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Abstract The voltage variance at a capacitance C with a noisy resistance in parallel is 

kT/C, even if the resistance is infinite. This so-called kT/C noise may dominate in 

switched-capacitor circuits. In this paper kT/C noise is treated analytically, using 

explicit and implicit notations of differential equations. The resulting algorithms can be 

implemented in any circuit simulator with transient analysis, including cases where 

there are capacitor islands without capacitive paths to ground. The general approach 

allows to take into account high integrator bandwidth, slow switching and other 

methods to mediate kT/C noise. A numerical example shows that an extremely high 

integrator bandwidth is needed to reduce kT/C noise. 

 

1. Introduction 

Fig. 1a shows a conductance G in parallel to a capacitance C. The thermal noise of 

conductance G is modeled by a noise current i with a two-sided power spectral density 

kTGSii 2= . The variance  

 ( )
C
kTd

CG
kTGtsuu =
+

= ∫ ω
ωπ 222

2
2
1        (1) 

of voltage u is given by Parseval’s theorem applied to the voltage spectral density which in 

turn is the current spectral density divided by the squared magnitude of the total admittance 
CjG ω+ . The result is ( ) CkTtsuu = , and ( ) kTCtsqq =  is the variance of the charge q. 

Since no restrictions were made this result holds, simply speaking, also if the conductance 
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vanishes, 0=G . Of course a 0>G  must have been present at some time in the past, which 

process will be investigated in this paper.  
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Fig. 1: Noisy conductance G across a capacitance (a), and charge amplifier (b)    

 

In the current integrator or charge amplifier circuit of Fig. 1b with an inverting integrator the 

charge variance on the input node can be as low as 

 ( ) CkTtsqq ′= .          (2) 

If CC <<′ , the charge variance can be substantially reduced in principle. However, the 

widely used equation (2) holds only for an infinite gain-bandwidth product of the integrator, 

0→τ  in Fig. 1b. As will be seen later, the practically achievable noise reduction is quite 

limited. 

In general the circuit components will be time-varying, and since the power spectral density 

of the noisy current source depends on the time-varying conductance G the noise is 

instationary.  

A general expression for the calculation of the correlation function matrix in the time domain 

at the output of such a network has been given in [1]. A universal analytical treatment of 

instationary noise in time-varying networks has been given in [2] but calculation was 

restricted to cases where every circuit node with connection to a capacitor has a capacitive 

path to ground or to an independent voltage source node. If C is removed from Fig. 1b this 

condition is not met, which motivates the present work. 
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kT/C noise has been modeled thoroughly in [3] but effects such as finite switching time of 

switches were not taken into account, nor was a general solution given for implementation in 

a network simulator. Recent publications [4-6] show that kT/C noise continues to be a 

problem.  

In this paper the covariance matrix in a time-varying network with white instationary noise 

will be expressed generally, and algorithms for its calculation along with the transient analysis 

of a network simulator will be developed, in particular for the (more complicated) implicit 

notation of the differential equations describing the system. Finally, an illustrative example 

will be given. 

2. Analysis 

The transfer of a signal vector ( )tv  through a linear, time-varying network with an impulse 

response matrix ( )1, tth  is described by 

 ( ) ( ) ( )∫
∞

∞−

= 111, dttttt vhw         (3) 

where ( )tw  is a vector of output quantities [7]. The second argument ( 1t ) in ( )1, tth  is the 

time at which the system is excited, the first (t) is the time when the response is observed. 

Their difference 1tt −=τ  is the age variable used in the impulse response matrix ( )1tt −h  of 

a linear time-invariable system. The Fourier transform of the impulse response matrix ( )1, tth  

with respect to the age variable is a time-variable transfer function matrix 

 ( ) ( )∫
∞

∞−

−−= ττω ωτ dettt j,, hH .       (4) 

The inversion formula is 

 ( ) ( )∫
∞

∞−

=− ωω
π

τ ωτ dettt j,
2
1, Hh .       (5) 

Following the definitions [8, 9], the instationary correlation function matrix of signal vector 

( )tv  is  

 ( ) ( ) ( )ττ −= + tttvv vvs , .        (6) 
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Note that this differs from the definition in [1] (and (1),  (2)) in so far as the first argument is a 
time difference. The brackets .  symbolize the ensemble average, and this is why the result 

may still depend upon time t, not only on the time delay τ . The + is the hermitian conjugate 

operator. If the definition is applied to the output signal vector ( )tw  a straightforward 

calculation yields  

 ( ) ( ) ( ) ( )∫ ∫
∞

∞−

∞

∞−

+ −−= 1221121 ,,,, dtdttttttttt vvww ττ hshs .    (7) 

With a slightly different notation this result has already been given in [1]. The relations 

between instationary correlation function ( ( )t,τs ) and spectrum ( ( )t,ωS ) matrices are  

 ( ) ( )∫
∞

∞−

−= ττω ωτ dett j,, sS ,    ( ) ( )∫
∞

∞−

= ωω
π

τ ωτ dett j,
2
1, Ss .   (8) 

The scalar simplification of the correlation function matrix is the power spectral density. An 

important simplification results if the noise source is white. In this case, 

 ( ) ( ) ( )tt vvvv Ss τδτ =,          (9) 

where ( )τδ  is a Dirac impulse and ( )tvvS  is the white, instationary correlation spectrum 

(matrix) of the input signal ( )tv . Note that even though the Fourier transform of a stochastic 

( )tv  does not exist the correlation function matrix and hence correlation spectrum do exist.  

The correlation spectrum matrix can be determined using Russer’s fundamental noise analysis 

techniques [9]. In particular, ( ) ( ) ( ) ( )ωωωω += HSHS vvww  holds if ( ) ( ) ( )ωωω VHW =  is 

true for deterministic, or temporally truncated stochastic input signals. If ( )ωY  is a passive, 

time-invariable admittance matrix the stationary current correlation spectrum is  

 ( ) ( ) ( )( )ωωω ++= YYS kTii .        (10) 

With (9) the correlation function matrix of the output signal simplifies to  

 ( ) ( ) ( ) ( )∫
∞

∞−

+ −= 1111 ,,, dttttttt vvww ττ hShs .     (11) 

If the delay is zero, 0=τ , we obtain the instationary covariance matrix 



R. Noé: „kT/C noise: ...“ 

 5

 ( ) ( ) ( ) ( ) ( )∫
∞

∞−

+=≡ 1111 ,,,0 dtttttttt vvwwww hShss .     (12) 

Note that the first argument 0 of the covariance matrix is dropped here and in the following.  

In many cases the switching action can be modeled to be instantaneous. This means that 

during certain time periods the impulse responses are time-invariable and the noise is 

stationary. In these cases (12) simplifies to 

 ( ) ( ) ( ) ( )∫∫
∞

∞−

+
∞

∞−

+ =−−= ωωω
π

ddttttt vvvvww HSHhShs
2
1

111 .   (13) 

If the switch stays in its position only between t ′  and t we can write 

 ( ) ( ) ( ) ( )0111 +′+−−= ∫
′

+ tdtttttt ww

t

t
vvww shShs .     (14) 

This allows integration piecewise, provided switching at t ′  does not change the covariance 

matrix, ( ) ( )00 −′=+′ tt wwww ss .  

We return now to the general case. Although much simpler than (7), equation (12) is still 

cumbersome to evaluate directly since the value of the time-variable impulse response matrix 

has to be determined at one point (t) for all 1t . Note that the impulse response is normally not 

determined during a transient response analysis of a circuit.  

However, the calculation can be carried out much more efficiently. Assume the network can 

be modeled by a system  

 
nnnnn

nnnnn

vDxCw

vBxAx
~~

~~
1

+=

+=+         (15) 

of time-discrete state equations, where nv  is an input, nx  a state, and nw  an output vector. 

The state vector contains all independent charges and magnetic fluxes. State vector nx  

depends only on past input vectors mv  ( )nm < . Since we assume white noise, nv  and mv  

( )nm <  are uncorrelated, and so are nv  and nx . If the covariance matrices of (15) are 

calculated the mixed terms on the right sides therefore disappear, and the simple result 
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++
+

+=

+=

nnvvnnnxxnnww

nnvvnnnxxnnxx

DsDCsCs

BsBAsAs
~~~~

~~~~

,,,

,,1,        (16) 

is obtained. The absolute time (t) argument has been dropped and is replaced by an index in 

the subscript. For discrete time steps tδ , the white noise covariance matrix is 

 nvvnvv t ,
1

, Ss −= δ .         (17) 

In the case of noise currents the instationary correlation matrix nvv,S  is given by (10), with an 

index rather than a time variable. Successive indexes n represent successive time variables 

spaced by tδ  each. 

As the next case, consider the calculation of charge covariance matrix nqq,s  and voltage 

covariance matrix nuu,s  in a circuit simulator. The voltage-dependent capacitances are taken 

into account by  

 ( )nnn uQq ˆ=           (18) 

where nQ̂  is a nonlinear, time-variable function. Vector nu  represents all node voltages. Let 

us assume that the charge vector nq  represents only the number of independent connections 

to capacitive elements, which may be smaller than the number of nodes with connected 

capacitive elements. The set of charges needed for further description of the network, usually 

all node charges, is obtained by multiplication of an incidence matrix nK  by vector nq . E.g., 

matrix nK  may contain a 1 wherever an independent charge (≅ column) is a node charge (≅ 

line). One particular node (≅ line) of any capacitance island having no connection to ground 

carries a -1 for all other, independent charges (≅ columns) present at this island. The 

remaining elements of nK  are zero. nK  may be time-variable but will normally be fixed. As 

a simple example, a single capacitor with no connection to ground is connected to two nodes 

from which it draws identical but oppositely poled charging currents, but is characterized by 

just one charge.  

The node currents are expressed by 

 ( ) nnnnn qKuIi &+= ˆ .         (19) 
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Here ni  is the node current vector, nq&  the vector of independent currents flowing into the 

capacitors, and nÎ  is another nonlinear, time-variable vector function which represents the 

currents flowing into the conductive circuit elements. In contrast to (15) the equations (18), 

(19) are implicit because (18) usually can not be inverted, not even in the linear case.  

After linearization around the operation point, nQ̂ , nÎ  reduce to a matrix of capacitances nC  

and a matrix of conductances nG : 

 nnnnn qKuGi &+=          (20) 

 nnn uCq =           (21) 

The dependent variables are now small-signal quantities such as noise. It is possible to solve 

(20), (21) as a function of ni : E.g., using ( )1
1

−
− −= nnn t qqq δ& , the solution 

( ) ( )11
111

−−
−−− ++= nnnnnnnn tt uCKiCKGu δδ  is obtained, from which nq  and nq&  are 

derived. Voltage vector 1−nu  is known from the previous integration step. The 

inhomogeneous solution 

 inqnn ,, uuu += ,         (22) 

 inqnn ,, qqq += ,         (23) 

is a superposition of a homogeneous solution (index q) which is due to the charges alone, 

without currents, 

 
qnnn

qnnqnn

,

,,

uCq

qKuG0

=

+= &
,        (24) 

and a particular solution (index i) which is due to the currents alone, without charges, 

 
inn

inninnn

,

,,

uC0

qKuGi

=

+= &
.        (25) 

If we approximate  

 ( )
t

t nn
δ

qq
q

−
= +1&          (26) 

and solve for 1+nq , (23) becomes 
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 ( ) inqnnn tt ,,1 qqqq && δδ ++=+        (27) 

Here the solutions of (24), (25) need to be inserted. The first summand on the right side 

depends only on past noise samples hi  ( nh < ) and the second summand only on the present 

noise ni . For white noise the summands are therefore uncorrelated and the covariance 

function is  

 ( )( ) ++

+

=++=

+=

ininiqnnqnnq

iqnqq

tTttT

TT

,,
2

,,

1,

qqqqqq

s

&&&& δδδ
.   (28) 

Term qT  can be calculated from += nnnqq qqs ,  as follows: Charge vector nq  of length k 

can be written as the sum of k fixed charge vectors jn,q  ( kj ...1= ) times uncorrelated 

Gaussian, zero-mean, unit-variance random variables jqnr ,, . When arranged as the columns 

of a matrix [ ] [ ]knnnjn ,2,1,, ,...,, qqqq =  and a vector [ ]+= kqnqnqnqn rrr ,,2,,1,,, ,...,,r , 

respectively, these quantities combine as   

 [ ] qnjnn ,, rqq = .         (29)  

Taking 1rr =+
qnqn ,,  into account the correlation matrix is found to be  

 [ ][ ]+= jnjnnqq ,,, qqs .        (30)  

On the other hand the covariance matrix nqq,s  is real, symmetric and positive semidefinite 

which allows diagonalization with nonnegative eigenvalues jq,λ  and an orthogonal 

eigenvector matrix qA , 

 ( ) += qjqqnqq AAs ,, diag λ .        (31)  

Comparison of (30), (31) yields  

 [ ] ( )jqqjn ,, diag λAq = .        (32)  

Due to the linearization each charge vector jn,q  corresponds to a specific charging current 

jqn ,,q& . These currents can be found by solving (24) as described above, and can be arranged 

in a matrix [ ] [ ]kqnqnqnjqn ,,2,,1,,,, ,...,, qqqq &&&& = . Insertion of (29) and 

 [ ] qnjqnqn ,,,, rqq && =          (33)  
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into (28) allows to evaluate 

 [ ] [ ]( ) [ ] [ ]( )+++= jqnjnjqnjnq ttT ,,,,,, qqqq && δδ .     (34) 

A similar calculation yields  

 [ ][ ]+= linlini tT ,,,,
2 qq &&δ .        (35) 

Here ml ...1=  where m is the length of current noise vector ni  and random vector in,r . With 

[ ] inlnn ,, rii = , [ ] ( )liiln ,, diag λAi = , [ ][ ] ( ) ++ == iliilnlnnii AAiis ,,,, diag λ  the columns 

lin ,,q&  of matrix [ ] [ ]minininlin ,,2,,1,,,, ,...,, qqqq &&&& =  are obtained from ln,i  by solving (25).  

Vectors nq  and ni  are uncorrelated, 0rr =+
inqn ,, . Note that niinii t ,

1
, Ss −= δ . 

Voltage covariance matrices 

 

[ ][ ]
[ ][ ]

niuunquunuu

linlinniuu

jqnjqnnquu

,,,,,

,,,,,,

,,,,,,

sss

uus

uus

+=

=

=

+

+

        (36) 

can also be calculated where [ ] [ ]kqnqnqnjqn ,,2,,1,,,, ,...,, uuuu = , 

[ ] [ ]minininlin ,,2,,1,,,, ,...,, uuuu =  are the voltage solutions of  (24), (25). Only nqq,s  and 

nquu ,,s  represent kT/C noise, having smooth correlation functions in the time domain. 

Covariance matrix niuu ,,s  corresponds to white noise, and its instationary correlation function 

has, for continuous time, the form ( ) ( ) ( )tt iuuiuu ,, , Ss τδτ = .  

If the node charges are all independent it is possible to choose 1K =n , the capacitance matrix 

nC  is quadratic and can be inverted, and 0u =in, , qnn ,uu =  hold. This case is covered by 

[2] (in a different notation). Equations (21), (27), (28), (36) can then be rewritten as 

 
( )

nnn

nnnnn tt

qCu

iqCG1q
1

1
1

−

−
+

=

+−= δδ
,       (37) 

 
( ) ( )

+−−

+−−
+

=

+−−=

1
,

1
,

,
21

,
1

1,

nnqqnnuu

niinnnqqnnnqq ttt

CsCs

sCG1sCG1s δδδ
.    (38) 



R. Noé: „kT/C noise: ...“ 

 10

3. Example 

In the circuit of Fig. 1b instantaneous off-switching (i.e., removal of G) will not alter the 

voltages across the capacitors, but a relaxation process after off-switching will. Therefore it is 

convenient to choose the charge 

 ( )( ) ( ) 22 uCuCCdtuuGiq ′−′+=−+= ∫       (39) 

at the input node as the output quantity w. A standard analysis reveals  

 ( ) ( )
( ) ( ) ( )CCjCGjG

CCjC
I
QH

+′+′++

+′+′
==

τωτω
ωτω 2 .     (40) 

If only the feedback conductance G is noisy then the correlation matrix with respect to the 

port where the current source is connected is a scalar, GkTSii 2= . Evaluation of (13) in the 

frequency domain results in 

 ( ) ( )
CG

CGCCkTCdSHts effeffiiqq ′+
+′=== ∫

∞

∞−
τ
τωω

π
2

2
1 .   (41) 

This is the charge variance at the input node if the switch has remained closed (i.e., G has 

been present) for a sufficiently long time. For ⎟
⎠
⎞

⎜
⎝
⎛ −

′′
>> 111

C
C

CGτ
, (2) is obtained.  

In the time domain the system is governed by 

 
( ) ( )

2
1

22

0 uu

uCuCCuuGi

&

&&

+=

′−′++−=
−τ

       (42) 

or, equivalently, 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ ′−′+
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
−

22

22
1

10

00

u
uCCC

u
q

u
q

u
uGGi

&

&

τ
.       (43) 

The latter expression corresponds to (20), (21) although the admittance matrix of Fig. 1b does 

not exist. Quantity q is again the charge at the input node. The correlation matrix of the noise 

quantities ⎥
⎦

⎤
⎢
⎣

⎡
0
i

 is 
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⎣

⎡
=

00
02

,
GkT

niiS .         (44) 

Fig. 2: Effective kT/C capacitance effC  for the circuit of Fig. 1b as a function of τG . Circles 

F 10 13−=′C ; squares F 10 14−=′C . 

 

Software has been written to implement (28) for the example of (43), (44). The element (1,1) 
of nqq,s  is the charge variance; when divided by kT  it becomes effC  of (41). Fig. 2 

compares the time-domain evaluation (symbols) with the results of (41) (solid lines). The 

technically accessible products τG  of noisy conductance G  times integrator time constant τ  

are in the right part of the figure. Only small reductions of kT/C noise can presently be 

expected from the integrator circuit of Fig. 1b.  

Of course the frequency- and time-domain results are identical. The advantage of the time-

domain evaluation is that any influence not present in (41), e.g., finite charge integration time, 

slow switching and means to mediate kT/C noise can be taken into account exactly during the 

transient analysis of a circuit simulator. 

Higher-order integration schemes rather than (27) have also been tried for the implementation 

of (28). As expected they have allowed to use larger integration step sizes.  

10
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4. Conclusions 

A method for evaluation of kT/C noise in electronic circuits has been presented. Other than in 

[2], the general case of capacitor islands with no capacitive connection to ground is included 

because the differential equations describing the network can be solved in implicit notation. 

The method is suitable for implementation in circuit simulators. It allows to take into account 

high integrator bandwidth, slow switching and any other method to mediate kT/C noise. 
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