Optical and Unified Noise Figure, and Homodyne Noise Figure

Reinhold Noe <u>noe@upb.de</u>

https://ieeexplore.ieee.org/document/10433655 (open access)

In earlier version <u>https://ieeexplore.ieee.org/document/9915356</u> (open access) kT needs to be replaced by k'T, see following viewgraph p. 29.

https://www.vde.com/resource/blob/2264668/06253acdbf74d710014e3ab507ac154f/dopropagating-lightwaves-contain-photons--data.pdf (open access) support material

Overview

Motivation

- Noise figures in linear/coherent optical receivers
 - In-phase and quadrature noise figure = the noise figure

In-phase (homodyne) noise figure = special case

- Comparison of noise figures
- Consistent unified noise figure
- Summary
- Appendix
 - Review of electrical noise figure
 - Review of prior optical and unified noise figures
 - Elimination of avoidable I&Q receiver noise
 - Review of photoelectron statistics

Motivation

🔱 Univ. Paderborn, R. Noe 3

How to determine noise and gain properties of amplifier

Probably not. Now this is a **photodiode** and we are talking about optical signals!

 $G = e^{(a-b)t} = e^{(a-b)z/v_g}$ gain $\mu = n_{sp}(G-1)$ mean number of detectable output noise photons per mode $n_{sp} = \frac{a}{a-b}$ spontaneous emission factor $P_{n,out}\tau = \mu hf = G\tilde{\mu}hf$ mean output noise energy per mode Motivation & Review of prior noise figures

(traditional optical NF) Univ. Paderborn, R. Noe 4

Power, gain, loss must be redefined if \vec{F}_{pnf} is valid NF!

Problem introduction

- Electrical noise figure (NF) is standardized since many decades.
- Traditional **optical** noise figure F_{pnf} was defined in 1990ies, for optical direct detection receivers (DD RX). Problematic aspects, in **conflict** with electrical NF:
 - Optical signals have in-phase and quadrature components, like electrical signals and RX. But an optical DD RX suppresses phase information.
 - \Rightarrow NF = 2 for ideal optical amplifier, whereas NF = 1 for ideal electrical amplifier.
 - "Power" in signal-to-noise (SNR) ratio calculation is ~ square of photocurrent in optical DD RX. Photocurrent is ~ optical power ~ square of field amplitude. SNR "power" is ~ 4th power of field amplitude ~ square of power. Incompatible with ~150 years of science: P = U²/R, not P ~ U⁴.

Noise happens on a field basis. Power measurement conceals fields!

- Ideal DD RX for intensity modulation with / without ideal optical amplifier needs 38 / 10 photoelectrons/bit for bit error ratio = 10^{-9} . Ideal DD RX for differential phase shift keying: 20 / 20 photoelectrons/bit. $38/10 \neq F_{pnf} = 2 \neq 20/20$!
- Optical: Nonlinear DD RX; non-Gaussian noise; amplifier NF depends on power and bandwidths. <u>Electrical: Linear RX; Gaussian noise; constant NF.</u>

Unification of all prior optical NF with electrical NF is contradictory (pp. 44-49).

Noise figures until year 2000

Stated lower NF limits apply only for ideal amplifiers with high gain and 2 available quadratures! Expectation value of equivalent input-referred detectable noise photons per mode is $\tilde{\mu} = n_{sp}(1-1/G)$. Marked: Aspects that are problematic in my opinion $F_e = \underline{\text{the}} \text{ NF [1]}$, more precisely the <u>e</u>lectrical version of the NF, defined or understood as the SNR degradation factor ≥1 in a linear system with 2 available receiver (RX) quadratures, i.e. 1 mode, standardized in 1960ies by H. Haus $F_{pnf} = 1/G + 2\tilde{\mu}$ = traditional optical NF ≥2 of detected <u>photon</u> <u>n</u>umber <u>fluctuation</u>, defined by E. Desurvire for intensity modulation with direct detection (IM/DD), which is a nonlinear system that keeps only 1 quadrature (or degree-of-freedom) $F_{ase} = 1 + \tilde{\mu}$ = optical NF ≥2 and unified NF, defined and intended by H. Haus for <u>a</u>mplified <u>spontaneous</u> <u>e</u>mission in a linear system with 2 available RX quadratures, but not equal to its optical SNR degradation factor $F_{fas} = 1/G + 2\tilde{\mu}$ = optical NF ≥2 with conflicting definitions by H. Haus, in the latest version also a unified NF, slightly wrong regarding thermal noise at high f, linear with seemingly 1 available RX quadrature in optical domain, meant to become F_{e} in electrical domain where there are 2 available RX quadratures.

 F_{fas} implies variable number of RX quadratures. For 1 available RX quadrature, special NF names would be needed, showing that F_{pnf} , F_{fas} are not optical equivalents of F_e .

Noise figures presented here

- $F_{o,IQ} = 1/G + \tilde{\mu}$ = the optical NF ≥1 derived, in full agreement with F_e definition, as SNR degradation factor in a linear system with 2 available RX quadratures F_{IQ} = the NF ≥1 for all f, with the limit cases of optical $F_{o,IQ}$ and electrical F_e . Important for very cool mm wave / THz systems and possibly for very hot far infrared systems.
- $F_{o,I} = 1/G + 2\tilde{\mu}$ = optical homodyne NF ≥2, defined for the case of 1 available RX quadrature, SNR degradation factor in such linear system, equal to final version of optical F_{fas} , equal in value to F_{pnf} .
- F_I = homodyne NF for all f, with the limit cases of optical homodyne $F_{o,I}$ and electrical homodyne, which is the same as F_e . Probably not important, since electrical homodyne RX and amplifiers don't have intrinsic noise advantages over their I&Q counterparts.
- A NF with an aspect that differs from F_e needs a special denomination (homodyne, optical).
- I think a NF which strongly differs (nonlinear, no SNR degradation factor) from F_e should not be called a NF.

Fields in coherent optical I&Q receiver

$$\mathbf{E}_{RX} = \sqrt{G} \left(\sqrt{P_S} + (v_1 + jv_2) \sqrt{P_n/2} \right) \mathbf{e}_1 e^{j\omega t}$$

$$\mathbf{E}_{LO} = \sqrt{P_{LO}} \mathbf{e}_1 e^{j\omega t}$$

$$P =: |\mathbf{E}|^2 \qquad I = RP = e/(hf) \cdot P$$
Power (for simplicity) Photocurrent
$$v_1, v_2 \text{ zero-mean independent Gaussian}$$

$$\left\langle v_1^2 \right\rangle = \left\langle v_2^2 \right\rangle = \sigma^2 = 1 \qquad (\text{see pp. 52-61})$$

$$\mathbf{e}_1 \text{ normalized field (polarization) vector}$$

Optical signal is linearly downconverted to baseband. Local oscillator (LO) is a strong unmodulated laser with (essentially) the same frequency as the received signal.

2 available quadratures = 1 available mode

Baseband I&Q RX is not mandatory! Heterodyne RX with image rejection filter gives the same results!

Photocurrents in coherent optical I&Q receiver ...

$$\mathbf{E}_{RX} = \sqrt{G} \left(\sqrt{P_S} + (v_1 + jv_2) \sqrt{P_n/2} \right) \mathbf{e}_1 e^{j\omega t}$$

$$\mathbf{E}_{LO} = \sqrt{P_{LO}} \mathbf{e}_1 e^{j\omega t}$$

$$P =: |\mathbf{E}|^2 \qquad I = RP = e/(hf) \cdot P$$
(In practice, optical frequencies of signal and unmodulated local oscillator may differ a bit, causing the complex plane of I_{1d} and I_{2d} to rotate at the difference frequency.)
$$I_{1\pm} = R |\pm \mathbf{E}_{RX} / 2 + \mathbf{E}_{LO} / 2|^2 \qquad 4 \text{ detected photocurrents}$$

$$= \frac{R}{4} \left(G \left(P_S + 2v_1 \sqrt{P_S P_n/2} + \left(v_1^2 + v_2^2\right) P_n / 2 \right) \pm 2 \left(\sqrt{P_S} + v_1 \sqrt{P_n/2} \right) \sqrt{GP_{LO}} + P_{LO} \right)$$

$$I_{2\pm} = R |\pm \mathbf{E}_{RX} / 2 + j \mathbf{E}_{LO} / 2|^2$$

$$= \frac{R}{4} \left(G \left(P_S + 2v_1 \sqrt{P_S P_n/2} + \left(v_1^2 + v_2^2\right) P_n / 2 \right) \pm 2v_2 \sqrt{P_n/2} \sqrt{GP_{LO}} + P_{LO} \right)$$

...and their differences and sums

<u>۱</u>

Univ. Paderborn, R. Noe 11

SNR in coherent optical I&Q receiver

$$I_{1d} = R\left(\sqrt{P_S} + v_1\sqrt{P_n/2}\right)\sqrt{GP_{LO}}$$

$$I_{2d} = Rv_2\sqrt{P_n/2}\sqrt{GP_{LO}}$$

$$I_{1s} = RP_{LO}/2$$

Pure Gaussian PDFs of

$$I_{2s} = RP_{LO}/2$$

Shot noise PSD:
Optical bandwidth:

$$P_{a} = 2B_e = 1/\tau$$

Equivalent amplifier input
noise PSD per mode:

$$\tilde{\mu}hf = P_n/B_o$$

For SNR calculation take either noise in
1 mode or (like I do it) in 1 guadrature! (Factor 2 cancels in NF calculation.)

$$SNR_{o,IQ,out} = \frac{\overline{I_{1d}}^2}{\sigma_{I_{1d}}^2 + \sigma_{I_{1s}}^2} = \frac{R^2 P_{LO} GP_S}{R^2 P_{LO} G\tilde{\mu} hf B_o / 2 + eRP_{LO} B_e} = \frac{P_S \tau}{(\tilde{\mu} + 1/G) hf / 2}$$

Optical I&Q noise figure (or heterodyne with image rej.)

$$SNR_{o,IQ,out} = \frac{P_S \tau}{\left(\tilde{\mu} + 1/G\right) hf/2}$$

No amplifier, G=1, $\widetilde{\mu}=0$:

$$SNR_{o,IQ,in} = \frac{P_S \tau}{hf/2}$$

$$\frac{SNR_{o,IQ,in}}{SNR_{o,IQ,out}} =$$

$$F_{o,IQ} = \tilde{\mu} + 1/G = n_{sp} (1 - 1/G) + 1/G$$
$$= 1 + (n_{sp} - 1)(1 - 1/G) \ge 1$$

$$F_{o,IQ} = (F_{pnf} - 1/G)/2 + 1/G$$

$$F_{pnf} = 2(F_{o,IQ} - 1/G) + 1/G$$

optical
input,

$$\mathbf{E}_{RX}$$

 $\lambda/4$ path
length diff.
 \mathbf{E}_{LO}
 \mathbf{LO}
 \mathbf{I}_{1-}
 I_{1-}
 I_{1-}
 I_{1-}
 I_{2-}
 $I_{$

 $F_{o,IQ}$ obeys the usual electrical NF definition, is SNR degradation factor; powers ~ squares of amplitudes; 2 available RX quadratures; linearity; ideal NF = 1; pure Gaussian noise!

$$F_{o,IQ} \approx F_{pnf}/2$$

Conversion formulas

 \approx 3 dB difference for large G

Measure optical I&Q noise figure with power meter

Optical amplifier must be loaded with extra optical signal power at other times/frequencies/polarization in order to keep G, $\tilde{\mu}$ constant.

Usually there are p = 2 polarization modes. p = 1 requires inserted polarizer. Of course, offset (dark current) must be subtracted from power meter readout.

 $F_{o,IQ}$ and all other optical NF can be determined from simple optical power measurements.

Optical I noise figure (true homodyne; special case)

In such cases, phase locking is required between signal and LO or detector! No power splitting \Rightarrow In equations multiply each of P_{LO} , P_S , P_n , $\tilde{\mu}$, n_{sp} by 2.

$$F_{o,I} = 2\tilde{\mu} + 1/G \quad (= F_{fas} = F_{pnf})$$

= 1 + (2n_{sp} - 1)(1 - 1/G) \ge 1

 $F_{o,I}$ is similar to $F_{o,IQ}$ and F_e , but only 1 quadrature is available.

Lowest
$$F_{o,I} \to 1$$
 for $G \to 1$. Ideal $F_{o,I} = 2$ at $G \to \infty$. Why?

Optical amplifier is not special! RX is special: 1 quadrature & detection (= shot) noise! Without optical amplifier, true homodyne RX is twice as sensitive as I&Q RX because P_{RX} is not split. But with optical amplifier having $G \rightarrow \infty$, output power splitting like in the I&Q RX cannot have an SNR effect. So, behind the amplifier the homodyne RX "must" have the worse sensitivity of the I&Q RX. Amplifier halves homodyne SNR!

Phase-sensitive degenerate parametric optical amplifier passes only 1 quadrature and has ideal $F_{o,I} = 1$ and $F_{o,IQ} = 1/2$ (converts I&Q into more sensitive homodyne).

Noise figures in linear/coherent optical receivers

Zero-point fluctuations can explain/replace shot noise

Univ. Paderborn, R. Noe 15

Shot noise can be derived either way (but only 1 way at a time, not 2 ways at a time):

- Semiclassical theory: Poisson distribution of photoelectrons has one-sided photocurrent power spectral density (PSD) 2eI.
- Zero-point fluctuations interfere with signal and cause shot noise PSD 2eI. Let us define field such that power is $P := |\mathbf{E}|^2$. Observation time is $\tau = 1/B_o$. Zero-point fluctuations have mean energy $W = P\tau$ equal to hf/2 per mode:

$$\begin{split} \mathbf{E}_{0} &= (u_{1} + ju_{2}) \mathbf{\underline{e}}_{1} e^{j\omega t} & \sigma_{u1}^{2} = \sigma_{u2}^{2} = hf/(4\tau) & |\mathbf{\underline{e}}_{1}| = 1 \\ \text{Signal field: } \mathbf{E}_{S} &= \sqrt{P_{S}} \mathbf{e}_{1} e^{j\omega t} & \text{Total field: } \mathbf{E}_{S} + \mathbf{E}_{0} \\ \text{Expected number of photoelectrons: } & n_{S+0} &= |\mathbf{E}_{S} + \mathbf{E}_{0}|^{2} \tau/(hf) \\ &= \left(|\mathbf{E}_{S}|^{2} + 2\operatorname{Re}\left(\mathbf{E}_{0}^{+}\mathbf{E}_{S}\right) + |\mathbf{E}_{0}|^{2}\right) \tau/(hf) \approx \left(P_{S} + 2u_{1}\sqrt{P_{S}}\right) \tau/(hf) \\ \text{Mean: } & \langle n_{S+0} \rangle = \frac{P_{S}\tau}{hf} & \text{Variance: } \sigma_{nS+0}^{2} = \frac{hf}{4\tau} P_{S} \frac{2^{2}\tau^{2}}{h^{2}f^{2}} = \frac{P_{S}\tau}{hf} = \langle n_{S+0} \rangle \\ &I = RP = \frac{e}{hf} P & \langle I_{S+0} \rangle = \langle n_{S+0} \rangle \frac{e}{\tau} & \sigma_{IS+0}^{2} = \sigma_{nS+0}^{2} \frac{e^{2}}{\tau^{2}} = 2e \cdot \frac{e}{hf} P_{S} \cdot \frac{1}{2\tau} \end{split}$$

I&Q NF derived with zero-point fluctuations (1)

$$\mathbf{E}_{RX1} = \left[\sqrt{G} \left(\sqrt{P_S} + (v_1 + jv_2) \sqrt{P_n/2} \right) + (u_{11} + ju_{12}) \right] \mathbf{e}_1 e^{j\omega t} \\ \mathbf{E}_{RX2} = (u_{21} + ju_{22}) \mathbf{e}_1 e^{j\omega t} \\ \mathbf{E}_{LO} = \sqrt{P_{LO}} \mathbf{e}_1 e^{j\omega t} \\ \mathbf{I} = RP = e/(hf) \cdot P \qquad P = : |\mathbf{E}|^2 \\ w_1 = u_{11} + u_{21} \qquad w_2 = u_{12} - u_{22} \\ 2 \left\langle u_{ij}^2 \right\rangle = \left\langle w_k^2 \right\rangle = \frac{hf}{2\tau} \qquad \left\langle v_k^2 \right\rangle = 1 \\ I_{1\pm} = R \left| \pm (\mathbf{E}_{RX1} + \mathbf{E}_{RX2})/2 + \mathbf{E}_{LO}/2 \right|^2 \\ \approx \frac{R}{4} \left(G \left(P_S + 2v_1 \sqrt{P_S P_n/2} + \left(v_1^2 + v_2^2\right) P_n/2 \right) \pm 2 \left(\sqrt{G} \left(\sqrt{P_S} + v_1 \sqrt{P_n/2} \right) + w_1 \right) \sqrt{P_{LO}} + P_{LO} \right) \\ I_{2\pm} = R \left| \pm (\mathbf{E}_{RX1} - \mathbf{E}_{RX2})/2 + j \mathbf{E}_{LO}/2 \right|^2 \\ \approx \frac{R}{4} \left(G \left(P_S + 2v_1 \sqrt{P_S P_n/2} + \left(v_1^2 + v_2^2\right) P_n/2 \right) \pm 2 \left(\sqrt{G} v_2 \sqrt{P_n/2} + w_2 \right) \sqrt{P_{LO}} + P_{LO} \right) \\ \end{array}$$

I&Q NF derived with zero-point fluctuations (2)

The 2 LO ports also carry zero-point fluctuations. But these cancel upon subtraction of photocurrents.

$$I_{1d} = I_{1+} - I_{1-}$$

= $R\left(\sqrt{G}\left(\sqrt{P_S} + v_1\sqrt{P_n/2}\right) + w_1\right)\sqrt{P_{LO}}$
 $I_{2d} = I_{2+} - I_{2-}$
= $R\sqrt{G}\left(v_2\sqrt{P_n/2} + w_2\right)\sqrt{P_{LO}}$

 $\left\langle w_{k}^{2}\right\rangle = \frac{hf}{2\tau}$

$$\mathbf{E}_{RX1}$$

$$\mathbf{E}_{RX2}$$

$$\lambda/4 \text{ path}$$

$$I_{1-}$$

$$I_{1-$$

$$SNR_{o,IQ,out} = \frac{\overline{I_{1d}}^2}{\sigma_{I_{1d}}^2} = \frac{R^2 P_{LO} GP_S}{R^2 P_{LO} \left(GP_n / 2 + hf / (2\tau) \right)} = \frac{GP_S}{G\tilde{\mu}hfB_o / 2 + hfB_o / 2} = \frac{P_S \tau}{\left(\tilde{\mu} + 1/G\right)hf / 2}$$

 $SNR_{o,IQ,in} = \frac{P_S \tau}{hf/2} \qquad \frac{SNR_{o,IQ,in}}{SNR_{o,IQ,out}} = F_{o,IQ} = \tilde{\mu} + 1/G$

 $\left\langle v_{k}^{2} \right\rangle = 1$

Same result as when derived with Poisson photoelectron distribution.

Homodyne NF derived with zero-point fluctuations

$$\begin{split} \mathbf{E}_{RX} &= \left(\sqrt{G}\left(\sqrt{P_S} + (v_1 + jv_2)\sqrt{P_n/2}\right) + (u_1 + ju_2)\right) \mathbf{e}_1 e^{j\omega t} \\ \mathbf{E}_{LO} &= \sqrt{P_{LO}} \mathbf{e}_1 e^{j\omega t} \\ I &= RP = e/(hf) \cdot P \qquad P =: |\mathbf{E}|^2 \qquad \left\langle u_k^2 \right\rangle = \frac{hf}{4\tau} \qquad \left\langle v_k^2 \right\rangle = 1 \\ I &= R \\ = R \\ \pm \mathbf{E}_{RX} / \sqrt{2} + \mathbf{E}_{LO} / \sqrt{2} \\ &= \frac{1}{2} \\ \qquad Optical homodyne means: \\ \frac{1/2 \text{ available model}}{1/2 \text{ available model}} \\ \approx \frac{R}{2} \left(G \left(P_S + 2v_1 \sqrt{P_S} P_n / 2 + (v_1^2 + v_2^2) P_n / 2 \right) \\ \pm 2 \left(\sqrt{G} \left(\sqrt{P_S} + v_1 \sqrt{P_n / 2} \right) + u_1 \right) \sqrt{P_{LO}} + P_{LO} \right) \\ I_d &= I_+ - I_- \\ = 2R \left(\sqrt{G} \left(\sqrt{P_S} + v_1 \sqrt{P_n / 2} \right) + u_1 \right) \sqrt{P_{LO}} \\ SNR_{o,I,out} &= \frac{\overline{I_d}^2}{\sigma_{I_d}^2} \\ = \frac{4R^2 P_{LO} GP_S}{\sigma_{I_d}^2} \\ = F_{o,I} \\ = 2\widetilde{\mu} + 1/G \\ SNR_{o,I,in} \\ = \frac{2P_S \tau}{hf/2} \\ \end{array}$$

Heterodyne NF

$$\mathbf{E}_{RX} = \left(\sqrt{G}\left(\sqrt{P_S} + (v_1 + jv_2)\sqrt{P_n/2}\right) + (u_1 + ju_2)\right) \mathbf{e}_1 e^{j\omega t}$$
$$\mathbf{E}_{LO} = \sqrt{P_{LO}} \mathbf{e}_1 e^{j\left(\omega - m\pi/\tau\right)t} \qquad (m = 1, 2, 3...)$$

Integration result of homodyne can be seen as sampled output signal of filter with rectangular impulse response 1 of duration τ .

Output signal is scaled by $\int_0^{\tau} 1 \cdot dt = \tau$. Energy of impulse response: $\int_0^{\tau} 1^2 \cdot dt = \tau$

Heterodyne:

- I_{1d} appears multiplied by $\cos(m\pi t/\tau)$. - Demodulate with carrier $2\cos(m\pi t/\tau)$. Output signal is same as for homodyne, and same as without demodulator and with impulse response $2\cos(m\pi t/\tau)$ of duration τ . Energy in impulse response and noise are doubled: $\int_{0}^{\tau} (2\cos(m\pi t/\tau))^{2} dt = 2\tau \implies$

But with optical image rejection (ir) filter, amplifier noise $(2\tilde{\mu})$ is halved $(\tilde{\mu})$:

$$SNR_{o,het+ir,out} = SNR_{o,IQ,out}$$

$$F_{o,het+ir} = \tilde{\mu} + 1/G = F_{o,IQ}$$

Zero-point fluctuations or Poisson photoelectron distribution: same result.

Why does IM/DD with $P_S \rightarrow \infty$ behave like homodyne?

LO shot noise in a true homodyne RX and shot noise in an IM/DD RX with strong input signal can be taken into account by co-polarized in-phase zero-point fluctuations. Also after amplification it suffices to consider co-polarized in-phase noise. If one squares the output signal of the homodyne RX this becomes equivalent to an IM/DD RX.

$$P := |\mathbf{E}|^{2} |\mathbf{E}| = |\sqrt{P_{S}} + u_{1}| \qquad P \approx P_{S} + 2u_{1}\sqrt{P_{S}}$$

True optical homodyne Optical IM/DD

$$SNR_{in} = \frac{P_{S,in}}{\langle u_{1,in}^{2} \rangle} \qquad SNR_{in} = \frac{P_{S,in}^{2}}{4\langle u_{1,in}^{2} \rangle P_{S,in}}$$

$$SNR_{out} = \frac{P_{S,out}}{\langle u_{1,out}^{2} \rangle} \qquad SNR_{out} = \frac{P_{S,out}^{2}}{4\langle u_{1,out}^{2} \rangle P_{S,out}}$$

$$F_{o,I} = \frac{P_{S,out} \langle u_{1,out}^{2} \rangle}{P_{S,out} \langle u_{1,in}^{2} \rangle} \qquad F_{pnf} = \frac{P_{S,out}^{2} 4\langle u_{1,out}^{2} \rangle P_{S,out}}{P_{S,out}^{2} 4\langle u_{1,in}^{2} \rangle P_{S,in}}$$

Essentially the same, namely $|\mathbf{E}| = \sqrt{P}$ and insertion of a square-root device at the output of an IM/DD receiver, has been explained by B.M. Oliver, "Thermal and Quantum Noise", Proc. of the IEEE, 1965, pp. 436-454. At low f (thermal source noise) we get $F_{pnf} = F_e \ge 1$. $=F_{o,I}$

Example: NF of amplified trunk line, 1000 km, DP-QPSK

All fibers and amplifiers may be combined to form one single amplifier.

Dual-polarization QPSK transmission require for instance 18 detectable photons/bit. 1550 nm, 100 Gb/s, 25 Gbaud \Rightarrow -36.4 dBm is needed at input of ideal DP-QPSK I&Q RX. Due to $F_{o,IQ}$ = 991 \Rightarrow 30 dB a DP TX power of -6.4 dBm is required. Practically, n_{sp} > 1, RX sensitivity may differ (FEC, wider bandwidth, intersymbol interference, thermal noise, ...).

NF of distributed optical amplifier (e.g. Raman)

$$F - 1 = \sum_{i=1}^{n} \frac{F_i - 1}{\prod_{k=1}^{i-1} G_k} = \int G^{-1}(\tau) d(F_i(\tau) - 1)$$

$$F_{o,IQ} = \tilde{\mu} + 1/G = 1 + (n_{sp} - 1)(1 - 1/G)$$

$$d(F_{o,IQ,i}(\tau) - 1)/d\tau = b(\tau)$$

$$F_{o,IQ} = 1 + \int_0^{\tau_g} b(\tau) e^{-\int_0^{\tau} (a(\vartheta) - b(\vartheta)) d\vartheta} d\tau$$

$$F_{o,I} = 2\tilde{\mu} + 1/G = 1 + (2n_{sp} - 1)(1 - 1/G)$$

$$d(F_{o,I,i}(\tau) - 1)/d\tau = a(\tau) + b(\tau)$$

$$F_{o,I} = 1 + \int_0^{\tau_g} (a(\tau) + b(\tau)) e^{-\int_0^{\tau} (a(\vartheta) - b(\vartheta)) d\vartheta} d\tau = 1$$

<u>Whole fiber is Raman amplifier!</u> Amplifier must be behind point where SNR_{in} is determined. \Leftrightarrow RX input must be before Raman fiber. \Rightarrow Raman amplifier has NF > 0 dB!

Group delay of amplifier: τ_g

Excess NF of infinitesimally short amplifier (i):

 $d(F_{i}(\tau)-1) \rightarrow 0$

F_{pnf}

Spontaneous emission factor: $n_{sp} = \frac{a}{a-b}$

 $G(\tau) = e^{\int_0^\tau (a(\vartheta) - b(\vartheta)) d\vartheta}$

= total gain preceding infinitesimal amplifier (i) with gain

$$G_{i}(\tau) = G(\tau)/G(\tau - d\tau)$$

= 1 + (a(\tau) - b(\tau))d\tau

Temporal can be replaced by longitudinal integrations:

$$z = \int v_g d\tau \qquad dz = v_g d\tau$$

3 7

3 7

Structure of noise figure which fulfills Friis' formula

$$SNR_{in} = \frac{P_S}{N_s + N_d} \qquad N_s \sim kTB ?$$

$$SNR_{out} = \frac{GP_S}{GN_s + N_d + N_a}$$

$$F = \frac{GN_s + N_d + N_a}{G(N_s + N_d)} = A + \frac{1 - A}{G} + B$$
Source noise fraction
$$A = \frac{N_s}{N_s + N_d}$$
amplifier noise N_a
amplifier, detector
detector
$$A = \frac{N_s}{N_s + N_d}$$
Being the second sec

$$SNR_{out} = \frac{G_1G_2P_S}{G_1G_2N_s + N_d + G_2N_{a1} + N_{a2}} \qquad F = \frac{G_1G_2N_s + N_d + G_2N_{a1} + N_{a2}}{G_1G_2(N_s + N_d)}$$
$$\Rightarrow \quad F - 1 = F_1 - 1 + \frac{F_2 - 1}{G_1} \qquad \text{Complete induction} \\ \text{yields Friis' formula:} \qquad F - 1 = \sum_{i=1}^n \frac{F_i - 1}{\prod_{k=1}^{i-1} G_k}$$
It holds for all noise figures which can be written like this,
including
$$\frac{F_e}{A = 1}, \quad \frac{F_{enf}}{F_{enf}} = \frac{F_{enf}}{F_{enf}}, \quad \frac{F_{o,IQ}}{A = 0} \qquad \text{and later } F_{IQ}, \quad F_I !$$

n n

Optical noise figures [dB] vs. gain [dB]

Properties of noise figures

Type of noise figure F	SNR	Linear	Avail-	F of	F of	<i>M</i> of ampl.	Input-referred
	degra-		able RX	ideal	atten.,		energy per mode,
	dation		quadra-	ampl.	G < 1		kT_{ex} or $\tilde{\mu}hf$
	factor		tures	$G \rightarrow \infty$			
F _e	yes	yes	2	1	1/G	≥ 0	kT(F-1)
$F_{o,IQ} = n_{sp}(1 - 1/G) + 1/G$	yes	yes	2	1	1/G	$n_{sp} - 1 \ge 0$	hf(F-1/G)
$F_{pnf} = F_{fas} = F_{o,I}$	yes	not	14	2	1/G	$2n_{sp} - 1$	hf(F-1/G)/2
$=2n_{sp}(1-1/G)+1/G$		Fpnf				≥1	
$F_{ase} = 1 + n_{sp} \left(1 - 1/G \right)$	no	yes	2	2	1	$n_{sp} \ge 1$	hf(F-1)

Only $F_{o,IQ}$ matches conceptually with F_e !

$$F_{pnf}$$
, F_{fas} , F_{ase} are contradicted by F_e definition!

Note: NF is lab jargon. Precisely, *F* is the noise factor and $(10 \text{ dB}) \cdot \log_{10}(F)$ is the noise figure.

For lowest NF of a cascade, order amplifiers according to ascending noise measure *M*.

$$M = \frac{F-1}{1-1/G}$$

Ideal optical amplifier noise figure at large gain is ... ?

Univ. Paderborn, R. Noe 26

Other cases are considered as special.

It makes most sense to consider as normal the pairing of amplifiers and receivers with same number of available quadratures:

optical amplifier	phase-sensitive	phase-insensitive	Standard! By far most
optical receiver	homodyne or	I&Q, or heterodyne	frequent optical and
Nonlinear! Does	direct detection	with image rejection	electrical scenario today!
not yield a NF!	$F_{o,I} = 1$	$F_{o,IQ} = 1$ (like F_e	, =1)

User must provide phase reference! RX can also contain phase-sensitive amplifier!

1 NF per detector type? 1 NF for 2 unequal scenarios?

One cannot say one NF (F_e) is for electrical detectors and another (F_{pnf}) is for quantum detectors (photodiodes), because valid NF definition prescribes power measurements but not how powers are measured. NF must be detector-independent! "Noise figure" without additions suggests the properties of F_e , i.e. SNR degradation factor in linear system with 2 RX quadratures (and preferably Gaussian noise). \Rightarrow Term "optical noise figure" seems fit only for $F_{o,IO} = \tilde{\mu} + 1/G$. To avoid misinterpretation, $F_{pnf} = 2\tilde{\mu} + 1/G$ could be called "high-power optical χ^2 (chi-square) noise estimator", "photoelectron number fluctuation indicator", ... Likewise, $F_{o,I}$ (= F_{fas} (= F_{pnf})) can be called "optical 1-quadrature/homodyne NF". When SNR is defined with only in-phase noise then the electrical 1-quadrature NF $F_{e,I}$ equals F_e . I have combined $F_{e,I}$ with $F_{o,I}$ to form a <u>1-quadrature NF</u> F_I . Result is similar to a corrected F_{fas} . But number of quadratures in F_{fas} is not given and one is left to assume that in the electrical domain F_{fas} is for 2 quadratures. $1 \neq 2$! An interpretation difference is that in F_{fas} added thermal noise is considered not separately, but as caused by spontaneous emission (set $T_{ex} = 0$ and take a high $\tilde{\mu}$, with $\tilde{\mu} \to \infty$ for $f \to 0$). In a phase-sensitive amplifier, ideal $F_{o,I} = F_{fas} = 1$.

Consistent unified noise figure

Removing avoidable receiver or power meter noise

- In NF measurement the power meter or RX is always assumed to be free of avoidable noise. In practice it is not possible to cool a power meter or RX to 0 K in order to avoid its thermal noise. For this reason the intrinsic power meter noise is measured, and subtracted during NF measurement, thereby maximizing the resulting NF.
- In the coherent RX we also must assume zero thermal noise. In the foregoing this has been achieved by letting $P_{LO} \rightarrow \infty$. Practically one must subtract RX thermal noise. Shot noise of LO is unavoidable. But shot noise of received signal is avoidable by $P_{LO} \rightarrow \infty$. Practically one must subtract shot noises caused by GP_S and P_S . Nonideal quantum efficiency η also reduces and falsifies measured SNR degradation. Hence we have assumed $\eta = 1$ in the responsivity $R = \eta e/(hf)$. Practically one must correct measurements such that they represent the case $\eta = 1$.
- In the coherent I&Q RX the signal splitter can be viewed as a 2×2 coupler. When considering all frequencies, thermal noise enters also at the 2nd, unused coupler input. That can be avoided by cooling the termination of 2nd coupler input to 0 K. Practically, thermal noise due to 2nd coupler input must be subtracted.
- See implementation (pp. 50-51) of these corrections. But measuring powers directly (p. 34) is easier! Yet also this duly minimizes RX noise and maximizes measured NF.

Thermal and optical noise

Photocurrent shot noise is explained either semiclassically by a Poisson distribution of photoelectrons, or by zero point fluctuations of fields at all inputs.

Thermal noise energy per mode approaches kT only at low frequencies f. For all f the correct expression is:

$$\frac{hf}{e^{hf/(kT)}-1}$$

In NF measurement, an ideal RX (or power meter) is assumed!

Signal input 2 shall be terminated by an absorber having T'' = 0 K. No thermal noise enters there.

All noises interfere essentially with the strong LO fields $(P_{LO} \rightarrow \infty)$.

LO interferences of noises from the

signal inputs add upon photocurrent subtractions. .O inputs cancel

Total intrinsic (source+detection) noise energy per mode

Only 1/2 of these energies per arriving mode mainfests per received quadrature!

Thermal and added amplifier ¹ and detection shot noise can be measured as fluctuations (AC components) in RX. ¹ Except shot noise, this can also be measured as mean power, using a simple power meter. ¹ Shot noise energy per mode:

in RX for 1 mode or 2 quadratures

hf/2 in RX for 1/2 mode or 1 quadrature

B.M. Oliver, "Thermal and Quantum Noise", Proceedings of the IEEE, 1965, pp. 436-454

Shot noise or zeropoint fluctuations, not measurable with mean power meter Thermal noise, measurable with mean power meter

Univ. Paderborn, R. Noe 30

$$k'T = \frac{hf}{e^{hf/(kT)} - 1}$$

Block diagrams with thermal and optical noise

Source, amplifier (left) or attenuator (right) and detector (electrical or coherent optical), all I&Q, noisy or noiseless with equivalent added noise energies per mode. Individual devices (top) and equivalent interpretations (middle, bottom).

If detector were for only 1 available quadrature, detection noise hf would become hf/2. Upconversion e-o is possible with an I&Q modulator (or DSB modulator + SSB filter), downconversion o-e with an I&Q RX (or heterodyne + image rejection filter).

SNR in the presence of thermal and optical noise

🔱 Univ. Paderborn, R. Noe 32

To derive a consistent unified NF (I&Q !) we add noises of F_e and $F_{o,IQ}$ for all f. Optical and electrical gains G are identical because they manifest at same f. Thermal noise in bandwidth $B_o = 1/\tau = 2B_e$ is $GF_e k'TB_o$ at amplifier output. Half of this is in phase with signal. In coherent I&Q RX it appears multiplied with $R^2 P_{LO}$, like amplified signal power GP_S . Corresponding variance σ_e^2 is added.

I&Q noise figure from electrical to optical frequencies

$$SNR_{IQ,out} = \frac{P_S \tau}{F_e k'T/2 + F_{o,IQ} hf/2} = \frac{P_S \tau}{k'(T + T_{ex})/2 + (\tilde{\mu} + 1/G) hf/2}$$

$$SNR_{IQ,in} = \frac{P_S \tau}{k'T/2 + hf/2}$$
(obtained with $T_{ex} = 0$, $\tilde{\mu} = 0$, $G = 1$)
$$SNR_{IQ,in} = \frac{P_S \tau}{k'T/2 + hf/2}$$
(obtained with $T_{ex} = 0$, $\tilde{\mu} = 0$, $G = 1$)
$$SNR_{IQ,in} = \frac{P_I \tau}{k'T/2 + hf/2}$$

$$SNR_{IQ,out} = \frac{F_I r}{F_I Q} = \frac{F_e k'T + F_{o,IQ} hf}{k'T + hf} = \frac{k'(T + T_{ex}) + (\tilde{\mu} + 1/G) hf}{k'T + hf}$$

$$= A + (1 - A)/G + (A T_{ex}/T + (1 - A)\tilde{\mu})$$
Measured F_{IQ} is just observed SNR degradation in linear system with 2 quadratures.
In amplifier, F_e , $F_{o,IQ}$ may not be known. Anyway, $\frac{k'T_{ex}}{F_{ex}} + \tilde{\mu}hf$ is total added noise.
In attenuator, clear separation yields the correct result: $G < 1$, $T_{ex} = T(1/G - 1)$,
 $n_{sp} = 0$, $\tilde{\mu} = 0$

$$\Rightarrow F_{IQ} = 1/G = F_e = F_{o,IQ}$$
At low $f: F_{IQ} \rightarrow F_e$. At high $f: F_{IQ} \rightarrow F_{o,IQ}$.

At 13400 / 1940 / 300 / 77 / 4 K, equal k'T = hf is at f = 194 / 28 / 4.3 / 1.1 / 0.06 THz.

Measure I&Q noise figure with power meter

Usually there are p = 2 polarization modes. p = 1 needs polarizer to be inserted. P'_0 is offset due to noise generated outside B_o and inside power meter. Source and added noises $k'T + k'T_{ex} + \tilde{\mu}hf$ are detected as static power. Not so shot noise hf/G.

It doesn't matter, and needn't be known, in how far added noise is of thermal or quantum origin. F_{IQ} and all other NF can be determined from simple static power measurements.

$$F_{IQ} = \frac{k'T + (k'T_{ex} + \tilde{\mu}hf) + hf/G}{k'T + hf}$$

1-quadrature unified noise figure

SNR with 1-quadrature noise and homodyne receiver

No power splitting $\Rightarrow P_{LO}, P_S, P_n, \tilde{\mu}, n_{sp}$ must be multiplied by 2 compared to $F_{o,IQ}$ calculation. Only 1 RX input! Total thermal noise in bandwidth B_o at amplifier output is $GF_{ek}TB_{ek}$. Half of this is in phase with the signal. In the coherent 1-quadrature (homodyne) RX it appears multiplied with $4R^2P_{LO}$, like the amplified signal power GP_S . RX for 1 quadrature is a special case! $SNR_{I,out} = \frac{4I_{1d}}{4\sigma_e^2 + 4\sigma_{I_{1d}}^2 + 2\sigma_{I_{1s}}^2}$ (Quantities found in I&Q RX are multiplied here by 2-2 or 2.) Powers in homodyne $=\frac{4R^2P_{LO}GP_S}{4R^2P_{LO}GF_ek'TB_o/2+4R^2P_{LO}\widetilde{\mu}GhfB_o/2+2eRP_{LO}B_e}$ receiver with quantum detectors $2GP_{S}$ Thermal source noise $2GF_{e}k'TB_{o}/2 + 2\tilde{\mu}GhfB_{o}/2 + hfB_{e}$ Thermal amplifier noise $2P_S\tau$ $2P_S\tau$ Spontaneous emission $\frac{J}{F_e k' T + F_{o,I} h f/2} = \frac{J}{k' (T + T_{ex}) + (2\tilde{\mu} + 1/G) h f/2}$ field noise in amplifier Shot noise in detector

🔱 Univ. Paderborn, R. Noe 35

 $F_{e,I} = F_e$

1-quadrature / homodyne unified noise figure

$$SNR_{I,out} = \frac{2P_S\tau}{F_ek'T + F_{o,I}hf/2} = \frac{2P_S\tau}{k'(T + T_{ex}) + (2\tilde{\mu} + 1/G)hf/2}$$
Signal energy
Intrinsic
SNR_{I,in} = \frac{2P_S\tau}{k'T + hf/2} = \frac{P_S\tau}{k'T/2 + hf/4}
(for $T_{ex} = 0$, $\tilde{\mu} = 0$, $G = 1$)
$$\frac{SNR_{I,in}}{SNR_{I,out}} = F_I = \frac{F_ek'T + F_{o,I}hf/2}{k'T + hf/2} = \frac{k'(T + T_{ex}) + (2\tilde{\mu} + 1/G)hf/2}{k'T + hf/2}$$

$$= A_I + (1 - A_I)/G + (A_I T_{ex}/T + (1 - A_I)2\tilde{\mu})$$

$$A_I = k'T/(k'T + hf/2) \neq A$$
(set $T_{ex} = 0$ and take a high $\tilde{\mu}$, with $\tilde{\mu} \to \infty$ for $f \to 0$)
1-quadrature / homodyne F_I is close to (F_{fas}) (except k' and interpretation difference)!
In definition of F_{fas} , number of quadratures was not discussed. F_{fas} is intended to be identical with the normal electrical F_e , which is understood to be for 2 available RX quadratures in electrical, 2...1 in thermal (low THz) and 1 in optical domain. That is contradictory!

1-quadrature unified noise figure

📣 Univ. Paderborn, R. Noe 37

1-quadrature / homodyne unified noise figure

Electrical part of F_I is expected to be of minor importance. Reason: Due to thermal source noise and absence of detection shot noise, electrical homodyne does not have an SNR advantage over electrical I&Q (when evaluating only 1 quadrature).

$$\frac{SNR_{I,in}}{SNR_{I,out}} = F_I = \frac{F_e k'T + F_{o,I} hf/2}{k'T + hf/2} = \frac{k'(T + T_{ex}) + (2\tilde{\mu} + 1/G)hf/2}{k'T + hf/2}$$

$$= A_I + (1 - A_I)/G + (A_I T_{ex}/T + (1 - A_I)2\tilde{\mu}) \qquad A_I = k'T/(k'T + hf/2) \neq A$$

$$F_{o,I} \neq F_{o,IQ} \qquad \text{because there is detection noise!} \qquad (\text{set } T_{ex} = 0 \text{ and take a high} \\ \tilde{\mu}, \text{ with } \tilde{\mu} \to \infty \text{ for } f \to 0)$$
1-quadrature / homodyne F_I is close to F_{fas} (except k' and interpretation difference)!
Attenuator: I simply say

$$T_{ex} = T(1/G - 1), n_{sp} = 0 = \tilde{\mu}, \qquad \text{for } F_{e,I} = F_e, (= F_{e,I}). \qquad \text{for } f \to 0, \infty \neq 0, -\infty, \quad \tilde{\mu} \to \{0, \infty\}!$$

Noise figures

RX or power detector noise would cause F_e to be underestimated. Therefore RX noise is always subtracted, using reference measurements. The same way, avoidable optical RX noise can and must be subtracted at high *f*. Only LO shot noise is fundamental and is kept. Photodiode efficiency must be set equal to 1. We get:

Electrical
$$kT >> hf$$

 kT

$$Unified/generalized$$

$$k'T = \frac{hf}{e^{hf/(kT)} - 1}$$
 $\tilde{\mu} = n_{sp}(1 - 1/G)$

$$Optical kT << hf$$

$$\tilde{\mu} = n_{sp}(1 - 1/G)$$

RX with 2 available quadratures (I&Q), i.e. 1 mode; F_{IO} is the noise figure:

$$F_e \equiv F_{e,IQ} = 1 + \frac{T_{ex}}{T} \qquad F_{IQ} = \frac{k'(T + T_{ex}) + (\tilde{\mu} + 1/G)hf}{k'T + hf} \qquad F_{o,IQ} = \tilde{\mu} + 1/G$$

RX with 1 available quadrature; optical homodyne (and IM/DD without sp-sp):

$$F_{e,I} = 1 + \frac{T_{ex}}{T} \qquad F_I = \frac{k'(T + T_{ex}) + (2\tilde{\mu} + 1/G)hf/2}{k'T + hf/2} \qquad F_{o,I} = 2\tilde{\mu} + 1/G$$

Shot noise occurs upon <u>detection</u>. \Rightarrow <u>Optical homodyne</u> is different. In all cases, NF of pure attenuator is 1/G.

Summary

- All prior optical and unified NF F_{pnf} , F_{fas} , F_{ase} are in conflict with electrical NF F_e .
- A "noise figure" without special name is expected to be the SNR degradation factor in a linear system with 2 available quadratures (and Gaussian noise?!), like F_e.
- The only optical NF which fulfills this is the optical I&Q NF $F_{o,IQ}$. It is \geq 1, like F_e .
- Coherent I&Q receivers are linear field sensors. They linearize the quadratic field behavior of photodiodes. Heterodyne with image rejection is also fine.
- At high gain, $F_{o,IQ} \approx F_{pnf}/2$, i.e. ≈ 3 dB less when expressed in dB.
- Electrical F_e and optical $F_{o,IQ}$ are limit cases of the NF F_{IQ} , unified for all f. Quantum noise / F_{IQ} plays a role in today's RF electronics at low T = 4 K.
- The in-phase equivalent of $F_{o,IQ}$ is $F_{o,I}$, a limit case of the unified $\frac{F_{fas}}{F_{fas}}$. So, $\frac{F_{fas}}{F_{fas}}$ is a 1-quadrature NF and its other limit is F_e for 1 quadrature, not the assumed 2.
- Information conveyed by the full F_{pnf} (including sp-sp) of a specific DD RX can be obtained, more accurately, from $F_{o,IQ}$ (pure Gaussian noise). (after correction
- Optical amplifier adds Gaussian I&Q field noise (wave aspect). $k \rightarrow k'$) Photodetection adds shot noise (particle aspect). (See support material on p. 1.)

G

 \mathcal{T}

T

F

Quantities needed for electrical noise figure calculation

Univ. Paderborn, R. Noe 40

(available) power gain of device $P_{s,in}$ input signal power $P_{s.out} = GP_{s.in}$ output signal power $B = 1/\tau$ one-sided, physical bandwidth around a carrier frequency observation or integration time, length of BPF response $P_{n,in} = kTB = kT/\tau$ (thermal) input noise power source temperature kTthermal noise energy in 1 mode, having 2 quadratures (cos, sin) kT/2thermal noise energy in 1 quadrature; see kT/C noise where any noisy conductance $G \ge 0$ causes a voltage variance $U^2 = kT/C$ at capacitance C, and $(C/2)U^2 = kT/2$ is mean stored energy. $P_{n,out}$ output noise power **SNR**_{in} input signal-to-noise ratio **SNR**_{out} output signal-to-noise ratio noise factor, often called noise figure (lab jargon)

Definition of electrical noise figure

$$SNR_{in} = \frac{P_{s,in}}{P_{n,in}/2}$$
 input signal-to-noise ratio. Noise and gain are available in 2 quadratures with equal strengths!

For *F* it does not matter whether noise power in 1 mode is divided by 2, like above. If so, then this is the noise in 1 of 2 available RX quadratures of the mode. *F* always assumes 2 available RX quadratures! – One may take energies instead of powers.

$$F = \frac{SNR_{in}}{SNR_{out}} = \frac{P_{n,out}}{GP_{n,in}} \text{ noise figure } \ge 1 \qquad F_{ex} = F - 1 \qquad \text{excess noise factor} \\ T_{ex} = (F - 1)T \qquad \text{excess noise factor} \\ \text{temperature} \end{cases}$$

Noise added at amplifier output is divided by gain to represent noise that must be added at input of a noiseless amplifier. Contributed noise powers in an amplifier chain, each divided by total prior gain, may be added at input. Available gains in amplifier chain are multiplicative.

Electrical noise figures of amplifier and attenuator

Univ. Paderborn, R. Noe 42

$$\begin{split} F_e &= \frac{P_{n,out}}{GP_{n,in}} = \frac{P_{n,out}}{GkTB} = \frac{Gk(T+T_{ex})B}{GkTB} = 1 + \frac{T_{ex}}{T} & \text{NF of electrical amplifier} \\ P_{n,out} &= kTB & \text{in electrical attenuator (works as noisy resistor)} \\ F_e &= \frac{1}{G} \ge 1 & \text{NF of electrical attenuator } (G < 1) \\ T_{ex} &= T(1/G-1) & \text{excess noise temperature of attenuator} \end{split}$$

Optionally, phase-sensitive detection allows measuring power in only 1 quadrature. Noise power is thereby halved if it comes from a source (such as a resistor or normal amplifier) which generates noise in 2 quadratures. Normal electrical amplifiers pass 2 available quadratures. <u>RX = detector also has 2 available quadratures</u>. But powers (signal, thermal noise) are measurable also with asynchronous power detectors (thermal; Schottky diode). 2 available quadratures are implied for F_e measurement. This means: A unified all-frequency NF which has the normal electrical NF F_e as its electrical limit case must have 2 available RX quadratures like F_e , at all frequencies.

How to measure electrical powers

Asynchronous electrical power measurement in the carrier or radio frequency domain yields total power in 2 quadratures. This is also possible via downconversion:

2 quadratures are always available.

Using 2 mixers with local oscillator signals having $\pi/2$ mutual phase difference, one downconverts to the baseband. Addition of the squares of the resulting I&Q signals gives total power in the 2 quadratures.

If there is only 1 mixer to the baseband then noise is measured in only 1 quadrature.

If a downconversion receiver is a heterodyne receiver it needs an image rejection filter at the input. Otherwise doubled noise power from the amplifier would be measured (for a given input noise power spectral density).

NF measurement is transparent to frequency up/downconversion.

NF is SNR degradation factor; 2 available RX quadratures; linearity; powers ~ squares of amplitudes: All this must hold for all frequencies! Hopefully also: Gaussian noise; ideal NF = 1

Gain and noise energy in optical amplifiers

power evolution in purely amplifying optical medium dP/dt = aPdP/dt = -bP $G = e^{(a-b)t} = e^{(a-b)z/v_g}$ power evolution in purely attenuating optical medium power gain of optical amplifier (group velocity: v_g) $P_n \tau = \mu h f = G \tilde{\mu} h f = n_{sp} (G - 1) h f$ added output noise energy per mode = noise energy in independent I&Q carrier sample = J / (s (observation time) - Hz (bandwidth)) spontaneous emission factor, calculated from stimulated $n_{sp} = \frac{a}{a-b}$ emission a and absorption b coefficients per time unit μ at output or $\tilde{\mu}$ at input expectation value of equivalent noise photons per mode

Wave aspect: During electromagnetic wave propagation, no photons manifest! Particle aspect: Generation and detection of light occurs with quantized energy and can be explained by photons, not waves.

See pp. 52-61. Photons in this talk manifest only during their absorption or emission! For waves it is the opposite, they exist only during transmission. Evolutions for E_{\pm}

Noise figure F_{fas}

"fas" = "fluctuation of amplitude squares"

Fluctuation of amplitudes: SNR = (squared mean) / variance

Fluctuation of amplitude squares: SNR = (squared mean of the square) / (variance of

the square). That's exactly what happens for F_{pnf} ! Quadratic nonlinearity!

But F_{fas} is determined by "linear" detection. \Rightarrow

Name "fluctuation of amplitude squares" is misleading compared to "linear" detection.

$$F_{\text{fas}} = \frac{\text{SNR at input}}{\text{SNR at output}}$$

$$= \frac{\frac{h\nu\langle n_s \rangle}{h\nu/2}}{\frac{h\nu G\langle n_s \rangle}{(h\nu/2)\{1 \neq \theta(G-1)\}}}$$

$$= 1 + \theta(1 - 1/G). \quad (13)$$

$$(earlier \quad \theta \equiv n_{sp} \quad 2...3 \text{ unequal, conflicting versions of } F_{fas}!$$

$$\Rightarrow F_{fas} = \tilde{\mu} + 1/G = F_{o,IQ} \quad \text{I&Q NF?}$$

$$\Rightarrow F_{fas} = \tilde{\mu} + 1/G = F_{o,IQ} \quad \text{I&Q NF?}$$

$$F_{fas} = \tilde{\mu} + \theta(1 - 1/G). \quad (13)$$

$$\Rightarrow F_{fas} = F_{ASE}(15) \Rightarrow$$

$$F_{fas} = \tilde{\mu} + 1 = F_{ase} \quad \text{Not an optical NF!}$$

$$(final \ version) \quad F_{fas} = F_{ASE}(15) \Rightarrow$$

$$F_{fas} = 2\tilde{\mu} + 1/G = F_{o,I} = F_{pnf} \quad \text{receiver, or direct detection!}$$

Review of prior noise figures

Univ. Paderborn, R. Noe 46

• $F_{pnf} = 2\tilde{\mu} + 1/G$ involves nonlinearity and requires redefinition of power. For that reason it is <u>not a</u> NF. And it maps 2 quadratures into 1.

• $F_{\text{fas}} = \frac{\text{SNR}_i}{\text{SNR}_i} = 1 + \frac{(2\theta - 1)\left(1 - \frac{1}{G}\right)}{2\langle n_\theta \rangle + 1}$ becomes $F_{\text{fas}} = 2\tilde{\mu} + 1/G = F_{o,I}$ in the optical domain, which means there is 1 quadrature. It is defined for all f with the intention of becoming $F_{fas} = F_e$ in the electrical domain, where there are 2 quadratures. But number of quadratures must not change vs. f. Hence F_{fas} is <u>not a unified</u> NF, due to 1 \neq 2. If 1 RX quadrature had been specified for optical and electrical, and k corrected into k', F_{fas} would be the 1-quadrature unified NF, due to $F_{e,I} = F_e$. Exactly this has been specified for the 1-quadrature unified NF $F_{I} = \frac{k'(T + T_{ex}) + (2\tilde{\mu} + 1/G)hf/2}{k'T + hf/2}.$ (*F_{fas}* is close to this special case.)

• <u>A NF without special denomination must correspond to $F_{\underline{e}}$ with its 2 RX quadratures.</u> Therefore <u>the optical</u> NF is only $F_{o,IQ} = \tilde{\mu} + 1/G$ and <u>the</u> unified NF is only $F_{IQ} = \frac{k'(T + T_{ex}) + (\tilde{\mu} + 1/G)hf}{k'T + hf}$. 2 RX quadratures are common today in cases where amplifier noise matters!

• $F_{ase} = 1 + \tilde{\mu}$ is not the SNR degradation factor in any optical receiver. So, F_{ase} is not an optical NF. Hence it is pointless to generalize it to a unified F_{ase} .

Traditional optical noise figure Fpnf

 $SNR_{pnf} = \langle n \rangle^2 / \sigma_n^2$ Defined by optical amplifier pioneer E. Desurvire (1990ies), denoted photon number fluctuations by H.A. Haus (1990) denoted photon number fluctations by H.A. Haus (1998). Photon number *n* ~ photocurrent ~ optical power *P* ~ $E \times H \sim |\mathbf{E}|^2$. This means: Amplitude squarer is ",built" into signal path, which becomes nonlinear! "Power" is ~ $|\mathbf{E}|^4$! F_{pnf} with sp-sp beat noise depends on power+bandwidths! 2 optical quadratures \rightarrow only 1 available electrical quadrature! Minimum NF of amplifier with large gain: $F_{pnf} = 2$ Widely used! Defined for optical DD receiver. But today's standard in applications where amplifier noise matters are coherent optical I&Q RX. A check: If photons were present in the wave then this would hold also at the input of a ficticious noise-free amplifier with $n_{sp} = 0$. According to the neglect for below that would improve SNR by a factor G. This cannot be. $\langle n \rangle \rightarrow \infty$ $SNR_{pnf,in} = \frac{\langle n \rangle}{\langle n \rangle} \text{ for Poisson distribution } SNR_{pnf,out} = \frac{G^2 \langle n \rangle^2}{G \langle n \rangle + n_{sp} (2(G-1)G \langle n \rangle + ...)}$ $F_{pnf} = \frac{SNR_{pnf,in}}{SNR_{pnf,out}} \approx \frac{1 + 2n_{sp} (G-1)}{G} = 2\tilde{\mu} + 1/G \qquad \begin{array}{c} \text{signal signal-sp-sp} \\ \text{shot sp(ontaneous) beat} \end{array}$

Optical noise figure Fase

 $F_{ase} = 1 + \widetilde{\mu}$

Defined and denoted *amplified spontaneous emission by* noise figure pioneer H.A. Haus (1998).

Linear system, 2 quadratures, power ~ squared field amplitude, like for F_e ! But:

F_{ase} is not the SNR degradation factor in any optical receiver.

So, F_{ase} is not an optical NF.

 $F_{ase} \ge 2$ for amplifiers with high gain

Due to NF confusion I have initially used in my lectures only $\tilde{\mu}$. After $F_{ase} = 1 + \tilde{\mu}$ was defined I have used it as optical NF, also in https://doi.org/10.1007/978-3-662-49623-7. But that doesn't make sense: It is not the SNR degradation factor.

H.A. Haus defined his NF as replacements of F_{pnf} , obviously because he did not accept F_{pnf} to be a valid NF. Seemingly, all NF definitions prior to $F_{o,IQ}$ have been guided by the idea that the NF of an ideal optical amplifier should be 2. But an optical NF without special denomination (such as homodyne) implies that there are 2 available RX quadratures, like in the electrical domain. That or the SNR degradation have not been complied with. In reality, an ideal optical amplifier does not degrade the SNR in a system with 2 available RX quadratures. It hence has an optical NF of 1 ($=F_{o,IO}$).

Prior unified noise figures

H.A. Haus has standardized the electrical NF. Later (2000) he was the first to bring up inspiring unified NF. Using kT and hf noises he has generalized his two optical NF for all f from electrical, where they seemingly shall become F_{e} , to optical: A NF F_{fas} (fluctuation of amplitude squares) was defined finally, and generalized. But: For rising f (and depending on T; transition $f \approx kT/h$), 2 electrical quadratures must gradually become 1 optical quadrature, signal detection gradually needs phase recovery. (how?) If one does the same with F_{pnf} (for large input power) then, for rising f, signal phase is gradually lost, the linear system must gradually become nonlinear, (how?) 2nd must gradually become 4th powers of amplitudes. F_{ase} was also generalized from electrical to optical f. But: F_{ase} is not the SNR degradation factor in any optical receiver. (no NF!) All above: kT was taken for all f, which is correct only for $hf \ll kT$. \Rightarrow All prior optical and unified/generalized NF violate systematics of electrical NF or linearity requirement or technical function!

Synchronous downconversion allows separating signal *S* and noise *N*. $B_o = 1/\tau = 2B_e$. Responsivity $R = \eta e/(hf)$ is known. Electrical RX part has gain *H* and equivalent thermal noise PSD $d\langle i^2 \rangle/df$. At 2nd RX input, absorber temperature is *T*" and thermal noise energy per mode is $k''T'' = hf/(e^{hf/(kT'')} - 1)$. We can determine: 1. No signal, with amplifier

 $N_1 = H \Big(R^2 P_{LO} \big(GF_e k'T + k''T'' \big) + R^2 P_{LO} \tilde{\mu} Ghf + eRP_{LO} + d\langle i^2 \rangle / df \Big) B_e$ 2. No signal, no amplifier

 $N_{2} = H\left(R^{2}P_{LO}(k'T + k''T'') + eRP_{LO} + d\langle i^{2} \rangle / df\right)B_{e}$ 3. No signal, no amplifier, other source temperature $N_{3} = H\left(R^{2}P_{LO}(k'''T''' + k''T'') + eRP_{LO} + d\langle i^{2} \rangle / df\right)B_{e} \qquad k'''T''' = hf / \left(e^{hf / (kT''')} - 1\right)$ 4. Signal, amplifier $S_{4} = HR^{2}P_{LO}GP_{S} \qquad \text{(Synchronous downconversion,})$ 5. Signal, no amplifier $S_{5} = HR^{2}P_{LO}P_{S} \qquad \text{to get signal without noise.)}$ From S_{5} we get H. From S_{4} and S_{5} we get G. Without LO we get noise $H d\langle i^{2} \rangle / df B_{e}$. $N_{6} = \frac{N_{2}k'''T''' - N_{3}k'T}{k'''T''' - k'T} - H\eta eRP_{LO}B_{e} = H\left(R^{2}P_{LO}k''T'' + e(1-\eta)RP_{LO} + d\langle i^{2} \rangle / df\right)B_{e}$

Elimination of avoidable I&Q receiver noise

Univ. Paderborn, R. Noe 51

$$\begin{split} SNR_{out} &= \frac{S_4}{N_1 - N_6} = \frac{HR^2 P_{LO} GP_S 2\tau}{H\left(R^2 P_{LO} GF_e k'T + R^2 P_{LO} \tilde{\mu} Ghf + e \eta RP_{LO}\right)} = \frac{GP_S 2\tau}{GF_e k'T + \tilde{\mu} Ghf + hf} \\ SNR_{in} &= \frac{S_5}{N_2 - N_6} = \frac{HR^2 P_{LO} P_S 2\tau}{H\left(R^2 P_{LO} k'T + e \eta RP_{LO}\right)} = \frac{P_S 2\tau}{k'T + hf} \\ F_{IQ} &= \frac{SNR_{in}}{SNR_{out}} = \frac{GF_e k'T + G\tilde{\mu} hf + hf}{G(k'T + hf)} = \frac{k'(T + T_{ex}) + (\tilde{\mu} + 1/G)hf}{k'T + hf} \\ \text{Alternative path, with the same result: Measure noises with signal} \\ \hat{N}_1 &= H\left(R^2 P_{LO} (GF_e k'T + k''T'') + R^2 P_{LO} \tilde{\mu} Ghf + eR(P_{LO} + GP_S) + d\langle i^2 \rangle / df \right) B_e \\ \hat{N}_2 &= H\left(R^2 P_{LO} (k'T + k''T'') + eR(P_{LO} + P_S) + d\langle i^2 \rangle / df \right) B_e \\ \hat{N}_3 &= H\left(R^2 P_{LO} (k''T''' + k''T'') + eR(P_{LO} + P_S) + d\langle i^2 \rangle / df \right) B_e \\ N_7 &= \frac{\hat{N}_2 k'''T''' - \hat{N}_3 k'T}{k''T''' - k'T} = H\left(R^2 P_{LO} k''T'' + eR(P_{LO} + P_S) + d\langle i^2 \rangle / df \right) B_e \\ SNR_{out} &= \frac{S_4}{\hat{N}_1 - N_7 + HeR} \binom{(\eta - 1)P_{LO}}{-GP_S} B_e \\ \end{split}$$

Master equation of photo(electro)n statistics

- How many photons can be detected behind optical amplifiers / attenuators?
- Probability evolution of photon number ($dt \rightarrow 0$; multiple transitions neglected) P(n,t+dt) = P(n|n)P(n,t) + P(n|n-1)P(n-1,t) + P(n|n+1)P(n+1,t)

Solution example for absorption only (a = c = 0): Poisson distribution

$$P(n) = e^{-\mu_0} \frac{\mu_0^n}{n!} \qquad \langle n \rangle \equiv \mu_0(t) = \mu_0(0) e^{-bt}$$

Moment generating function

$$M_n(e^{-s}) = \left\langle e^{-sn} \right\rangle = \sum_{n=-\infty}^{\infty} P(n)e^{-sn} \qquad M_x(e^{-s}) = \left\langle e^{-sx} \right\rangle = \int_{-\infty}^{\infty} p_x(x)e^{-sx}dx$$

Can be inverted by inverse Laplace or *z* transform ($e^{-s} = z^{-1}$)

MGF allows calculating all moments:

$$\langle n^k \rangle, \langle x^k \rangle = (-1)^k \left. \frac{d^k M(e^{-s})}{(ds)^k} \right|_{s=0}$$

Addition of statistically independent RVs: convolution of PDFs or multiplication of MGFs

MGF is now be applied to both sides of master equation. This results in ...

Solution of partial differential equation for MGF

$$\frac{\partial}{\partial t}M_n(e^{-s},t) = c(e^{-s}-1)M_n(e^{-s},t) - (a-be^s)(e^{-s}-1)\frac{\partial}{\partial s}M_n(e^{-s},t)$$

Derived from master equation of photo(electro)n statistics. Solution:

$$M_{n}\left(e^{-s},t\right) = \left(1 + \mu\left(1 - e^{-s}\right)\right)^{-N} M_{n}\left(1 - \frac{G\left(1 - e^{-s}\right)}{1 + \mu\left(1 - e^{-s}\right)},0\right)$$

MGF at (flight) time *t* is given in terms of the MGF at time 0 !

power gain during time *t*:

$$G = G(t) = e^{(a-b)t}$$

number of modes:

$$N = c/a$$

spontaneous emission factor:

$$n_{sp} = \frac{a}{a-b}$$

mean noise photon number per mode: $\mu = n_{sp}(G-1)$

📣 Univ. Paderborn, R. Noe 54

Discrete distributions (photoelectrons)

(type)	$P(n) \ (n \ge 0)$	$M_n(e^{-s})$	$\langle n \rangle$	σ_n^2
Poisson (signal alone)	$e^{-\mu_0} \frac{\mu_0^n}{n!}$	$e^{-\mu_0(1-e^{-s})}$	μ_0	μ_0
Central negative binomial (noise alone)	$\binom{n+N-1}{n} \frac{\mu^n}{(1+\mu)^{n+N}}$	$\frac{1}{\left(1+\mu\left(1-e^{-s}\right)\right)^{N}}$	Νμ	$N\mu(\mu+1)$
Noncentral negative binomial, Laguerre (signal + noise) General case	$\frac{\mu^{n} e^{-\frac{\mu_{0}}{1+\mu}}}{(1+\mu)^{n+N}} L_{n}^{N-1} \left(\frac{-\mu_{0}}{\mu(1+\mu)}\right)$	$\frac{\frac{-\mu_{0}(1-e^{-s})}{e^{1+\mu(1-e^{-s})}}}{(1+\mu(1-e^{-s}))^{N}}$	μ ₀ + Νμ	$N\mu(\mu+1) + (2\mu+1)\mu_0$

Review of photoelectron statistics

Poisson transformation and normalization

Assume that the probability distribution of the photon number n can be expressed by the **Poisson transform** of the PDF of a continuous nonnegative RV *x*: $P(n) = \int_0^\infty p_x(x) e^{-x} \frac{x^n}{n!} dx$

For $G \to \infty$ no limit of P(n) is found because the mean photon number scales with G. A normalized variable $\tilde{x} = x/G$ has a $p_{\tilde{x}}(\tilde{x})$ which depends only weakly on G and allows finding $\lim_{G \to \infty} p_{\widetilde{x}}(\widetilde{x}) \cdot p_{x}(x) dx = p_{\widetilde{x}}(\widetilde{x}) d\widetilde{x}$ $p_{\widetilde{x}}(\widetilde{x}) = Gp_{x}(\widetilde{x}G)$ $P(n) = \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) e^{-\widetilde{x}G} \frac{(\widetilde{x}G)^{n}}{n!} d\widetilde{x}$ This is the continuous form of $P(n) = \sum P(n|(\tilde{x}_i G))P(\tilde{x}G = \tilde{x}_i G)$ where the conditional probability $P(n|(\tilde{x}_i G))$ is that of a Poisson distribution with a mean $\tilde{x}_i G$. We find: $\lim_{G \to \infty} M_n \left(e^{-s/G} \right) = \lim_{G \to \infty} \sum_{n=0}^{\infty} e^{-(s/G)n} P(n) = \lim_{G \to \infty} \sum_{n=0}^{\infty} e^{-(s/G)n} \int_0^\infty p_{\widetilde{x}}(\widetilde{x}) e^{-\widetilde{x}G} \frac{(\widetilde{x}G)^n}{n!} d\widetilde{x}$ $= \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) \lim_{G \to \infty} e^{-\widetilde{x}G} \sum_{n=0}^{\infty} \frac{\left(e^{-s/G}\widetilde{x}G\right)^{n}}{n!} d\widetilde{x} = \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) \lim_{G \to \infty} e^{-\widetilde{x}G} e^{-s/G}\widetilde{x}G d\widetilde{x}$ $= \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) \lim_{G \to \infty} e^{-\widetilde{x}G\left(1-e^{-s/G}\right)} d\widetilde{x} = \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) \lim_{G \to \infty} e^{-\widetilde{x}G\left(s/G\right)} d\widetilde{x} = \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) e^{-s\widetilde{x}} d\widetilde{x} = M_{\widetilde{x}}\left(e^{-s}\right)$ $p_{\widetilde{x}}(\widetilde{x}) \text{ is obtained by backtransforming } M_{\widetilde{x}}\left(e^{-s}\right).$

Continuous distributions (intensity, power, photocurrent)

(type)	$p_{\widetilde{x}}(\widetilde{x}) \ (\widetilde{x} \ge 0)$	$M_{\widetilde{x}}\left(e^{-s}\right)$	$\langle \widetilde{x} \rangle$	$\sigma^2_{ ilde{x}}$
Constant (signal alone)	$\delta(\widetilde{x}-\widetilde{\mu}_0)$	$e^{-\widetilde{\mu}_0 s}$	$\widetilde{\mu}_0$	0
Central χ^2_{2N} , Gamma (noise alone)	$rac{1}{\Gamma(N)} \widetilde{\mu}^N \widetilde{x}^{N-1} e^{-\widetilde{x}/\widetilde{\mu}}$	$\frac{1}{\left(1+\widetilde{\mu}s\right)^{N}}$	Nµ̃	$N\widetilde{\mu}^2$
Noncentral χ^2_{2N} (signal + noise) General case	$\frac{\widetilde{x}^{(N-1)/2} e^{-(\widetilde{\mu}_0 + \widetilde{x})/\widetilde{\mu}}}{\widetilde{\mu}_0^{(N-1)/2} \widetilde{\mu}} \\ \cdot I_{N-1} \left(2\sqrt{\widetilde{x} \widetilde{\mu}_0} / \widetilde{\mu} \right)$	$\frac{e^{\frac{-\widetilde{\mu}_{0}s}{1+\widetilde{\mu}s}}}{(1+\widetilde{\mu}s)^{N}}$	$\widetilde{\mu}_0$ + $N\widetilde{\mu}$	$N\tilde{\mu}^2 + 2\tilde{\mu}\tilde{\mu}_0$

Eliminating and adding shot noise

P(n): Poisson distribution,	$ \Rightarrow M_n(e^{-s}) \Rightarrow \\ M_{\widetilde{x}}(e^{-s}) = \lim_{G \to \infty} M_n(e^{-s/G}) \Rightarrow $	$p_{\widetilde{x}}(\widetilde{x})$: Constant (Dirac function),
Central negative binomial	Eliminate shot noise by amplification, normalize with respect to G .	Central χ^2
distribution, Noncentral negative binomial distribution	$ \Leftarrow P(n) = \int_{0}^{\infty} p_{\widetilde{x}}(\widetilde{x}) e^{-\widetilde{x}G} \frac{(\widetilde{x}G)^{n}}{n!} d\widetilde{x} \iff $ Add shot noise, undo normalization $(x = \widetilde{x}G)$	Noncentral χ^2 distribution

Review of photoelectron statistics

🔱 Univ. Paderborn, R. Noe 59

Direct detection receiver model (1)

Assume independent zero-mean Gaussian noise variables with equal variances! Bandpass filter has rectangular impulse response of duration τ_1 . Electrical field at its output:

$$\widetilde{\mathbf{E}}(t) = \left(\left(\sqrt{\widetilde{\mu}_0 / M} + \widetilde{u}_1 + j\widetilde{u}_2 \right) \mathbf{e}_1 + \left(\widetilde{u}_3 + j\widetilde{u}_4 \right) \mathbf{e}_2 \right) e^{j\omega t}$$

$$\approx \left| \left| \widetilde{\mathbf{E}}(t) \right|^2 = \left(\sqrt{\widetilde{\mu}_0 / M} + \widetilde{u}_1 \right)^2 + \widetilde{u}_2^2 + \widetilde{u}_3^2 + \widetilde{u}_4^2$$

Photocurrent

A lowpass filter with a continuous impulse response of length τ_2 or better $\sqrt{\tau_2^2 - \tau_1^2}$ is modeled as a (ficticious, infinite bandwidth) lattice filter having M Dirac impulses spaced by τ_1 each. The signal at its output is χ^2 distributed with 4M = 2N degrees of freedom:

 $N \text{ modes} = p \text{ polarizations} \cdot M \text{ samples}$

Direct detection receiver model (2)

Optical and electrical impulse responses in optical receiver

Optical field envelopes and photocurrent for idealized model sketched above Samples with statistically independent noises are marked by •.

Understanding optical amplifier and photodetection

- Signal and noise together have a noncentral negative binomial photoelectron distribution. It contains <u>optical amplifier noise + shot noise</u>.
- For $G \to \infty$, shot noise of detection becomes negligible. We get a noncentral χ^2 intensity distribution. Its noise is <u>only optical amplifier noise</u>.
- Noncentral χ^2 intensity distribution occurs in DD RX with <u>Gaussian field noise</u>.
- The only possible explanation is:

Amplifier adds Gaussian field noise in phase and in quadrature (wave aspect). Detection adds shot noise (particle aspect).

Duality: Particles contain no wave. Wave contains no particles. Connection: W = hfThis avoids contradictions (interference, sub-photon energies, ...)!

- Gaussian field noise + shot noise characterize optical noise and NF completely.
- The known noise distribution allows calculating bit error ratio exactly. This works better than the Gaussian approximation for which F_{pnf} was derived.
- Field noise occurs \Rightarrow field amplitudes must be considered, not "power amplitudes".

 \Rightarrow We need <u>linear</u> receivers! Coherent optical receivers are <u>linear</u> in amplitudes!

Review of photoelectron statistics

-

Optical field noise as amplified zero point fluctuations

Amplifier adds Gaussian field noise in phase and in quadrature (wave aspect). Detection adds shot noise (particle aspect).

The above was derived from:

$$P(n|n-1) = ((n-1)a + c)dt$$
 $P(n|n+1) = (n+1)bdt$

Univ. Paderborn, R. Noe 62

Resulting field noise may also be understood as amplified zero-point energy hf/2: Zero-point energy works like 1 / 0 detectable photons for emission / absorption.

$$P(n+1|n) = (n+1 N)adt \qquad P(n-1|n) = (n+0)bdt \qquad N = c/a \text{ moisy}$$

modes inisision and absorption combined: $d\langle n \rangle/dt = (\langle n \rangle + N)a - \langle n \rangle b \implies$
 $n(t)\rangle = G\langle n(0)\rangle + Nn_{sp}(G-1) \qquad G = e^{(a-b)t} \qquad n_{sp} = \frac{a}{a-b}$

 $P_{out} = GP_{in} + Nn_{sp}(G-1)hfB_o$ This is equivalent to our earlier results. Only probability distribution of field noise and existence of shot noise are not derived here. If electron occupation probabilities in upper and lower states are f_2, f_1 :

$$a = f_2(1 - f_1)$$
 $b = f_1(1 - f_2)$ $G = e^{(f_2 - f_1)t}$ $n_{sp} = \frac{f_2(1 - f_1)}{f_2 - f_1}$

See also: M. Yamada, "Theory of of Semiconductor Lasers", Springer, 2014