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Tradeoffs in Stochastic Event-Triggered Control
Burak Demirel , Alex S. Leong , Vijay Gupta , and Daniel E. Quevedo

Abstract—This paper studies the optimal output-feedback con-
trol of a linear time-invariant system where a stochastic event-
based scheduler triggers the communication between the sensor
and the controller. The primary goal of the use of this type of
scheduling strategy is to provide significant reductions in the us-
age of the sensor-to-controller communication and, in turn, improve
energy expenditure in the network. In this paper, we aim to design
an admissible control policy, which is a function of the observed
output, to minimize a quadratic cost function while employing a
stochastic event-triggered scheduler that preserves the Gaussian
property of the plant state and the estimation error. For the infi-
nite horizon case, we present analytical expressions that quantify
the tradeoff between the communication cost and control perfor-
mance of such event-triggered control systems. This tradeoff is
confirmed quantitatively via numerical examples. Besides, numer-
ical simulations justify that the event-triggered control provides
better quadratic control performance than the (traditional) periodic
time-triggered control at the same average sampling rate.

Index Terms—Event-triggered control, linear systems, optimal
control, stochastic control.

I. INTRODUCTION

Over the past decade, distributed control and estimation over net-
works have been a major trend. Thanks to the forthcoming revolution
of the Internet-of-Things and resulting interconnectedness of smart
technologies, the importance of decision making over communication
networks grows ever larger in our modern society. These technologi-
cal advances, however, bring new challenges regarding how to use the
limited computation, communication, and energy resources efficiently.
Consequently, event- and self-triggered algorithms have appeared as an
alternative to traditional time-triggered algorithms in both estimation
and control (see, e.g., [1]).

A vast majority of the research in this area has mainly focused on
proving the stability of the proposed control schemes, and demon-
strating the effectiveness of such control systems, as compared to pe-
riodically sampled ones, through numerical simulations. However, an
important stream of work in such schemes is analytically characterizing
the tradeoff between the control performance and communication rate
(or sampling interval) achieved via these algorithms (see, e.g., [2]–[9]).
The authors of [10] investigated the minimum-variance event-triggered
output-feedback control problem, (cf., [2]). They established a sepa-
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ration between the control strategy and the scheduling decision, and
they also showed that scheduling decisions are determined by solving
an optimal stopping problem.

Optimal event-triggered control design requires the joint optimal de-
sign of the controller and the scheduler. The associated optimization
problem becomes notoriously difficult [11] since, in general, the con-
troller and the scheduler have different information. A vast majority
of work in the literature focuses on the design of optimal feedback
control laws for a predefined scheduling rule. It is important to note
that designing an optimal control law might be very complicated even
if one considers a fixed event-triggering policy. For instance, our re-
cent work [12] shows that, even for linear time-invariant (LTI) systems,
the quadratic optimal control problem, where a threshold-based event-
triggered mechanism is used to decide if there is a need for transmission
of new control actions based on knowledge of the plant state, leads to
a nonconvex optimization problem.

The selection of the event-triggering mechanism is essential for the
computation of the control performance. As noted in [9], in the case
of Gauss–Markov plant models, due to the use of a (deterministic)
threshold-based triggering mechanism, the plant state becomes a trun-
cated Gaussian variable. As a result, computation of the control perfor-
mance becomes challenging since it requires calculating the covariance
of the plant state via numerical methods. One way to tackle this prob-
lem consists in employing a stochastic triggering mechanism,1 which
preserves the Gaussianity of the plant state, as proposed in [13]–[15].
Our initial work in [16] used a deadbeat controller and a stochastic
scheduler, which is similar to the one introduced in [13], to quantify
the tradeoff between the communication and the control cost for scalar
systems. Similarly, Brunner et al. [17] proposed an event-triggered
control scheme that works under stochastic triggering rules. They also
derived a control policy that always outperforms a periodic one. Dif-
fering from [17], in this paper, we will focus on solving the optimal
output event-triggered control problem.

Contributions. In this paper, we consider optimal output-feedback
control of an LTI system where a stochastic event-based triggering
algorithm uses information on current state estimation errors to dictate
the communication between the smart sensor and the controller. The
proposed scheduler decides at each time step whether or not to transmit
new state estimates from the sensor to the controller based on state
estimation errors. The main contributions of this manuscript are as
follows.
1) We develop a framework for quantifying the closed-loop control

performance and the communication rate in the channel between
the sensor and the controller.

2) We confirm that the certainty-equivalent controller is optimal under
the proposed scheduling rule. Our previous work [9] used a trans-
mission strategy based on the plant state, and employed a sequence
of deadbeat control actions to establish a resetting property, but this

1The use of a stochastic triggering mechanism provides slightly worse per-
formance than the use of a deterministic one due to the additional uncertainty
introduced by randomness in the triggering decisions.
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Fig. 1. Block diagram of a feedback control system with plant G, sen-
sor/scheduler S, and controller C. The solid line represents an ideal chan-
nel, whereas the dashed line indicates a resource-constrained channel.

was not optimal since the separation principle between control and
scheduling does not hold.

3) We derive analytical expressions for the (average) communication
rate and control performance. Our analysis relies on a Markov
chain characterization of the evolution of the state prediction error
(cf., [9]) where the states of this Markov chain describe the time
elapsed since the last transmission.

4) Due to the use of the stochastic triggering rule, we can compute
the conditional covariance of the comparison error (i.e., the differ-
ence between the state estimation error at the sensor and the state
estimation error at the controller) in a closed form. Consequently,
it becomes almost effortless to compute the closed-loop control
performance (cf., [9]).

Outline. Section II describes the system architecture and formulates
an optimal event-triggered control problem. Section III verifies the
optimality of the certainty equivalent control law in the presence of
the event-based communication. This section also presents analytic ex-
pressions of the communication rate and the control performance for
the infinite horizon problem. An illustrative example is presented to
demonstrate the tradeoff between communication and control perfor-
mance in Section IV. Section V gives concluding remarks.

Nomenclature. The set of all real symmetric positive semi-definite
matrices of dimension n is denoted by Sn

�0 . The inner product of two
vectors u and v is denoted by 〈u, v〉.

II. PROBLEM FORMULATION

Control architecture: The feedback control system, depicted in
Fig. 1, is considered. A physical plant G, whose dynamics can be
represented by a stochastic LTI system, is being controlled. A battery-
powered sensor S takes samples of the plant output yk and transmits
the estimate of the plant state xk to the controller over a resource-
constrained communication channel. To tackle the resource constraint,
the sensor employs an event-based scheduler, that makes a transmission
decision by comparing its estimate of the plant state with the estimate at
the controller. The controller C computes new control actions based on
the available information. Whenever the controller receives a new state
estimate from the sensor, it calculates a control command based on
this state estimate. Otherwise, it runs an estimator to predict the plant
state, and it uses this information to calculate a new control action.
In this context, we are interested in deriving analytical performance
guarantees, both regarding the control performance and the number of
transmissions between the sensor and the controller.

Plant model. The plant G is modeled as a discrete-time LTI system

xk+1 = Axk + Buk + wk (1)

driven by the control input uk ∈ Rm (calculated by the controller
C), and an unknown noise process wk ∈ Rn . The state xk ∈ Rn is

available only indirectly through the noisy output measurement

yk = Cxk + vk . (2)

The two noise sources wk ∈ Rn and vk ∈ Rp are assumed to be
uncorrelated zero-mean Gaussian white-noise random processes with
covariance matrices W ∈ Sn

�0 and V ∈ Sp
�0 , respectively. We refer to

{wk }k≥ 0 as the process noise, and to {vk }k≥ 0 as the measurement
noise. The initial state x0 is modeled as a Gaussian distributed random
variable with mean x̄0 and covariance X0 ∈ Sn

�0 . We assume that
the pairs (A, B) and (A, W 1/2 ) are controllable, where W 1/2 is the
Cholesky2 factor of W , while the pair (A, C) is observable.

Smart sensor, preprocessor, and scheduler: Using a standard Kalman
filter, the sensor locally computes minimum mean squared error
(MMSE) estimates x̂s

k |k of the plant state xk based on the information
available to the sensor at time k, and transmits them to the controller.
As noted in [18] and [19], sending state estimates, in general, provides
better performance than transmitting measurements. The sensor also
employs a transmission scheduler, which decides whether or not to send
the current state estimate to the controller at each time step k ∈ N0 as
determined by

σk =

{
1, if MMSE estimate x̂s

k |k is sent

0, otherwise.
(3)

Assumption 1: The sensor S has precise knowledge of the control
policy used to generate control actions, which are computed by the
controller and applied by the actuator to the plant. Hence, the infor-
mation set of the smart sensor S contains all controls used up to time
k − 1.

The information set available to the sensor at time k ∈ N0 is

Is
k � {σ0 , . . . , σk−1 ; y0 , . . . , yk ; u0 , . . . , uk−1}. (4)

The MMSE estimate x̂s
k |k of the plant state xk can be computed recur-

sively starting from the initial condition x̂s
0 |−1 = x̄0 and P s

0 |−1 = X0
by using a Kalman filter [20]. At this point, it is worth reviewing the
fundamental equations underlying the Kalman filter algorithm. The
algorithm consists of two steps.
1) Prediction step: This step predicts the state, estimation error, and

estimation error covariance at time k dependent on information at
time k − 1

x̂s
k |k−1 � E [xk | Is

k−1 ] = Ax̂s
k−1 |k−1 + Buk−1 (5)

x̃s
k |k−1 � xk − x̂s

k |k−1 = Ax̃s
k−1 |k−1 + wk−1 (6)

P s
k |k−1 � E

[
x̃s

k |k−1 x̃
s�
k |k−1 | Is

k−1

]
= AP s

k−1 |k−1A
� + W. (7)

2) Update step: This step updates the state, estimation error, and
estimation error covariance using a blend of the predicted state and
the observation yk

x̂s
k |k � E [xk | Is

k ] = x̂s
k |k−1 + Kk

(
yk − Cx̂s

k |k−1

)
(8)

x̃s
k |k � xk − x̂s

k |k = (In − Kk C)Ax̃s
k−1 |k−1

+ (In − Kk C)wk−1 − Kk vk (9)

P s
k |k � E

[
x̃s

k |k x̃s�
k |k | Is

k

]
= (In − Kk C) P s

k |k−1

(10)

where the gain matrix is given by

Kk � P s
k |k−1C

�
(
CP s

k |k−1C
� + V

)−1
. (11)

2Given a matrix W ∈ Sn
�0 , its Cholesky factor is an upper-triangular matrix

O such that OO� = W .
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It is worth noting that the estimation error at the sensor x̃s
k |k is

Gaussian with zero mean and covariance P s
k |k , that evolves according

to the standard Riccati recursion [21, Ch. 9]. Since the pair (A, C) is
observable and the pair (A, W 1/2 ) is controllable, the matrices P s

k |k−1
and Kk converge exponentially to steady state values P s

∞ and K∞,
respectively. In consequence, the matrix P s

k |k also converges to a steady

state value, i.e., F s
∞ � (In − K∞C)P s

∞.
The scheduler and the sensor are collocated, and the scheduler has

access to all available information at the sensor. Moreover, the scheduler
employs an event-based triggering mechanism to decide if there is a
need for transmission of an updated state estimate from the sensor to
the controller. The occurrence of information transmission is defined
as

σk =

{
1, if δk = 1 or τk−1 = T

0, otherwise
(12)

where δk is a (random) binary decision variable [which, in this paper,
evolves according to (13)], τk is a nonnegative integer variable intro-
duced to describe the time elapsed since the last transmission, and T
is a time-out interval. Such a time-out mechanism is critical in event-
triggered control systems to guard against faulty components (see,
e.g., [9]). Not receiving any new messages on the controller side for a
long time could be due to two reasons: either the triggering condition
is not satisfied, or the sensor is not operational anymore.

To maintain the Gaussianity of the comparison error

ek |k−1 � x̂s
k |k − x̂c

k |k−1

[note that x̂s
k |k is defined in (8) while x̂c

k |k−1 is introduced in (17)] a
variant of the stochastic triggering mechanism proposed in [13]–[15]
is used. More specifically, the scheduler will decide to transmit a new
sensor packet according to the following decision rule:

δk =

⎧⎨
⎩ 0, with prob. e

−λ〈e
k |k −1

,e
k |k −1

〉

1, with prob. 1 − e
−λ〈e

k |k −1
,e

k |k −1
〉 (13)

where the triggering parameter λ is a given positive scalar (i.e., 0 <
λ < ∞). As can be seen in (13), the probability of transmitting a new
sensor packet (i.e., σk = 1) converges to one as λ goes to infinity. In
other words, for large values of λ, the communication between the
sensor and the controller is more likely to be triggered.

The integer-valued random process {τk }k≥ 0 in (12) describes how
many time instances ago the last transmission of a sensor packet oc-
curred. Whenever a sensor packet is transmitted from the sensor to the
controller, τk is reset to zero. Thus, the evolution of the random process
{τk }k≥ 0 is defined by

τk =

{
0, if δk = 1 or τk−1 = T

1 + τk−1 , otherwise
(14)

or equivalently

τk =
{

0, if σk = 1
1 + τk−1 , if σk = 0 (15)

where τ−1 = 0. Notice that the number of time steps between two
consecutive transmissions is bounded by the time-out interval T < ∞.
If the number of samples since the last transmission exceeds a time-
out value of T, the sensor will attempt to transmit new data to the
controller even if the comparison error does not satisfy the triggering
condition (13). Thus, a transmission (i.e., σk = 1) will occur when
either δk = 1 or there is a time out.

Remark 2: It is worth noting that, as can be seen in (15), the events
{σk = 1} and {τk = 0} are equivalent to each other.

At time instances when σk = 1, the sensor transmits its local state
estimate x̂s

k |k to the controller. As a result, the information set available
to the controller at time k ∈ N0 (and before deciding upon uk ) can be
defined as

Ic
k �

{
σ0 , . . . , σk ; σ0 x̂

s
0 |0 , . . . , σk x̂s

k |k ; u0 , . . . , uk−1

}
. (16)

Under the event-based scheduling mechanism, (12)–(14), the con-
troller runs an MMSE estimator to compute estimates of the plant state
xk recursively as

x̂c
k |k−1 � E [xk | Ic

k−1 ] = Ax̂c
k−1 |k−1 + Buk−1 (17)

x̂c
k |k � E [xk | Ic

k ] =
{

x̂s
k |k , if σk = 1

x̂c
k |k−1 , otherwise

(18)

starting from x̂c
0 |−1 = x̄0 . Here, x̂c

k |k−1 is the optimal estimate at the
controller if the sensor did not transmit any information at time step
k ∈ N0 . Note that the optimality of this estimator can be shown by
using a similar argument to that provided in [15, Lemma 4].

Assumption 3: In addition to computing x̂s
k |k , the sensor operates

another estimator, which mimics the one at the controller, since trans-
mission decisions rely on both x̂s

k |k and x̂c
k |k−1 [see (13)]. This can be

done provided we make the following assumption.
Assumption 4: Both the smart sensor S and the controller C know

the plant model G (but not realizations of the noise processes).
Controller design and performance criterion. We aim at finding the

control strategies uk , as a function of the admissible information set
Ic

k defined in (16), to minimize a quadratic cost function of the form

JN = E

[
x�

N Qf xN +
N −1∑
k=0

(
x�

k Qxk + u�
k Ruk

)]
(19)

where Q, Qf ∈ Sn
�0 and R ∈ Sm

�0 . The expectation is taken over the
uncorrelated variables x0 , {wk }k≥ 0 , and {vk }k≥ 0 . At time instances
when σk = 1 (i.e., the controller has received sensor packets), the
controller uses the state estimate x̂s

k |k , which was transmitted by the
sensor. However, at time instances when σk = 0, the controller uses
the outcome of the estimator at the controller side. As is well known
in related situations (e.g., [11], [22]), if the transmission decision σk

is independent of the control strategy uk , then the certainty equivalent
controller is optimal.

III. MAIN RESULTS

We wish to quantify the communication rate and control perfor-
mance of the feedback control system described by (1) and (2), where
the event-based triggering mechanism (13) determines the communi-
cation between the sensor and the controller. We will first demonstrate
that the time elapsed between two consecutive transmissions can be re-
garded as a discrete-time, finite state, and time-homogeneous Markov
chain. Then, using an ergodicity property, we will provide an analyt-
ical formula for the communication rate between the sensor and the
controller. Subsequently, we will show that the certainty equivalent
controller is still optimal with the event-triggering rule (13). Finally,
we will compute the control performance analytically for the infinite
horizon case.

Assumption 5: In the rest of this paper, we will assume that the
Kalman filter at the sensor runs in steady state. This means P s

k |k−1 and
Kk have reached their steady-state values P s

∞ and K∞.
We first define the state prediction error at the controller

x̃c
k |k−1 � xk − x̂c

k |k−1 (20)
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which evolves as

x̃c
k+1 |k =

{
Ax̃s

k |k + wk , if σk = 1

Ax̃c
k |k−1 + wk , if σk = 0.

(21)

Then, we define the state estimation error at the controller

x̃c
k |k � xk − x̂c

k |k (22)

which evolves as

x̃c
k |k =

{
x̃s

k |k , if σk = 1

Ax̃c
k−1 |k−1 + wk−1 , if σk = 0.

(23)

Define also the comparison errors:

ek |k−1 � x̂s
k |k − x̂c

k |k−1 = x̃c
k |k−1 − x̃s

k |k (24)

ek |k � x̂s
k |k − x̂c

k |k = x̃c
k |k − x̃s

k |k . (25)

Whenever a transmission occurs (i.e., τk = 0), the state estimation
error x̃c

k |k at the controller is equal to x̃s
k |k , since the most recent

sensor packet is available at the controller. It is then possible to write
the stochastic recurrence (24) and (25) as

ek+1 |k =

{
ηk , if τk = 0

Aek |k−1 + ηk , if τk 
= 0
(26)

and

ek |k =

{
0, if τk = 0

Aek−1 |k−1 + ηk−1 , if τk 
= 0
(27)

where ηk � K∞C(Ax̃s
k |k + wk ) + K∞vk+1 . Notice that the com-

parison errors ek |k−1 and ek |k propagate according to a linear system
with open-loop dynamics A, driven by the process ηk .

Lemma 6: {ηk }k≥ 0 is a sequence of pairwise independent Gaus-
sian random vectors such that ηk ∼ N (0, Πη ) with Πη � K∞CP s

∞.
Remark 7: If the sensor has perfect state measurements (i.e., yk =

xk ), then ηk will be equal to wk .
Definition 8 (Cumulative error): We shall characterize the cumu-

lative comparison error (i.e., the error that occurs in estimation at the
controller over time due to intermittent transmissions) via

εk (i) �
i∑

j=0

Aj ηk−j . (28)

Using Definition 8, the stochastic recurrence (26) and (27) can be
then rewritten as

ek+1 |k = εk (τk ) (29)

ek |k =
{

0, if τk = 0
εk−1 (τk−1 ), if τk 
= 0.

(30)

Lemma 9 (Augmented cumulative error vector): Consider ε̄k (i) �[
ε�k (0) ε�k+1 (1) · · · ε�k+ i (i)

]�
with εk (i) as in (28). Then, ε̄k (i) is

a random vector having a multivariate normal distribution with zero
mean and covariance

Σε (i) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Πη Πη A� . . . Πη (Ai )�

�
1∑

j=0
Aj Πη (Aj )� . . .

1∑
j=0

Aj Πη (Aj+ i−1 )�

...
...

. . .
...

� � . . .
i∑

j=0
Aj Πη (Aj )�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for any i ∈ {0, 1, . . . , T − 1} (Notice that Σε (0) = Πη ).

Lemma 10 (Markov chain): The sequence of random variables
{τk }k≥ 0 is a homogeneous Markov chain with state space B =
{0, 1, . . . , T} and the transition matrix

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 ,0 1 − p0 ,0 0 . . . 0

p1 ,0 0 1 − p1 ,0 . . . 0

...
...

...
. . .

...

pT−1 ,0 0 0 . . . 1 − pT−1 ,0

pT ,0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where the nonzero transition probabilities are computed as

pi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1√|In + 2λΣε (0)| , if i = 0, j = 0

1 −
√

|Iin + 2λΣε (i − 1)|
|I(i+1)n + 2λΣε (i)|

,
if i ∈ {1, . . . , T − 1}
j = 0,

1 − pi,0 ,
if i ∈ {0, . . . , T − 1}
j = i + 1

1, if i = T, j = 0.

Lemma 11 (Ergodicity): The homogeneous Markov chain
{τk }k≥ 0 with state space B is ergodic and has a unique invariant
distribution π �

[
π(0) π(1) · · · π(T)

] ∈ R1×(T+1) such that∑
i∈B π(i) = 1 and π(i) > 0 for all i ∈ B.
The communication rate R, here taken as the long-term average

number of messages (i.e., state estimates) transmitted from the sensor
to the controller, is defined as

R � lim
N →∞

1
N

N −1∑
k=0

σk .

As can be seen in (15), the visit of the Markov chain {τk }k≥ 0 to the
state 0 is analogous to a transmission (i.e., σk = 1) of the state estimate
from the sensor to the controller. Then, instead of focusing on σk , we
can consider the Markov chain {τk }k≥ 0 to compute the transmission
rate. By the ergodic theorem for Markov chains [23, Theorem 5.3], the
communication rate R can, thus, be computed by

R = π(0) � lim
N →∞

1
N

N −1∑
k=0

1{τ
k

=0}

where π(0) is the empirical frequency of transmissions. With the tran-
sition probabilities of this Markov chain, we can give an explicit char-
acterization of the average communication rate of the event-triggered
control system.

Theorem 12 (Communication rate): The average communication
rate between the sensor and the controller under the stochastic event-
based triggering mechanism, proposed in (12)–(14), for a fixed λ > 0
is given by

R =
1

1 +
∑T

n =1

∏n−1
m =0 (1 − pm ,0 )

. (32)

The next theorem describes the optimal control law for the event-
triggered control system at hand.

Theorem 13 (Certainty-equivalent control): Consider the system
(1) and (2), and the problem of minimizing the cost function (19) un-
der the event-based triggering mechanism (12)–(14) for a fixed λ > 0.
Then, there exists a unique admissible optimal control policy

uk = −Lk E
[
xk | Ic

k

]
= −Lk x̂c

k |k (33)
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where

Lk = (B�Sk+1B + R)−1B�Sk+1A (34)

Sk = A�Sk+1A + Q

− A�Sk+1B(B�Sk+1B + R)−1B�Sk+1A (35)

with initial values SN = Qf . The minimum value of the cost function
is obtained as

JN = x̄�
0 S0 x̄0 + Tr (S0X0 ) +

N −1∑
k=0

Tr
(
Sk+1W

)

+
N −1∑
k=0

Tr
(
P s

k |k Mk

)
+

N −1∑
k=0

E
[
e�

k |k Mk ek |k
]

(36)

where Mk � L�
k (B�Sk+1B + R)Lk .

Remark 14: The scheduling decisions in (13) do only depend on
independent random variables, and not on past control actions. Based
on a similar argument as that provided in [22, Theorem 3.1], the use
of the aforementioned scheduling mechanism, which is independent of
the past control actions, guarantees certainty equivalence and leads to
no dual effect.

As discussed in [9] and [14], under some threshold-based event-
triggered scheduling mechanisms, the plant state xk and the state esti-
mate x̂s

k |k become truncated Gaussian random variables. Similarly, the
comparison error ek |k , defined in (25), has a truncated Gaussian dis-
tribution. As noticed in (36), one should evaluate the covariance of the
comparison error to compute the long-run average control loss. How-
ever, this covariance cannot be calculated analytically. Wu et al. [14],
therefore, proposed stochastic scheduling rules, related to (13), to pre-
serve the Gaussianity of the plant state. Next, we will present a lemma
to compute the covariance of the comparison error, which is used to
quantify the control loss.

Lemma 15 (Gaussianity preservation): The conditional random
variable, ek |k | τk = i, has a Gaussian distribution with zero mean
and covariance

Σe (0) = 0n

Σe (i) =
1
2λ

In − 1
4λ2

(
AΣe (i − 1)A� + Πη +

1
2λ

In

)−1

.

Using Theorem 13 and Lemma 15, we have the following result to
calculate the long-term average control performance.

Theorem 16 (Infinite horizon control performance): Suppose the
pairs (A, B) and (A, W 1/2 ) are controllable, and the pairs (A, C)
and (A, Q1/2 ) are observable. Moreover, suppose that λ > 0. Then,
we have the following:
a) The infinite horizon optimal controller gain is constant

L∞ � lim
k→∞

Lk = (B�S∞B + R)−1B�S∞A. (37)

b) The matrices S∞ and P s
∞ are the positive definite solutions of the

following algebraic Riccati equations:

S∞ � A�S∞A + Q

− A�S∞B(B�S∞B + R)−1B�S∞A (38)

P s
∞ � AP s

∞A� + W

− AP s
∞C�(CP s

∞C� + V )−1CP s
∞A�. (39)

Fig. 2. Tradeoff between the communication rate and the control per-
formance (the scheduling parameter log10 λ is illustrated by gray scale).

c) The expected minimum cost converges to the following value:

J∞ � lim
N →∞

1
N

JN = Tr(S∞W ) + Tr(F s
∞M∞)

+
T∑

i=1

π(i)Tr
(
M∞Σe (i)

)
(40)

where F s
∞ � (In − K∞C)P s

∞, M∞ � L�
∞(B�S∞B + R)L∞,

and π = [π(0) π(1) · · · π(T)] satisfies π = πP.
Corollary 17: Suppose the pairs (A, B) and (A, W 1/2 ) are con-

trollable, and the pairs (A, C) and (A, Q1/2 ) are observable. Then,
there exist the following extreme cases.
a) As λ → ∞, the communication rate becomes one, and the control

loss converges to

Jλ→∞ � Tr(S∞W ) + Tr(F s
∞M∞).

b) As λ → 0, the communication rate becomes 1/T+1, and the control
loss converges to

Jλ→0 � Jλ→∞ +
1

T + 1

T∑
i=1

Tr

(
M∞

i−1∑
j=0

Aj Πη (A�)j

)
.

Remark 18: When the time out goes to infinity (i.e., T → ∞), the
discrete-time Markov process appears to be analytically intractable.
We, therefore, cannot provide any analytical characterization of the
communication rate and control performance in this limiting case.

IV. NUMERICAL EXAMPLE

In this section, numerical simulations are provided to assess the
performance of the stochastic event-triggering algorithm proposed in
Section II, and verify the theoretical results presented in Section III. To
this end, the system parameters are chosen as follows:

A =
[

1.2 1
0 0.9

]
, B =

[
0
1

]
, C =

[
1 0

]
, V = 1

X0 = W =
[

1 0.5
0.5 1

]
, Q =

[
2 0.5

0.5 2

]
, R = 1.

The matrix A has one stable (i.e., 0.9) and one unstable eigenvalue (i.e.,
1.2). The time-out interval is set to T = 50.

For various values of λ ranging from 0.01 to 100 (resp. from −2 to
2 in logarithmic scale), we evaluate the communication rate and the
control performance as predicted by Theorems 12 and 16, respectively.
We can also obtain results on when changing λ has the most effect as
demonstrated in Fig. 2. It is observed, for instance, that changing λ from
one to large values has minimal effect on the control performance, but
nearly doubles the communication frequency. By setting λ = 1 (resp.
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Fig. 3. Comparison of transmission rate (resp. control loss) de-
rived from the analytic expression (32) [resp. (40)] and Monte Carlo
simulations.

0 in logarithmic scale), it is possible to reduce the communication be-
tween the sensor and the controller by almost 40%, while only slightly
sacrificing the control performance of the closed-loop system.

Fig. 3 compares the control loss incurred when the proposed method
is applied to a double integrator (see [24, p. 49]) to that obtained
when using a standard sampled-data linear-quadratic Gaussian (LQG)
controller with varying sampling intervals. Notice that the loss function
needs to be discretized; in consequence, the discretization leads to
nonzero cross-coupling terms. All theoretical results, presented in the
paper, are also valid for this type of loss functions. As seen in Fig. 3, the
event-triggered controller proposed in this paper provides significantly
better performance than the standard sampled-data LQG controller.

V. CONCLUSION AND DISCUSSIONS

This paper has focused on the optimal control of stochastic LTI sys-
tems, where a stochastic event-based scheduling mechanism governs
the communication between the sensor and the controller. The sched-
uler is colocated at the sensor and employs a Kalman filter. Based on
the prediction error, the scheduler decides whether or not to send a new
state estimate to the controller. The use of this transmission strategy
reduces the communication burden in the channel. It was shown that, in
this setup, the optimal controller is the certainty-equivalent controller
since the scheduling decisions are not affected by the control policy.
Analytical expressions were also provided to quantify the tradeoff be-
tween the communication rate and the control performance.

VI. APPENDIX: PROOFS

Proof of Lemma 6: By Assumption 5, the Kalman filter has reached
its steady state. Consequently, the Kalman gain Kk and the error co-
variance matrices, P s

k |k−1 and P s
k |k , become constant, i.e., K∞, P s

∞,
and F s

∞ = (In − K∞C)P s
∞, respectively. Let us define the following

random process:

ηk = K∞CAx̃s
k |k + K∞Cwk + K∞vk+1 .

Since x̃s
k |k , wk , and vk+1 are mutually independent Gaussian vectors

with zero mean and covariances F s
∞, W , and V , respectively, ηk is

Gaussian with zero mean and covariance

Πη = E
[
ηk η�

k

]
= E

[(
K∞CAx̃s

k |k + K∞Cwk + K∞vk+1

)
× (K∞CAx̃s

k |k + K∞Cwk + K∞vk+1

)�]
= K∞

(
C(AF s

∞A� + W )C� + V
)
K�

∞

(a )
= K∞

(
CP s

∞C� + V
)
K�

∞
(b )
= K∞CP s

∞ (41)

where (a) is derived by writing P s
∞ � AF s

∞A� + W while (b) is ob-
tained by replacing K�

∞ with
(
CP s

∞C� + V
)−1

CP s
∞.

Since {ηk }k≥ 0 are Gaussian random vectors, pairwise indepen-
dence is equivalent to

E
[
ηk η�

l

]
= 0n , 0 ≤ k < l < ∞.

For k < l, we have

E
[
ηk η�

l

]
= E

[(
K∞CAx̃s

k |k + K∞Cwk + K∞vk+1

)
× (K∞CAx̃s

l |l + K∞Cwl + K∞vl+1

)�]
(b )
= E

[(
K∞CAx̃s

k |k + K∞Cwk + K∞vk+1

)
x̃s�

l |l
]

×A�C�K�
∞

(c )
=
(
K∞C

(
AF s

∞A� + W
)
(In − K∞C)�

−K∞V K�
∞
) (

(A − K∞CA)l−k−1)� A�C�K�
∞

(d )
=
(
K∞CP s

∞(In − K∞C)� − K∞V K�
∞
)

× ((A − K∞CA)l−k−1)� A�C�K�
∞

(e )
= 0n

where (b) holds since wl and vl+1 are independent of x̂s
k |k , wk , and

vk+1 ; (c) is obtained by replacing x̂s
l |l with (9) iteratively from l to k and

using the fact that wk and vk+1 are independent of wk+1 , . . . , wl−1

and vk+2 , . . . , vl ; (d) is obtained by writing P s
∞ � AF s

∞A� + W ; and
(e) follows from (41). �

Lemma 19: Suppose that ζk+1 , ζk+2 , . . . , ζk+ i is a sample of

ζ
i.i.d.∼ Uni(0, 1). Define the following events:

Ei �
{
δk+1 = 0, . . . , δk+ i = 0

}

=
i−1⋂
j=0

{
ζk+ j+1 ≤ e

−λ〈ε
k + j

(j ) ,ε
k + j

(j )〉} (42)

for all i ∈ {1, 2, . . . , T}, with the convention that E0 is a sure event.
For any given λ > 0, the probability of these events Ei , for all i ∈
{1, 2, . . . , T}, can be computed as

P
(Ei

)
=

1√|Iin + 2λΣε (i − 1)| . (43)

Proof of Lemma 19: Assume that ζk+1 , ζk+2 , . . . , ζk+ i is a sample

of ζ
i.i.d.∼ Uni(0, 1). Since ek+1 |k = εk (i − 1) when τk = i − 1 ∀i ∈

{1, 2, . . . , T}, the stochastic triggering rule (13) can be rewritten as

δk+ i =

{
0, if ζk+ i ≤ e

−λ〈ε
k + i−1 (i−1) ,ε

k + i−1 (i−1)〉

1, otherwise.

For any given λ > 0, we compute

P(Ei ) = P(δk+1 = 0, . . . , δk+ i = 0)

= P

(
i−1⋂
j=0

ζk+ j+1 ≤ e
−λ〈ε

k + j
(j ) ,ε

k + j
(j )〉
)

=

∫
Ri n e−

1
2 χ�(i−1)

(
2λI

n i
+Σ−1

ε (i−1)
)

χ (i−1)dχ√
(2π)in |Σε (i − 1)|

=
1√|Iin + 2λΣε (i − 1)| .

�
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Proof of Lemma 10: Using the total law of probabilities and the fact
that ek+1 ∈ Rn 3, we have

P
(
τk+1 | τk , τk−1 , . . . , τ0

)
=
∫

Rn

P
(
τk+1 , ek+1 | τk , τk−1 , . . . , τ0

)
dek+1

(a )
=

∫
Rn

P
(
τk+1 | ek+1 , τk , τk−1 , . . . , τ0

)
× P

(
ek+1 | τk , τk−1 , . . . , τ0

)
dek+1

(b )
=
∫

Rn

P
(
τk+1 | ek+1 , τk

)
P
(
ek+1 | τk

)
dek+1

(c )
=
∫

Rn

P
(
τk+1 , ek+1 | τk

)
dek+1 = P

(
τk+1 | τk

)
where (a) and (c) come from the definition of conditional probability,
and (b) holds since ek+1 depends only on τk as described in (29), and
τk+1 depends on ek+1 and τk as described in (13) and (14). In other
words, {τk }k≥ 0 has the Markov property. Consequently, the sequence
{τk }k≥ 0 of random variables with values in B = {0, 1, . . . , T} is a
Markov chain.

The matrix P = {pi,j }i ,j∈B, where

pi,j = P(τk+1 = j|τk = i)

is the transition matrix of the Markov chain (see Fig. 4). The transition
probabilities except pi,0 for all i ∈ {0, . . . , T} and pi,i+1 for all i ∈
{0, . . . , T − 1} are equal to zero as can be seen in (15). Now, we
only focus on the nontrivial cases where i can take any value from
{0, . . . , T − 1} and j = 0, as the remaining cases are evident from
the structure of the Markov chain. We first investigate the transition
probability p0 ,0 . Since τk = 0 corresponds to δk = 1 as a consequence
of (14), we have

p0 ,0 = P
(
τk+1 = 0 | τk = 0

)
= P

(
δk+1 = 1 | δk = 1

)
(a )
= P

(
δk+1 = 1

)
= 1 − P

(
δk = 0

)
where (a) is true as δk is independent of the random variable ηk . For
any i ∈ {1, . . . , T − 1}, we derive

pi,0 = P
(
τk+1 = 0

∣∣ τk = i
)

(b )
= P

(
τk+1 = 0

∣∣ τk = i, . . . , τk−i+1 = 1, τk−i = 0
)

(c )
= P

(
δk+1 = 1

∣∣ δk = 0, . . . , δk−i+1 = 0, δk−i = 1
)

(d )
= P

(
δk+1 = 1

∣∣ δk = 0, . . . , δk−i+1 = 0
)

=
P
(
δk+1 = 1, δk = 0, . . . , δk−i+1 = 0

)
P
(
δk = 0, . . . , δk−i+1 = 0

) = 1 − P
(Ei+1

)
P (Ei )

where (b) comes from the Markov property, (c) is the result of (14),
and (d) holds since δk−i is independent of the random variables
ηk , . . . , ηk−i . Using the result from Lemma 19, we can straightfor-
wardly compute the transition probabilities as given in the statement of
the lemma. Since these transition probabilities are independent of time
index k ≥ 0, {τk }k≥ 0 is also homogeneous. �

3For simplicity, using a slight abuse of notation, we write ek+1 = e
k+1 |k .

Fig. 4. Transition graph of the Markov chain {τk }k≥ 0 .

Proof of Lemma 11: Since pi,0 ∈ (0, 1) for all i ∈ {0, . . . , T − 1}
is true for any 0 < λ < ∞ (see Lemma 10), the chain (see Fig. 4) is
evidently irreducible. The chain (see Fig. 4) is also aperiodic because
the state 0 has a nonzero probability of being reached for any 0 < λ <
∞ (see Lemma 10). By [23, Theorem 3.3], this irreducible chain with
finite state space B is positive recurrent. Since {τk }k≥ 0 is irreducible,
aperiodic, and positive recurrent, it is also ergodic. As {τk }k≥ 0 is an
irreducible aperodic Markov chain with finitely many states, it has a
unique invariant distribution π such that πP = π and π1T+1 = 1
(see [25, Corollary 2.11]). �

Proof of Theorem 12: The proof of this theorem follows similar steps
as in [24, p. 98]. �

Proof of Theorem 13: The proof of this theorem employs a dynamic
programming argument(see [26]). Define the optimal value function

Vk (xk ) = min
u

E[x�
N Qf xN +

N −1∑
t= k

(
x�

t Qxt + u�
t Rut

)
]. (44)

We claim that the solution of the functional (44) is a quadratic function
of the form

Vk (xk ) = E
[
x�

k Sk xk | Ic
k

]
+ sk (45)

where Sk is a nonnegative definite matrix and sk is a scalar. Both Sk and
sk are not functions of the applied control inputs u0 , . . . , uk−1 . Indeed,
this claim is clearly true for k = N with the choice of parameters
SN = Qf and sN = 0. Suppose that the claim now holds for k + 1.
The value function at time step k is

Vk (xk ) = min
u

k

E
[
x�

k Qxk + u�
k Ruk + Vk+1 (xk+1 ) | Ic

k

]
= E

[
x�

k

(
A�Sk+1A + Q − L�

k (B�Sk+1B + R)Lk

)
xk | Ic

k

]
+ Tr

(
Sk+1W

)
+ sk+1 + E

[
x̃s�

k |k L�
k (BᵀSk+1B + R)Lk x̃s

k |k
]

+ E
[
e�

k |k L�
k (B�Sk+1B + R)Lk ek |k

]
+ min

u
k

(
uk + Lk x̂c

k |k
)�(B�Sk+1B + R)

(
uk + Lk x̂c

k |k
)

which is obtained by writing Lk � (BᵀSk+1B + R)−1BᵀSk+1A and
by replacing xk with ek |k = xk − x̂s

k |k − x̃s
k |k . Hence, the minimum

is obtained for

uk = −Lk E
[
xk | Ic

k

]
= −Lk x̂c

k |k . (46)

The claim, provided in (45), is also satisfied for the time step k for all
xk if and only if

Sk = A�Sk+1A + Q − L�
k (B�Sk+1B + R)Lk

sk = sk+1 + Tr
(
Sk+1W

)
+ Tr

(
P s

k |k L�
k (B�Sk+1B + R)Lk

)
+ Tr

(
L�

k (B�Sk+1B + R)Lk E
[
ek |k e�

k |k
])

hold. The nonnegative definite matrix Sk is evidently not a function
of the applied control inputs u0 , . . . , uk−1 . The scalar sk is also not a
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function of the applied control inputs u0 , . . . , uk−1 since the compari-
son error ek |k in (27) is a function of τk and ηk−τ

k
, . . . , ηk−1 while τk

in (14) is a function of τk−1 and ηk−1−τ
k −1

, . . . , ηk−1 . Thus, the proof

is completed by induction. Since the optimal control law (46) is only
a (linear) function of the state estimate x̂c

k |k , certainty equivalence is
guaranteed. �

Proof of Lemma 15: The proof of this lemma follows similar argu-
ments to [14, Lemma 4], while also making use of the matrix inversion
lemma. �

Proof of Theorem 16: The proof of (a) and (b) can be found
in [26]. We, here, focus on only the proof of (c). Let us define
Mk � L�

k (B�Sk+1B + R)Lk . As N → ∞, similar to [26], the ex-
pected minimum cost (36) can be written as

J∞ � lim
N →∞

1
N

JN = Tr(S∞W ) + Tr
(
F s
∞M∞

)

+ lim
N →∞

1
N

N −1∑
k=0

E
[
e�

k |k Mk ek |k
]
.

The last term in J∞ can be rewritten as follows:

lim
N →∞

E

[
1
N

N −1∑
k=0

e�
k |k Mk ek |k

]

= lim
N →∞

E

[
1
N

N −1∑
k=0

T∑
i=1

e�
k |k Mk ek |k 1{τ

k
= i}

]

=
T∑

i=1

(
lim

N →∞
1
N

N −1∑
k=0

Tr ((Mk − M∞)Σe (i))P
(
τk = i

)

+ lim
N →∞

1
N

N −1∑
k=0

Tr (M∞Σe (i))P (τk = i)

)
. (47)

Since the pair (A, B) is controllable and the pair (A, Q1/2 ) is ob-
servable, there exists a steady state S∞ ∈ Sn

�0 for any initial matrix

S0 ∈ Sn
�0 . As a result, we have: lim

k→∞
Mk = M∞ (i.e., elementwise

convergence). As seen in [27], the first term of (47) becomes zero
while the second term of (47) is

lim
N →∞

1
N

N −1∑
k=0

Tr
(
M∞Σe (i)

)
P
(
τk = i

)
= Tr

(
M∞Σe (i)

)
π(i).

�
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