space are probability measure spaces, the abstractness of which
renders the analysis and implementation of NE quite challeng-
ing. In this section, we provide a practical implementation to
find the stationary NE for each player.

First, we need a method for sampling from the continuous be-
lief state space. In light of the approaches used to solve POMDP
problems, we can discretize the state space at the first step. In
order to improve the accuracy of discretization, many existing
works have used particle filters to represent beliefs over contin-
uous state spaces [26]. Moreover, taking efficient computation
into account, exponential family principal components analysis
(E-PCA) was proposed to reduce dimensionality of the state
space by taking advantage of its sparsity [27]. Here, pursuing
the conciseness and tractability of the implementation, we shall
discretize the state space with a regular grid, for details see
Section VI.

Consequently, this continuous stochastic game can be ap-
proximated by discretizing the belief state space. Note that the

finite states ensure the existence of the stationary NE for the dis-
cretized game, which can be directly derived from [28]. Next, we
present an algorithm to find the NE of the discretized stochastic
game, based on the multiagent Q-learning method [29]. There
are many traditional algorithmic techniques for solving stochas-
tic games, such as value iteration and strategy improvement [30],
quadratic programming, etc. These algorithms assume that the
environment model parameters about the state transition and the
reward function are known; however, such perfect environmen-
tal knowledge is not available in many real applications. The
proposed multiagent Q-learning method (also called model-free
learning) can overcome these limitations.

First, we derive an analog of Bellman’s theorem [30] via
the Markov property, which is viewed as the set-valued backup
operator for the learning algorithm. Given a joint stationary
equilibrium π� , the expected payoff value for each player for all
b ∈ B has the following recursive property:

J �
i (b) � Ji(b, π�)

= Nashi{Q�
0(b,a), . . . , Q�

N+1(b,a)} (26)

Q�
i (b,a) = ri(b,a) + δ

∑
b ′∈B

Q(b′|b,a)J �
i (b′) (27)

in which Q�(b,a) represents the expected cumulative dis-
counted reward of action a taken in state b and then obey-
ing the optimal policy π� afterwards. Note that the Q-value
for the ith player is defined over states b and joint action
pairs a. Moreover, ri(b,a) is shown in (23) and (24). The
discretized state space is also represented by B without ambi-
guity. The notation Nashi describes the operation that finds the
NE point (that is, π�(b) = arg maxai ∈Ai

Q�
i (b, [ai , π

�
−i(b)]))

and provides the corresponding optimal game value for the
ith player. Note that the number of Q�(b,a) is uncountable
since a ∈ A. To overcome this disadvantage, we abuse the
notation Q�

i (·) and define Q-value for the ith player over
states b and joint energy action pairs αk = α, denoted by
Q�
i (b, α). Note that α � {α0 , . . . , αN+1} ∈ AB

1 × · · · × AB
2

and a(α) =
∏N+1

i=0 ai(αi) since each player takes independent
actions. Consequently, (26) is equal to

J �
i (b) = Nashi{Q�

0(b, α), . . . , Q�
N+1(b, α)}. (28)

Note that Q�
i (b,a) =

∑
α a(α)Q�

i (b, α). From (27), we con-
struct that

Q�
i (b, α) = r̂i(b, α) + δ

∑
b ′∈B

Q̂(b′|b, α,a)J �
i (b′)

in which

r̂i(b, α) =

{
rB1 (i, αi, αN+1), if i ≤ N,∑N+1

i=0 b(i)r̃B2 (i, αi, αN+1), otherwise.

and Q̂(b′|b, α,a) is shown in (21).
Note that the operation Nashi in (28) is similar to the def-

inition of the NE in a one-stage game, except that the value
Q�
i (b, α) is unknown. A learning process, called a Q-learning

algorithm, can be developed to approximate theQ-value through
repeated play. The updated equation of theQ-value is developed
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Algorithm 1: Nash Q-Learning Algorithm.
1: Input: Belief state space B, action space A, packet loss

function f̂(·), discount δ.
2: Output: Q-value Q�(·, ·), NE π� .
3: Initialization:
4: k = 0 and set the initial state s0 and the belief state

b0 ∈ B
5: Initialize the Q-value Qi(b, α, k) for all states b and

arbitrary joint energy actions α, where i ∈ I
6: While ||Qi(·, ·, k + 1) −Qi(·, ·, k)|| < ε
7: For each state b, find an NE (i.e., optimal mixedg

strategies) π� based on (29)
8: Randomly select the energy actions α based on the

optimal mixed strategy profiles
9: Observe αo and compute the next state b′ and update

the Q-value for each player according to (30)
10: Update the state: Bk+1 = b′ and decay the learning

rate κk
11: k := k + 1
12: End

based on the iteration in (26)

Ji(b, k) = Nashi{Q0(b, α, k), . . . , Q�
N+1(b, α, k)}

(29)

Qi(b, α, k + 1) = (1 − κk )Qi(b, α, k)

+ κk [r̂i(b, α) + δJi(b′, k)] (30)

in which κk is the learning rate. With an arbitrary guess at the
beginning, the Q-value for each player is updated via using the
current reward to amend the historicalQ-value. In addition, one
of the remaining difficulties in learning NE policies π� stems
from the fact that in general-sum multiplayer one-stage games,
multiple Nash equilibria may exist and the equilibrium selection
process is out of the scope of this paper. Without considering
the efficiency of Nash equilibria, in Section VI, we adopt an
equilibrium selection mechanism as an example to learn an NE
for each learning stage.

A summarized version of the Nash Q-learning algorithm is
given in Algorithm 1. Note that || · || is the induced norm and ε
represents the accuracy condition.

As required for the convergence in the general multiagent
learning algorithm, the following two conditions should be sat-
isfied.

1) Every state b ∈ B and every joint energy action α ∈
AB

1 × · · · × AB
2 is visited infinitely often during the

learning process.
2) The learning rate κk satisfies: κk ∈ [0, 1),

∑∞
k=0 κk =

∞, and
∑∞

k=0 κ
2
k <∞; κk (b, α) = 0 if (b, α) is the

state-action pair visited at stage k.
These two assumptions are easy to satisfy. Condition 1 can

be satisfied using a large number of iterations and samplings.
Condition 2 is about the decaying of the learning rate: The first
term restricts its convergence, whereas the second term states
that the players only update the Q-values that correspond to
the current state-action pair. To satisfy it, the learning rate is
designed as a nonzero decreasing function of time t and the

TABLE I
SUMMARY FOR PARAMETERS

current state-action pair. The specific representation is provided
in the simulation part (see Section VI).

Remark 2: The Nash Q-learning algorithm provably con-
verges to the NE for the general-sum stochastic game if either
every stage game during learning has a globally optimal strategy
or a saddle point. However, such conditions are not necessary
[29]. As shown in many experiments [31], we find the consistent
convergence of this algorithm despite violating the condition.
With respect to the implementation, we test this algorithm on
the stochastic game GS under different tuples of parameters, and
all the results show the empirical convergence of the Q-value.
If needed, we can adopt a new approach but with a high compu-
tational complexity to find all stationary equilibria of this game
[32].

Remark 3: Aiming at learning an equilibrium policy of a
stochastic game, we adopt the equilibrium-based multiagent re-
inforcement learning algorithm. The key idea is to compute an
NE of the one-stage game for each belief state and then sample
the actions for the players to update the expected payoff func-
tions. Also, we can consider this scenario, in which each player
learns by itself (namely, in self-play) and adapts to the oth-
ers’ behavior with the best response. Many pieces of work have
modified the reinforcement learning algorithm, for example, via
using a variable learning rate [33], to tackle this problem.

Remark 4: In this paper, we assume that the sensor and the
attacker have abundant computation abilities and develop the
algorithm finding out the optimal strategies. If the computation
costs matters, we can adopt the concept of the ε-equilibrium to
achieve a tradeoff between the system performance and compu-
tation budgets by adjusting ε. We refer the readers to [34] for
more details about computational complexity of ε-equilibrium.

VI. EXAMPLES

In this section, we will illustrate the results developed, us-
ing some examples. We consider a high-dimensional dynamic
system with parameters

A =
(

1 0.5
0 1.15

)
, C =

(
0.8 0.8

)
, Q =

(
0.5 0
0 0.5

)

and other parameters are shown in Table I. Suppose that the
communication channel between the sensor and the estimator is
wireless fast-fading channel with Gaussian noise n0 ; the general
form of the f̂ -function in (5) is f̂(x) = cx−L , where c and L
are constants dependent on channel characteristics.

In the examples, the energy level set of the sensor is AB
1 =

{0.5, 0.6} and that of the attacker is AB
2 = {0.1, 0.2}. Hence,

the maximum packet-dropout rate for one transmission is 0.36.
As proposed in Section III-A, the index D(N) is used to measure
the performance loss caused by the finite-state approximation.
Since D(4) < 10−1 , to reduce the computation, we impose the
restriction that the states set Z is finite andN = 4. The learning
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Fig. 4. Converged maximum J-value.

Fig. 5. Iteration of original state sk .

rate is κk = 10/[15 + count(b, α)], where count(·) is a function
to calculate the occurrence of the state-action pair (b, α) from
stage 0 to k. Before the learning process, we discretize the belief
state space with resolution rate 0.05, and the amount of discrete
belief states is 9267. We employ the algorithm under 10 000
iterations and obtain the following results.

1) Result 1: After 10 000 learning stages, we can see that
for each player, the procedure converges to an expected
payoff value J �

i (·) for each state and a Q-value Q�
i (·, ·)

for each state-action pair. To describe the convergent re-
sult for whole states, we take the attacker as an example
and adopt a useful statistic, that is, maxb∈B J6(b). The
results are depicted in Fig. 4. Extensive numerical sim-
ulations show that the number of iterations needed to
converge for our algorithm is around 6000.

2) Result 2: In the first 200 stages, the iteration of the orig-
inal state sk is shown in Fig. 5, and the corresponding
belief state Bk is depicted in Fig. 6. Note that since the
learning process starts with little information, the belief
(or probability distribution) cannot capture the fluctuation
of state sk . For example, when k is around 50, sk = 3
but the probability Pr(sk = 3) shown in Fig. 6 is close to
0.1. But, after a sufficiently large number of steps, suffi-
cient information is available for the attacker to develop
an accurate guess about state value. For instance, the

Fig. 6. Iteration of belief state Bk .

TABLE II
OPTIMAL STRATEGIES

Fig. 7. Iteration of transmission-power strategy for player i′ = 0 in the
last 200 learning stages.

probability Pr(sk = 3) is relatively high when k is about
180 according to the original state sk = 3.

3) Result 3: As mentioned previously, Algorithm 1 devel-
ops a lookup table of the pairs of discrete belief state
and optimal strategies for each of the sensor and the
attacker. Taking belief state b = [0.75, 0.25, 0, 0, 0]
(which occurs most frequently based on statistical re-
sults) as an example, one entry of the lookup table is
shown in Table II. If the discretized belief state devel-
oped by the sensor/attacker based on their observations
is b = [0.75 0.25 0 0 0], the sensor and the attacker will
play according to Table II. Specifically, as the sensor
has the interim status of the game (i.e., sk = i), it will
execute the ith type agent’s optimal strategy in Table II.
Whereas, the attacker will select the fifth type agent’s
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optimal strategy. Moreover, in the last 200 stages, the
iteration of the transmission-power scheme for player
i = 0 (namely, when the original state sk = 0, the sen-
sor’s strategy), as demonstrated in Fig. 7, also converges.

VII. CONCLUSION

This paper has discussed a CPS security issue, where a hos-
tile agent can launch DoS attacks to jam the communication
process between a sensor observing a correlated process and a
remote estimator. Successfully received data is acknowledged
to the sensor, which is perfectly protected from the attacker.
The purpose of the attacker is to deteriorate the estimation per-
formance. The interaction between the sensor and the attacker,
which has no feedback information from the remote estimator to
the sensor, was characterized by a dynamic game under asym-
metric information structure. To obtain the optimal strategies
for each agent, this game was converted into a continuous-state
symmetric-information one and solved by the multiagent rein-
forcement learning method. Being limited to the simple case of
the game between one sensor and one attacker, more research
involving multisensors or multiattackers can be further inves-
tigated. For instance, how to design an efficient collaboration
among a sensor team to avoid DoS attacks. We can also investi-
gate cases where ACKs are randomly observed by both parties.

APPENDIX A
PROOF OF LEMMA 1

The key point is that for any k < N , we have Tr[E(Pk |Zk )]=
Tr[E(Pk |Z)]. Then, D(N) �

∑∞
k=0 Tr[E(Pk |Zk ) − E(Pk |

Z)] ≤ ∑∞
k=N Tr[E(Pk |Zk )] → 0, as n→ ∞, which is due

to the fact that
∑∞

k=1 Tr[E(Pk |Zk )] <∞. Moreover, based
on Proposition 1, we have D(N) ≥ 0. Hence, limN→∞
D(N) = 0. �

APPENDIX B
PROOF OF THEOREM 1

As proposed by Harsanyi [21], we model this Bayesian game
via introducing a prior move of nature that determines the type
of the attacker.

To interpret the mixed strategies, the sensor in the θth type
will transmit the data packet w.p. q1,θ , and the attacker jams the
channel w.p. q2 . The reward functions under different actions
for each player are given as follows:

rB1 (θ)|S = −q2Tr[λ1P + (1 − λ1)hθ+1(P )]

− (1 − q2)Tr[λ2P + (1 − λ2)hθ+1(P )]} − δ1e1

rB1 (θ)|NS = −Tr[hθ+1(P )]

in which rB1 (θ)|S represents the reward for sending the packets
for the sensor if its type is θ. For the attacker, we have

rB2 |A =
∑
θ∈Z

B(θ)f̃(λ1 , θ), rB2 |NA =
∑
θ∈Z

B(θ)f̃(λ2 , θ)

where f̃(λ, θ) = q1,θTr[λP + (1 − λ)hθ+1(P )] + (1 − q1,θ )
Tr[hθ+1(P )].

Notice that a mixed-strategy BNE (q�1,θ , q
�
2 ) satisfies the con-

ditions in Definition 1. That is, under (q�1,θ , q
�
2 ) the following

equations must hold:

rB1 (θ)|S = rB1 (θ)|NS ,∀θ ≥ 0;∃θ ≥ 0 : rB2 (θ)|A = rB2 (θ)|NA .

It is convenient to introduce

g(q2 , θ) � rB1 (θ)|S − rB1 (θ)|NS

= [λ1q2 + (1 − q2)λ2 ]Tr[hθ+1(P ) − P ] − δ1e1 .

Based on Proposition 1, we can obtain that ∂g(q2 ,θ)
∂θ > 0 and

∂g(q2 ,θ)
∂q2

< 0. Hence, we can conclude that if minq2 ,θ g(q2 , θ) =
g(1, 0) > 0, then there exists a dominant strategy for the sensor
(q�1,θ = 1,∀θ); otherwise, there exist several pairs (q̃2 ,m) s.t.
g(q̃2 ,m) = 0 and q�2 = q̃2 . The possible value ofm is in a finite
set, denoted by {m1 ,m2 , . . .} (in ascending order), and its cor-
responding probability values are {q̃2,1 , q̃2,2 , . . .}. Obviously,
q̃2,i is monotonically increasing on i.

If q�2 = q̃2,i , then the optimal strategy for the sensor is as
follows. When θ < mj , then g(q�2 , θ) < 0 and the best choice for
the sensor is not sending the packet (i.e., q�1,θ = 0); moreover, we
have g(q�2 , θ) > 0 when θ > mi , and the sensor is suggested to
be active (i.e., q�1,θ = 1). Next, we will interpret the computation
of q�1,m j

and prove that there exists a unique mixed-strategy

BNE. We note that df (θ)
dθ > 0, and obtain that

rB2 (θ)|A − rB2 (θ)|NA =
∑
θ∈Z

B(θ)q1,θ f(θ)

= B(mj )q1,m j
f(θ1)

+
∑
θ>mj

B(θ)f(θ) − δ2e2 .

Therefore, it holds that if δ2e2 ∈ Σi = [
∑n

θ=mj +1 B(θ)f(θ),∑n
θ=mj

B(θ)f(θ)], then there exists an optimal q�1,m i
s.t.

rB2 (θ)|A − rB2 (θ)|NA = 0. Note that the intervals Σi ∀i are dis-
joined, hence, δ2e2 resides in a single interval Σi . Consequently,
q�1,m j

is unique. �

APPENDIX C
PROOF OF THEOREM 2

As discussed previously, the optimal reward for the sensor in
game GB is obtained by the BNE

rBNE
1 (θ) =

{
rB1 (θ)|NS = −Tr[hθ+1(P )], if θ ≤ m

rB1 (θ)|S , otherwise.

Note that the attacker will learn the type information in the
normal-form game and adopt type-contingent strategies [i.e.,
q2(θ)]. Via analyzing the property of the function g(q2 , θ), we
obtain that ∃θ1 < m s.t. g(q2 , θ1) ≤ 0, ∀q2 ∈ [0, 1], and ∃θ2 >
m s.t. g(q2 , θ2) ≥ 0, ∀q2 ∈ [0, 1]. Then, we have as follows.

1) if θ ≤ θ1 , then g(q2 , θ) < 0 and the sensor will choose
not to transmit in the NE. Hence, rNE

1 (θ) = rB1 (θ)|NS =
rBNE
1 (θ).

2) if θ ≥ θ2 , then g(q2 , θ) > 0 and the sensor will decide to
send in the NE. Hence, rNE

1 (θ) = rB1 (θ)|S = rBNE
1 (θ).
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3) if θ ∈ (θ1 ,m], then there exists q�2 (θ) ∈ [0, 1] such that
g(q�2 (θ), θ) = 0 [that is, rB1 (q�2 (θ), θ)|S = rB1 (θ)|NS ].
Hence, rNE

1 (θ) = rB1 (θ)|NS = rBNE
1 (θ).

4) if θ ∈ (m, θ2), there also exists such q�2 (θ) ∈ [0, 1].
Hence, rNE

1 (θ) = rB1 (θ)|NS < rB1 (θ)|S = rBNE
1 (θ). �

APPENDIX D
PROOF OF THEOREM 3

Using [25], to prove Theorem 3, it is sufficient to verify the
following conditions.

C1 (state space) B is a compact metric space.
C2 (action space) Ai is a compact metric space for every

i ∈ I.
C3 (reward functions) ri(·, ·) is continuous on B ×A for

every i ∈ I.
C4 (transition probability) Q is weakly continuous on

B ×A, i.e., if (bn ,an ) → (b,a), then Q(·|bn ,an ) con-
verges weakly6 to Q(·|b,a).

We next verify the conditions one by one.
C1 and C2: SinceB andAi all are probability measure spaces

on a finite set, then by [24, Th. 6.4], they are compact metric
spaces.

C3: For probability measuresμ, μn , n ∈ N, we writeμn
w→ μ

if μn converges weakly to μ. By the definition of the met-
ric defined for the action space A, one sees that as an → a,
also ani

w→ ai ,∀i ∈ I. Since either S,AB
1 ,AB

2 is a finite set, of
which each subset is a continuity set, then by the Portmanteau
Theorem [24], one obtains that

for 0 ≤ i ≤ N : ani
w→ ai ⇐⇒ ani (α) → ai(α),∀α ∈ AB

1

anN+1
w→ aN+1 ⇐⇒ anN+1(α) → aN+1(α),∀α ∈ AB

2

bn w→ b ⇐⇒ bn (i) → b(i),∀0 ≤ i ≤ N

where ⇐⇒ means equivalence. Furthermore, notice that the
functions rB1 and r̃B2 are bounded. Then, the dominated conver-
gence theorem yields that as (bn ,an ) → (b,a), ri(bn ,an ) →
ri(b,a) for every i ∈ I. The continuity of reward functions is
thus verified.

C4: Notice that given current state b and action a, the possible
values of the next state are finite. Then, again by the Portmanteau
Theorem, to verify this condition, it suffices to prove that for
any αo ∈ AB

1 ×AB
2 , if (bn ,an ) → (b,a), then

ϕ2(ϕ1(bn ,an , αo), αo)
w→ ϕ2(ϕ1(b,a, αo), αo)

Pr(αo |bn ,an ) → Pr(αo |b,a).

This can be done using very similar arguments to those used for
the previous C3 verification. �
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[8] Q. Zhu and T. Başar, “Game-theoretic methods for robustness, security,
and resilience of cyberphysical control systems: Games-in-games princi-
ple for optimal cross-layer resilient control systems,” IEEE Trans. Control
Syst., vol. 35, no. 1, pp. 46–65, Feb. 2015.

[9] Y. Li, D. E. Quevedo, S. Dey, and L. Shi, “SINR-based DoS attack on
remote state estimation: A game-theoretic approach,” IEEE Trans. Control
Netw. Syst., vol. 4, no. 3, pp. 632–642, Sep. 2017.

[10] Y. He, H. Li, X. Cheng, Y. Liu, and L. Sun, “A bitcoin based incentive
mechanism for distributed P2P applications,” in Proc. Int. Conf. Wireless
Algorithms, Syst., Appl., 2017, pp. 457–468.

[11] A. K. Khandani, “Full duplex wireless transmission with channel phase-
based encryption,” U.S. Patent 9 572 038, Feb. 14, 2017.

[12] P. Hovareshti, V. Gupta, and J. S. Baras, “Sensor scheduling using smart
sensors,” in Proc. IEEE 46th Annu. Conf. Decis. Control, 2007, pp. 494–
499.

[13] B. Anderson and J. Moore, Optimal Filtering. Upper Saddle River, NJ,
USA: Prentice-Hall, 1979.

[14] L. Shi, K. H. Johansson, and L. Qiu, “Time and event-based sensor
scheduling for networks with limited communication resources,” in Proc.
18th IFAC World Congr., 2011, pp. 13 263–13 268.

[15] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cam-
bridge, U.K.: Cambridge Univ. Press, 2005.

[16] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.
IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[17] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy detection
of unknown signals over fading channels,” IEEE Trans. Commun., vol. 55,
no. 1, pp. 21–24, Jan. 2007.

[18] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper:
reactive jamming in wireless networks: How realistic is the threat?” in
Proc. 4th ACM Conf. Wireless Netw. Secur., 2011, pp. 47–52.

[19] D. Nguyen, C. Sahin, B. Shishkin, N. Kandasamy, and K. R. Dandekar,
“A real-time and protocol-aware reactive jamming framework built on
software-defined radios,” in Proc. ACM Workshop Softw. Radio Imple-
mentation Forum, 2014, pp. 15–22.

[20] A. Haurie, J. B. Krawczyk, and G. Zaccour, Games and Dynamic Games.
Singapore: World Scientific, 2012.

[21] D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA, USA: MIT
Press, 1991.

[22] L. Shi, P. Cheng, and J. Chen, “Sensor data scheduling for optimal state
estimation with communication energy constraint,” Automatica, vol. 47,
no. 8, pp. 1693–1698, 2011.

[23] E. J. Sondik, “The optimal control of partially observable Markov pro-
cesses over the infinite horizon: Discounted costs,” Oper. Res., vol. 26,
no. 2, pp. 282–304, 1978.

[24] P. Billingsley, Convergence of Probability Measures. Hoboken, NJ, USA:
Wiley, 2013.

[25] M. J. Sobel, “Continuous stochastic games,” J. Appl. Probability, vol. 10,
pp. 597–604, 1973.

[26] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” in
Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 2164–2172.

[27] N. Roy and G. J. Gordon, “Exponential family PCA for belief com-
pression in POMDPs,” in Proc. Adv. Neural Inf. Process. Syst., 2002,
pp. 1635–1642.

[28] W. Whitt, “Representation and approximation of noncooperative sequen-
tial games,” SIAM J. Control Optim., vol. 18, no. 1, pp. 33–48, 1980.

[29] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic
games,” J. Mach. Learn. Res., vol. 4, no. Nov, pp. 1039–1069, 2003.



666 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 2, JUNE 2019

[30] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1.
Belmont, MA, USA: Athena Scientific, 2005.

[31] A. Greenwald, K. Hall, and R. Serrano, “Correlated Q-learning,” in Proc.
20th Int. Conf. Mach. Learn., 2003, vol. 3, pp. 242–249.

[32] R. N. Borkovsky, U. Doraszelski, and Y. Kryukov, “A user’s guide to
solving dynamic stochastic games using the homotopy method,” Oper.
Res., vol. 58, no. 4-part-2, pp. 1116–1132, 2010.

[33] M. Bowling and M. Veloso, “Multiagent learning using a variable learning
rate,” Artif. Intell., vol. 136, no. 2, pp. 215–250, 2002.

[34] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory, vol. 1. Cambridge, MA, USA: Cambridge Univ. Press,
2007.

Kemi Ding received the B.S. degree in
electronic and information engineering from
Huazhong University of Science and Technol-
ogy, Wuhan, China, in 2014. From September
2016 to December 2016, she was a Visiting Stu-
dent with the School of Engineering and Applied
Sciences in Harvard University, Cambridge, MA,
USA. She received the Ph.D. degree from the
Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and
Technology, Kowloon, Hong Kong, in 2018.

She is currently a Postdoctoral Researcher with the School of Elec-
trical, Computer, and Energy Engineering, Arizona State University,
Tempe, AZ, USA. Her current research interests include cyber-physical
system security/privacy, networked state estimation, and wireless sen-
sor networks.

Xiaoqiang Ren received the B.E. degree in con-
trol science and engineering, from Zhejiang Uni-
versity, Hangzhou, China, in 2012 and the Ph.D.
degree in electronic and computer engineering,
from Hong Kong University of Science and Tech-
nology, Kowloon, Hong Kong, in 2016.

He is currently a Postdoctoral Researcher
with the Department of Automatic, KTH Royal In-
stitute of Technology, Stockholm, Sweden. Prior
to this, he was a Postdoctoral Researcher with
the Hong Kong University of Science and Tech-

nology, Hong Kong, from September to November 2016, and Nanyang
Technological University, Singapore, from December 2016 to February
2018. His research interests include security of cyber-physical systems,
sequential decision, and networked estimation and control.

Daniel E. Quevedo (S’97–M’05–SM’14) re-
ceived Ingeniero Civil Electrónico and M.Sc. de-
grees from the Universidad Técnica Federico
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