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Motivation

Noise figures in linear/coherent optical receivers

In-phase and quadrature noise figure = the noise figure

In-phase (homodyne) noise figure = special case

Comparison of noise figures

Consistent unified noise figure

Summary

Appendix

Review of electrical noise figure

Review of prior optical and unified noise figures

Elimination of avoidable I&Q receiver noise

Review of photoelectron statistics

Overview
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2 degrees-of-freedom (DOF)

                                     linear

2 degrees-of-freedom   linear

1 DOF

nonlinear

How to determine noise and gain properties of amplifier

Motivation

power meter
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BPF

amplifier
(.)2 LPF

HPF

(.)2 LPF

power meter

get square of 

mean power

get variance 

of powerIs the inserted              

extra power meter helpful?

Standard electrical measurement
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source
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(.)2 LPF

power meter

Probably not. Now this is a photodiode 

and we are talking about optical signals!
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Power, gain, loss must be redefined if Fpnf is valid NF!

Motivation & Review of prior noise figures

is the signal „gain“!  Noise gain depends on signal; „powers“ cannot 

be added; linearity condition is violated.       No more (optical) dB are 

allowed; „gain“ must be given in „electrical“ dB!      1550 nm fiber loss 

is no longer 0.2 dB/km; „loss“ must be stated as 0.4 dB/km!

Science is systematic and exact and 

does not tolerate contradictions!     

Unit definitions must not depend on  

measurement method or f ! Fpnf implies:
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power meter HPF
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 Any (electrical, optical) amplifier with 20 dB gain has 40 dB „gain“!

Thermal power meter can replace photodiode and allows going to low f.   
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(traditional optical NF)

variance of 

photoelectrons

squared  

mean of  

power or 
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  All „powers“ (optical, electrical, thermal, mechanical) must be 
~ squared powers, since all powers can be converted into thermal

power and compared!      work = sqrt(„power“)·time
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Electrical noise figure (NF) is standardized since many decades.

Traditional optical noise figure Fpnf  was defined in 1990ies, for optical direct 

detection receivers (DD RX). Problematic aspects, in conflict with electrical NF:

Optical signals have in-phase and quadrature components, like electrical 

signals and RX. But an optical DD RX suppresses phase information.

NF = 2 for ideal optical amplifier, whereas NF = 1 for ideal electrical amplifier.

„Power“ in signal-to-noise (SNR) ratio calculation is ~ square of photocurrent in 

optical DD RX. Photocurrent is ~ optical power ~ square of field amplitude. 

SNR „power“ is ~ 4th power of field amplitude ~ square of power.              

 Incompatible with ~150 years of science: P = U2/R, not P ~ U4. 

Noise happens on a field basis. Power measurement conceals fields!

Ideal DD RX for intensity modulation with / without ideal optical amplifier needs  

38 / 10 photoelectrons/bit for bit error ratio = 10−9. Ideal DD RX for differential 

phase shift keying: 20 / 20 photoelectrons/bit. 38/10  Fpnf = 2  20/20 !

Optical: Nonlinear DD RX; non-Gaussian noise; amplifier NF depends on 

power and bandwidths. Electrical: Linear RX; Gaussian noise; constant NF. 

Unification of all prior optical NF with electrical NF is contradictory (pp. 44-49).

Problem introduction

Motivation
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Noise figures until year 2000

Motivation & Review of prior noise figures

Stated lower NF limits apply only for ideal amplifiers with high gain and 2 available 

quadratures! Expectation value of equivalent input-referred detectable noise photons 

per mode is                         . Marked: Aspects that are problematic in my opinion

      = the NF [1], more precisely the electrical version of the NF, defined or understood 

as the SNR degradation factor ≥1 in a linear system with 2 available receiver 

(RX) quadratures, i.e. 1 mode, standardized in 1960ies by H. Haus

                          = traditional optical NF ≥2 of detected photon number fluctuation, 

defined by E. Desurvire for intensity modulation with direct detection (IM/DD),  

which is a nonlinear system that keeps only 1 quadrature (or degree-of-freedom)

= optical NF ≥2 and unified NF, defined and intended by H. Haus for 

amplified spontaneous emission in a linear system with 2 available RX  

quadratures, but not equal to its optical SNR degradation factor

= optical NF ≥2 with conflicting definitions by H. Haus, in the latest 

version also a unified NF, slightly wrong regarding thermal noise at high f, linear 

with seemingly 1 available RX quadrature in optical domain, meant to become Fe
in electrical domain where there are 2 available RX quadratures. 

Ffas implies variable number of RX quadratures. For 1 available RX quadrature, special 

NF names would be needed, showing that Fpnf, Ffas are not optical equivalents of Fe. 

~21 += GFpnf

( )Gnsp 11~ −=

eF

~1+=aseF

~21 += GF fas
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Noise figures presented here

Introduction

= the optical NF ≥1 derived, in full agreement with Fe definition, as 

SNR degradation factor in a linear system with 2 available RX quadratures

= the NF ≥1 for all f, with the limit cases of optical Fo,IQ and electrical Fe . 

Important for very cool mm wave / THz systems and possibly for very hot far 

infrared systems. 

= optical homodyne NF ≥2, defined for the case of 1 available RX 

quadrature, SNR degradation factor in such linear system, equal to final version 

of optical Ffas, equal in value to Fpnf.

= homodyne NF for all f, with the limit cases of optical homodyne Fo,I and 

electrical homodyne, which is the same as Fe. Probably not important, since 

electrical homodyne RX and amplifiers don’t have intrinsic noise advantages 

over their I&Q counterparts.

A NF with an aspect that differs from Fe needs a special denomination (homodyne, 

optical). 

I think a NF which strongly differs (nonlinear, no SNR degradation factor) from Fe
should not be called a NF.

~1, += GF IQo

IQF

~21, += GF Io

IF
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Fields in coherent optical I&Q receiver

Noise figures in linear/coherent optical receivers

optical 

input,   

ERX 

LO

I1d  

/4 path 

length diff.

ELO 

I2d  

I1+  

I1−  

I2+  

I2−  

( )dt


0
.

( )dt


0
.

( )21=eB 1=oB

0 ( ) 2=f

Optical signal is linearly downconverted to 

baseband. Local oscillator (LO) is a strong 

unmodulated laser with (essentially) the 

same frequency as the received signal.

2 available quadratures = 1 available mode

2
: E=P

21,vv

( ) PhfeRPI ==

zero-mean independent Gaussian

Power (for simplicity)      Photocurrent

optical 

spectrum

baseband 

spectrum

122
2

2
1 === vv

1e normalized field (polarization) vector

Baseband I&Q RX is not mandatory!                            

Heterodyne RX with image rejection filter gives the same results! 
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(see pp. 52-61)
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Photocurrents in coherent optical I&Q receiver ...

Noise figures in linear/coherent optical receivers

optical 

input,   

ERX 
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I1d  

/4 path 

length diff.
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( )dt
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0
.
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0
.
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2

: E=P

(In practice, optical frequencies of signal and 

unmodulated local oscillator may differ a bit, 

causing the complex plane of I1d and I2d to 

rotate at the difference frequency.)
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Noise figures in linear/coherent optical receivers
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I1−  
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0
.
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SNR in coherent optical I&Q receiver

Noise figures in linear/coherent optical receivers

optical 

input,   

ERX 

LO

I1d  
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Shot noise PSD:                            ,seI12 seI22

12 == eo BBOptical bandwidth:

Equivalent amplifier input 

noise PSD per mode: on BPhf =~

For SNR calculation take either noise in                                                                      

1 mode or (like I do it) in 1 quadrature! (Factor 2 cancels in NF calculation.)

Pure Gaussian PDFs of 

interference + field noises!
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2, pnfIQo FF 

Optical I&Q noise figure (or heterodyne with image rej.)

Noise figures in linear/coherent optical receivers
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 Fo,IQ obeys the usual electrical NF definition, 

is SNR degradation factor; powers ~ squares 

of amplitudes; 2 available RX quadratures;    

linearity; ideal NF = 1; pure Gaussian noise!
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Conversion formulas

 3 dB difference 

for large G
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Measure optical I&Q noise figure with power meter

Noise figures in linear/coherent optical receivers

amplifier ohfBpGP ~2 =

SP
signal 

source

power 

meter
BPF

power 

meter
BPF

signal 

source
amplifier

power 

meter
BPF So GPhfBpGP += ~1

Usually there are p = 2 polarization modes. p = 1 requires inserted polarizer.

Of course, offset (dark current) must be subtracted from power meter readout.

SP

PP
G 21 −=

opGhfB

P2~ = GF IQo 1~
, += 

Optical amplifier must be loaded with extra optical signal power at other 

times/frequencies/polarization in order to keep G,      constant.~

and all other optical NF can be determined 

from simple optical power measurements.
IQoF ,
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Optical I noise figure (true homodyne; special case)

Noise figures in linear/coherent optical receivers

optical 

input,   

ERX 

LO

I1d  

ELO 

I1+  

I1−  

( )dt


0
.

In such cases, phase locking is required              

between signal and LO or detector!

No power splitting  In equations multiply

each of                                    by 2.
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sp

Io  pnffas FF ==

is similar to             and      , but only 1 quadrature is available.

Lowest                   for             . Ideal                   at                . Why?

Optical amplifier is not special! RX is special: 1 quadrature & detection (= shot) noise!

Without optical amplifier, true homodyne RX is twice as sensitive as I&Q RX because

is not split. But with optical amplifier having G →, output power splitting like   

in the I&Q RX cannot have an SNR effect. So, behind the amplifier the homodyne RX 

“must” have the worse sensitivity of the I&Q RX. Amplifier halves homodyne SNR!

Phase-sensitive degenerate parametric optical amplifier passes only 1 quadrature and

has ideal                and                      (converts I&Q into more sensitive homodyne).

RXP

(                         )

1, =IoF 21, =IQoF

IoF ,

2, =IoF1, →IoF 1→G →G

spnSLO nPPP ,~,,, 

IQoF , eF

Optical homodyne means:

1/2 available mode!
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Shot noise can be derived either way (but only 1 way at a time, not 2 ways at a time):

Semiclassical theory: Poisson distribution of photoelectrons has one-sided 

photocurrent power spectral density (PSD)  2eI .

Zero-point fluctuations interfere with signal and cause shot noise PSD  2eI .

Zero-point fluctuations can explain/replace shot noise
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Let us define field such that power is                . Observation time is                 . 

Zero-point fluctuations have mean energy                 equal to hf/2 per mode:

Signal field:                                         Total field:                 

Expected number of photoelectrons:

Mean:                                Variance:

2
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Noise figures in linear/coherent optical receivers
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I&Q NF derived with zero-point fluctuations (1)

Noise figures in linear/coherent optical receivers
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Zero-point fluctuations occur at both 

signal ports. Mean power of zero-point 

fluctuations is neglected for simplicity.
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I&Q NF derived with zero-point fluctuations (2)

Noise figures in linear/coherent optical receivers
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The 2 LO ports also carry zero-point 

fluctuations. But these cancel upon 

subtraction of photocurrents.

Same result as when 

derived with Poisson 

photoelectron distribution.
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Homodyne NF derived with zero-point fluctuations

Noise figures in linear/coherent optical receivers
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Same result as when 

derived with Poisson 

photoelectron distribution.

Optical homodyne means:

1/2 available mode!
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Heterodyne NF

Noise figures in linear/coherent optical receivers
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But with optical image rejection (ir) filter, 

amplifier noise (     ) is halved (   ):

Integration result of homodyne can be seen as

sampled output signal of filter with rectangular
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Zero-point fluctuations or Poisson 

photoelectron distribution: same result.
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==

=

=

Why does IM/DD with PS →  behave like homodyne?

Noise figures in linear/coherent optical receivers

LO shot noise in a true homodyne RX and shot noise in an IM/DD RX with strong input 

signal can be taken into account by co-polarized in-phase zero-point fluctuations. Also 

after amplification it suffices to consider co-polarized in-phase noise. If one squares 

the output signal of the homodyne RX this becomes equivalent to an IM/DD RX.

True optical homodyne        Optical IM/DD

Essentially the same, 

namely                  and
1uPS +=E SS PuPP 12+

2
,1,

2
,1,

,

2
,1

,

2
,1

,

inoutS

outinS

Io

out

outS
out

in

inS
in

uP

uP
F

u

P
SNR

u

P
SNR

=

=

=

2
: E=P

P=E

insertion of a square-root 

device at the output of an 

IM/DD receiver, has been 

explained by B.M. Oliver, 

“Thermal and Quantum 

Noise”, Proc. of the IEEE, 

1965, pp. 436-454. At low           

f (thermal source noise) 

we get Fpnf = Fe ≥ 1.
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Example: NF of amplified trunk line, 1000 km, DP-QPSK

Noise figures in linear/coherent optical receivers

LO

I1d  

I2d  

( )dt


0
.

( )dt


0
.

TX

100 km fiber, nsp = 0, 

G = 0.01, Fo,IQ = 100

10

EDFA, nsp = 1,   

G = 100, Fo,IQ = 1


=

−

=

−
=−

n

i
i

k k

i

G

F
F

1
1

1

1
1 = 10((100 − 1) + (1 − 1)/0.01) = 990

All fibers and amplifiers may be combined to form one single amplifier.

Dual-polarization QPSK transmission require for instance 18 detectable photons/bit. 

1550 nm, 100 Gb/s, 25 Gbaud  −36.4 dBm is needed at input of ideal DP-QPSK   

I&Q RX. Due to Fo,IQ = 991  30 dB a DP TX power of −6.4 dBm is required. 

Practically, nsp > 1, RX sensitivity may differ (FEC, wider bandwidth, intersymbol 

interference, thermal noise, …). 

RX for 2nd 

polarization

PBS

0.01100 = 1

DP-QPSK
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NF of distributed optical amplifier (e.g. Raman)

Noise figures in linear/coherent optical receivers

Group delay of amplifier:
=

−

=

−
=−

n

i
i

k k

i

G

F
F

1
1

1

1
1 ( ) ( )( ) −= − 1i

1  FdG g

( )( )GnGF spIQo 11111~
, −−+=+= 

ba

a
nsp

−
=

( )
( ) ( )( )=

−



 0

dba
eG

( )( ) 01i →−Fd

Excess NF of infinitesi-
mally short amplifier (i):

= total gain preceding infini-
tesimal amplifier (i) with gain

Spontaneous 

emission factor:

dvz g= dvdz g=

Temporal can be replaced 

by longitudinal integrations:

( )( ) ( ) bdFd IQo =−1i,,

( ) ( ) ( )
( ) ( )( ) 



dba

dGGG

−+=

−=

1
i

( )( )GnGF spIo 111211~2, −−+=+= 

( )
( ) ( )( )


+=

−−g
debF

dba
IQo

 




0,
01

( )( ) ( ) ( ) badFd Io +=−1i,,

( ) ( )( )
( ) ( )( )

pnf
dba

Io FdebaF
g

=++= 
−− 




0,
01

Whole fiber is Raman amplifier! Amplifier must be behind 

point where SNRin is determined.  RX input must be 

before Raman fiber.  Raman amplifier has NF > 0 dB!
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Structure of noise figure which fulfills Friis‘ formula

Comparison of noise figures

detection noise Nd

detector
amplifier, 

gain G

source, 

power PS

source noise Ns amplifier noise Na

ads

S
out

NNGN

GP
SNR

++
=

ds

S
in

NN

P
SNR

+
=

( )ds

aads

NNGG

NNGNNGG
F

+

+++
=

21

21221

21221

21

aads

S
out

NNGNNGG

PGG
SNR

+++
=

1

2
1

1
11

G

F
FF

−
+−=−

Device cascade:

Complete induction 

yields Friis’ formula:

=

−
=

−
=−

n

i
i
k k

i

G

F
F

1
1
1

1
1

?  ~

?  ~

hfBN

kTBN

d

s

It holds for all noise figures which can be written like this,

including       ,           ,                                    ,                and later         ,       !eF Iofaspnf FFF ,==aseF IQoF ,
1=A 0=A

source noise fraction    added noise fraction

( ) ( )ds

a

ds

s

ds

ads

NNG

N
B

NN

N
AB

G

A
A

NNG

NNGN
F

+
=

+
=+

−
+=

+

++
=                   

1

IQF IF

1...0=A

detection noise Nd

detector
amplifier, 

gain G

source, 

power PS

source noise Ns amplifier noise Na
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Optical noise figures [dB] vs. gain [dB]

Comparison of noise figures

Gain in dB  →

N
o
is

e
 f

ig
u
re

 i
n
 d

B
  
→

1=spn 2=spn

amplifier amplifierattenuator

0=spn

 3 dB

 3 dB

Only Fo,IQ behaves like Fe

(1 for amplifier with nsp = 1; 

1/G for attenuator; linear).

( )

( )

( ) 111

1112

111

,

,

+−=

==+−=

+−=

GnF

FFGGnF

GGnF

spase

Iofassppnf

spIQo

2 RX quadratures, like Fe ☺

Nonlinear Fpnf ;   

1 RX quadrature

Assumes source noise
Is not the SNR degradation factor in 

any optical RX.  Is no optical NF.
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Properties of noise figures

Comparison of noise figures

For lowest NF of a cascade, 

order amplifiers according to 

ascending noise measure M.

Only Fo,IQ matches conceptually with Fe !

G

F
M

11

1

−

−
=Note: NF is lab jargon. Precisely, F is the noise 

factor and (10 dB)·log10(F) is the noise figure. 

,         ,          are contradicted by       definition!pnfF fasF aseF eF

RX
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But with the same logic one 

could answer: 21, =IQoF

Ideal optical amplifier noise figure at large gain is ... ?

Comparison of noise figures

receiverin  squadrature available ofnumber 

amplifierin  squadrature available ofnumber 
NF optical ideal =

Iofaspnf FFF ,2 ===

Common answer 

since mid 1990ies:

quadratures 1 2

optical amplifier   phase-sensitive    phase-insensitive

optical receiver    direct detection     I&Q, or heterodyne

or homodyne        with image rejection

Other cases are considered as special.

It makes most sense to consider as normal the pairing of amplifiers 

and receivers with same number of available quadratures:

optical amplifier   phase-sensitive phase-insensitive

optical receiver    homodyne or        I&Q, or heterodyne

direct detection with image rejection

1, =IoF 1, =IQoF 1=eF(like              )

Standard! By far most 

frequent optical and 

electrical scenario today!
Nonlinear! Does 

not yield a NF!

User must provide phase reference! RX can also contain phase-sensitive amplifier!

(according to 

the foregoing)
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One cannot say one NF (    ) is for electrical detectors and another (        ) is for  

quantum detectors (photodiodes), because valid NF definition prescribes power 

measurements but not how powers are measured. NF must be detector-independent!

“Noise figure” without additions suggests the properties of       , i.e. SNR degradation 

factor in linear system with 2 RX quadratures (and preferably Gaussian noise).  

 Term “optical noise figure” seems fit only for                             .

To avoid misinterpretation,                                 could be called “high-power optical 

(chi-square) noise estimator”, “photoelectron number fluctuation indicator”, ...

Likewise,                                        can be called “optical 1-quadrature/homodyne NF”.

When SNR is defined with only in-phase noise then the electrical 1-quadrature NF 

equals     . I have combined         with          to form a 1-quadrature NF .

Result is similar to a corrected         . But number of quadratures in          is not given 

and one is left to assume that in the electrical domain          is for 2 quadratures. 1  2 !

An interpretation difference  is that in           added thermal noise is considered not 

separately, but as caused by spontaneous emission (set               and take a high     ,

with               for             ). In a phase-sensitive amplifier, ideal                           .

1 NF per detector type? 1 NF for 2 unequal scenarios?

Consistent unified noise figure

GFpnf 1~2 += 

))(( , pnffasIo FFF ==

eF

GF IQo 1~
, += 

IoF ,

fasF
eF

0=exT ~

1 , == fasIo FF

fasF

fasF

IeF ,

fasF

→~ 0→f

IeF ,

eF pnfF

2

IF
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Removing avoidable receiver or power meter noise

Consistent unified noise figure

In NF measurement the power meter or RX is always assumed to be free of avoidable 

noise. In practice it is not possible to cool a power meter or RX to 0 K in order to avoid 

its thermal noise. For this reason the intrinsic power meter noise is measured, and 

subtracted during NF measurement, thereby maximizing the resulting NF.

In the coherent RX we also must assume zero thermal noise. In the foregoing this has 

been achieved by letting                  . Practically one must subtract RX thermal noise. 

Shot noise of LO is unavoidable. But shot noise of received signal is avoidable by

. Practically one must subtract shot noises caused by           and       . 

Nonideal quantum efficiency h also reduces and falsifies measured SNR degradation. 

Hence we have assumed h = 1 in the responsivity                      . Practically one must 

correct measurements such that they represent the case h = 1.

In the coherent I&Q RX the signal splitter can be viewed as a 22 coupler. When 

considering all frequencies, thermal noise enters also at the 2nd, unused coupler 

input. That can be avoided by cooling the termination of 2nd coupler input to 0 K. 

Practically, thermal noise due to 2nd coupler input must be subtracted.

See implementation (pp. 50-51) of these corrections. − But measuring powers directly 

(p. 34) is easier! Yet also this duly minimizes RX noise and maximizes measured NF.

→LOP

→LOP SGP SP

( )hfeR h=
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( ) 1−kThfe

hf

Thermal and optical noise

Consistent unified noise figure

Photocurrent shot noise is 

explained either semiclassically 

by a Poisson distribution of 

photoelectrons, or by zero point 

fluctuations of fields at all inputs.

Thermal noise energy per mode 

approaches kT only at low 

frequencies f. For all f the correct 

expression is:

In NF measurement,                  

an ideal RX (or power          

meter) is assumed!

optical 

input, ERX1 

LO

I1d  

/4 path 

length diff.
ELO 

I2d  

I1+  

I1−  

I2+  

( )dt


0
.

( )dt


0
.

input 2,        

ERX2  (T" = 0 K)

( ) 1−
=

kThfe

hf
Tk

For the source with 

temperature T we define:

Signal input 2 shall be terminated by an absorber 

having     = 0 K. No thermal noise enters there.

All noises interfere essentially with the strong LO fields (                 ).

signal inputs add

LO inputs cancel
LO interferences of noises from the                             upon photocurrent subtractions.

→LOP

T 
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( ) 1−
=

kThfe

hf
Tk

Total intrinsic (source+detection) noise energy per mode

Consistent unified noise figure

Only 1/2 of these energies            

per arriving mode mainfests 

per received quadrature!

Thermal and added amplifier 

and detection shot noise can 

be measured as fluctuations     

(AC components) in RX.

Except shot noise, this can also 

be measured as mean power, 

using a simple power meter.

Shot noise energy per mode:

in RX for 1 mode 

or 2 quadratures

in RX for 1/2 mode

or 1 quadrature

B.M. Oliver, “Thermal and 

Quantum Noise”, Proceedings 

of the IEEE, 1965, pp. 436-454

Thermal noise, measurable 

with mean power meter

f [Hz]

W [J or 

W/Hz]

Shot noise or zero-

point fluctuations, 

not measurable with 

mean power meter

T = 300 K

T = 77 K

T = 4 K

T = 1940 K
hfTk + I&Q

true 

homodyne

2hfTk +

hf  hf/2hf

2hf

10−19

10−20

10−21

10−22

10−23

109 1010 1011 1012 1013 1014
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noiseless 

attenuator

noiseless 

source

k'T

noisy source

noiseless 

attenuator

noisy attenuator

k'T(1 − G)

noiseless 

detector

hf

noisy detector

noiseless 

source

k'T

noisy source

noiseless 

attenuator

k'T(1/G − 1)

noiseless 

detector

resulting noisy detector

noiseless 

source

noiseless 

detector

hf /G

hf /G

k'T /G

Block diagrams with thermal and optical noise

Consistent unified noise figure

Source, amplifier (left) or attenuator (right) and detector (electrical or coherent optical), 

all I&Q, noisy or noiseless with equivalent added noise energies per mode. Individual 

devices (top) and equivalent interpretations (middle, bottom). 

If detector were for only 1 available quadrature, detection noise hf would become hf/2.

Upconversion e-o is possible with an I&Q modulator (or DSB modulator + SSB filter), 

downconversion o-e with an I&Q RX (or heterodyne + image rejection filter).                          

( )exTTk +

( )hfG1~ +

noiseless 

source

k'T

noisy source

noiseless 

amplifier

hfnoisy amplifier

Gk'Tex

noiseless 

detector

hf

noisy detector

noiseless 

source

k'T

noisy source

noiseless 

amplifier

k'Tex

noiseless 

detector

resulting noisy detector

( )hfG1~ +

noiseless 

source

noiseless 

amplifier

noiseless 

detector
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oe TBkGF 

Detector type does not matter, as long 

as it is usable in linear I&Q receiver:

( ) ( ) 21~222

2~2

2~2

,

22

2

hfGTTk

P

hfFTkF

P

hfBGhfBTBkGF

GP

BeRPGhfBPRTBkGFPR

GPPR

ex

S

IQoe

S

eooe

S

eLOoLOoeLO

SLO

+++
=

+
=

++
=

++
=









Powers in electrical  

I&Q receiver

222

2
1

,

11 sd IIe

d
outIQ

I
SNR

 ++
=

Thermal source noise

SNR in the presence of thermal and optical noise

Optical and electrical gains G are identical because they manifest at same f.  
Thermal noise in bandwidth                             is                    at amplifier output.        

Half of this is in phase with signal. In coherent I&Q RX it appears multiplied with               

, like amplified signal power         . Corresponding variance         is added.

Consistent unified noise figure

LOPR2
SGP

2
e

Thermal amplifier noise

Shot noise in detector

To derive a consistent unified NF (I&Q !) we add noises of        and            for all  .eF IQoF , f

Spontaneous emission 

field noise in amplifier

Powers in I&Q receiver 

with quantum detectors

eo BB 21 == 
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Signal energy

Intrinsic I&Q 

noise energy 

per received 

quadrature

I&Q noise figure from electrical to optical frequencies

In attenuator, clear separation yields the correct result:  G < 1,                                

Consistent unified noise figure

( ) ( ) 21~222 ,
,

hfGTTk

P

hfFTkF

P
SNR

ex

S

IQoe

S
outIQ

+++
=

+
=





Fulfills Friis’ 

formula!

22
,

hfTk

P
SNR S

inIQ
+

=


(obtained with                                       )1  ,0~  ,0 === GTex 

( ) ( )

( ) ( )( ) ( )hfTkTkAATTAGAA

hfTk

hfGTTk

hfTk

hfFTkF
F

SNR

SNR

ex

exIQoe
IQ

outIQ

inIQ

+=−++−+=

+

+++
=

+

+
==





~11

1~
,

,

,

( ),11 −= GTTex

IQoeIQ FFGF ,1 ===

eIQ FF →At low f :                    .     At high f :                         . 

At 13400 / 1940 / 300 / 77 / 4 K, equal                  is at  f = 194 / 28 / 4.3 / 1.1 / 0.06 THz. 

IQoIQ FF ,→

hfTk =

Measured FIQ is just observed SNR degradation in linear system with 2 quadratures. 

In amplifier, Fe, Fo,IQ may not be known. Anyway,                       is total added noise.                                       

https://ieeexplore.ieee.org/docu

ment/9783564 = 66 GHz @ 4 K

==      0~  ,0 spn

2 available RX 

quadratures!

hfTk ex ~+

Pure Gaussian 

noises! Linear!

https://ieeexplore.ieee.org/document/9783564
https://ieeexplore.ieee.org/document/9783564
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Measure I&Q noise figure with power meter

amplifier

amplifier

power 

meter

power 

meter

power 

meter

Usually there are p = 2 polarization modes.  p = 1 needs polarizer to be inserted.

is offset due to noise generated outside Bo and inside power meter. Source and

added noises                                are detected as static power. Not so shot noise          .

and all other NF can be determined 

from simple static power measurements.
IQF

0P

power 

meter

( )( ) Soex GPPBhfGTTkGpP ++++= 01
~

BPF

BPF

BPF

BPF

signal 

source

signal 

source

( )( ) 02
~ PBhfGTTkGpP oex +++= 

So PPTBkpP ++= 03

04 PTBkpP o +=

43

21

PP

PP
G

−

−
= ( ) 










−−

−
=+ TkG

pB

PP

G
hfTk

o
ex 1

1~ 42

( )
hfTk

GhfhfTkTk
F ex

IQ
+

+++
=

~

Gain                                                                                   Added noise

It doesn’t matter, and needn’t be known, in how 

far added noise is of thermal or quantum origin.

Consistent unified noise figure

( ) 1−
=

kThfe

hf
Tk(                               )

hfTkTk ex ~++ Ghf

termi-

nation

termi-

nation



Univ. Paderborn, R. Noe  35

SNR with 1-quadrature noise and homodyne receiver

No power splitting  must be multiplied by 2 compared to    

Fo,IQ calculation. Only 1 RX input! Total thermal noise in bandwidth       at amplifier

output is                   . Half of this is in phase with the signal. In the coherent

1-quadrature (homodyne) RX it appears multiplied with                , like the amplified 

signal power          . RX for 1 quadrature is a special case!

1-quadrature unified noise figure

( ) ( ) 21~2

2

2

2

2~222

2

22~424

4

,

22

2

hfGTTk

P

hfFTkF

P

hfBGhfBTBkGF

GP

BeRPGhfBPRTBkGFPR

GPPR

ex

S

Ioe

S

eooe

S

eLOoLOoeLO

SLO

+++
=

+
=

++
=

++
=









oB

LOPR24

Powers in homodyne 

receiver with quantum 

detectors

(Quantities found in I&Q RX 

are multiplied here by 2·2 or 2.)222

2
1

,

11
244

4

sd IIe

d
outI

I
SNR

 ++
=

spnSLO nPPP ,~,,, 

SGP

eIe FF =,

Thermal source noise
Thermal amplifier noise

Shot noise in detector

Spontaneous emission 

field noise in amplifier

oe TBkGF 



Univ. Paderborn, R. Noe  36

(set               and take a high 

, with               for             ) 

0=exT

~ →~ 0→f

k

( ) ( ) 21~2

2

2

2

,
,

hfGTTk

P

hfFTkF

P
SNR

ex

S

Ioe

S
outI

+++
=

+
=





1-quadrature / homodyne unified noise figure

1-quadrature unified noise figure

(for                                       )1  ,0~  ,0 === GTex 

( ) ( )

( ) ( )( ) ( ) AhfTkTkAATTAGAA

hfTk

hfGTTk

hfTk

hfFTkF
F

SNR

SNR

IIexIII

exIoe
I

outI

inI

+=−++−+=

+

+++
=

+

+
==

  2~211

2

21~2

2

2,

,

,





because there is detection noise!

because there is source noise!

1-quadrature / homodyne FI is close to Ffas (except     and interpretation difference)!              

In definition of Ffas, number of quadratures was not discussed. Ffas is intended to     

be identical with the normal electrical Fe, which is understood to be for 2 available 

RX quadratures. One is left to assume that Ffas is for 2 available RX quadratures in 

electrical, 2…1 in thermal (low THz) and 1 in optical domain. That is contradictory!               

IQoIo FF ,, 

eIQeIe FFF = ,,

2

2
,

hfTk

P
SNR S

inI
+

=


42 hfTk

PS

+
=



Signal energy

Intrinsic 

homodyne 

noise 

energy in 

received 

quadrature
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k

1-quadrature / homodyne unified noise figure

1-quadrature unified noise figure

Attenuator: I simply say

,                      ,

.

( )11 −= GTTex ~0 ==spn

)(   1 ,, IeeIoI FFFGF ====

Attenuator: To get                                   I find I must

set              ,                              ,                              .

!

0=exT ( )Gnsp 11~ −=

)(  1 Ifas FGF ==

     →−→→ ,0~,,0      0, spnf

( )hfTknsp −=

( ) ( )

( ) ( )( ) ( ) AhfTkTkAATTAGAA

hfTk

hfGTTk

hfTk

hfFTkF
F

SNR

SNR

IIexIII

exIoe
I

outI

inI

+=−++−+=

+

+++
=

+

+
==

  2~211

2

21~2

2

2,

,

,





because there is detection noise!

because there is source noise!

1-quadrature / homodyne FI is close to Ffas (except     and interpretation difference)!

IQoIo FF ,, 

eIQeIe FFF = ,,

(set               and take a high 

, with               for             ) 

0=exT

~ →~ 0→f

Electrical part of FI is expected to be of minor importance. 

Reason: Due to thermal source noise and absence of detection 

shot noise, electrical homodyne does not have an SNR advantage 

over electrical I&Q (when evaluating only 1 quadrature). 
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( ) 1−
=

kThfe

hf
Tk

GF IQo 1~
, += 

T

T
FF ex

IQee += 1,

Noise figures

( ) ( )
hfTk

hfGTTk
F ex

IQ
+

+++
=

1~

GF Io 1~2, += 
T

T
F ex

Ie +=1,
( ) ( )

2

21~2

hfTk

hfGTTk
F ex

I
+

+++
=



( )Gnsp 11~ −=

In all cases, NF of 

pure attenuator is 1/G.

RX with 2 available quadratures (I&Q), i.e. 1 mode; FIQ is the noise figure:

RX with 1 available quadrature; optical homodyne (and IM/DD without sp-sp):

Shot noise occurs upon detection. 

 Optical homodyne is different.

RX or power detector noise would cause Fe to be underestimated. Therefore RX noise 

is always subtracted, using reference measurements. The same way, avoidable
optical RX noise can and must be subtracted at high f. Only LO shot noise is 

fundamental and is kept. Photodiode efficiency must be set equal to 1. We get:

( )Gnsp 11~ −=kT

Summary

Electrical kT >> hf Unified/generalized                      Optical kT << hf
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Summary

All prior optical and unified NF Fpnf, Ffas, Fase are in conflict with electrical NF Fe.

A „noise figure“ without special name is expected to be the SNR degradation factor 

in a linear system with 2 available quadratures (and Gaussian noise?!), like Fe.  

The only optical NF which fulfills this is the optical I&Q NF Fo,IQ. It is  1, like Fe.  

Coherent I&Q receivers are linear field sensors. They linearize the quadratic field 

behavior of photodiodes. Heterodyne with image rejection is also fine.

At high gain,                               , i.e.   3 dB less  when expressed in dB. 

Electrical Fe and optical Fo,IQ are limit cases of the NF FIQ, unified for all f. 

Quantum noise / FIQ plays a role in today‘s RF electronics at low T = 4 K.

The in-phase equivalent of Fo,IQ is Fo,I, a limit case of the unified Ffas. So, Ffas    

is a 1-quadrature NF and its other limit is Fe for 1 quadrature, not the assumed 2.

Information conveyed by the full Fpnf  (including sp-sp) of a specific DD RX can be 

obtained, more accurately, from Fo,IQ (pure Gaussian noise).

Optical amplifier adds Gaussian I&Q field noise (wave aspect).            

Photodetection adds shot noise (particle aspect). (See support material on p. 1.)

2, pnfIQo FF  

kk →
(after correction

              )
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(available) power gain of device

input signal power

output signal power

one-sided, physical bandwidth around a carrier frequency

observation or integration time, length of BPF response

(thermal) input noise power

source temperature

thermal noise energy in 1 mode, having 2 quadratures (cos, sin)

thermal noise energy in 1 quadrature; see kT/C noise where any 

noisy conductance G  0 causes a voltage variance U2 = kT/C 

at capacitance C, and (C/2)U2 = kT/2 is mean stored energy. 

output noise power

input signal-to-noise ratio

output signal-to-noise ratio

noise factor, often called noise figure (lab jargon)

Quantities needed for electrical noise figure calculation

insP ,

G

insouts GPP ,, =

1=B


kTkTBP inn ==,

T

kT

2kT

outnP ,

Review of electrical noise figure

inSNR

outSNR

F
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input signal-to-noise ratio. 

                output signal-to-noise ratio

noise figure    1

Definition of electrical noise figure

2,

,

inn

ins
in

P

P
SNR =

22 ,

,

,

,

outn

ins

outn

outs
out

P

GP

P

P
SNR ==

For F it does not matter whether noise power in 1 mode is divided by 2, like above. 

If so, then this is the noise in 1 of 2 available RX quadratures of the mode. F always 

assumes 2 available RX quadratures! − One may take energies instead of powers.

inn

outn

out

in

GP

P

SNR

SNR
F

,

,
==

Review of electrical noise figure


=

−
=

−
=−

n

i
i
k k

i

G

F
F

1
1
1

1
1

1−= FFex

( )TFTex 1−=

Friis‘ formula

excess noise factor

excess noise 

temperature

Noise added at amplifier output is divided by gain to represent 

noise that must be added at input of a noiseless amplifier. 

Contributed noise powers in an amplifier chain, each divided 

by total prior gain, may be added at input. Available gains in 

amplifier chain are multiplicative.

Noise and gain 

are available in 2 

quadratures with 

equal strengths! 
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NF of electrical amplifier

in electrical attenuator (works as noisy resistor)

NF of electrical attenuator (          )

excess noise temperature of  attenuator

Electrical noise figures of amplifier and attenuator

GkTB

P

GP

P
F

outn

inn

outn
e

,

,

,
==

kTBP outn =,

1
1
=

G
Fe

Review of electrical noise figure

( )
T

T

GkTB

BTTGk exex +=
+

= 1

1G

( )11 −= GTTex

Optionally, phase-sensitive detection allows measuring power in only 1 quadrature. 

Noise power is thereby halved if it comes from a source (such as a resistor or normal 

amplifier) which generates noise in 2 quadratures. Normal electrical amplifiers pass  

2 available quadratures. RX = detector also has 2 available quadratures. But powers 

(signal, thermal noise) are measurable also with asynchronous power detectors 

(thermal; Schottky diode). 2 available quadratures are implied for Fe measurement.

This means: A unified all-frequency NF which has the normal electrical NF Fe as its 

electrical limit case must have 2 available RX quadratures like Fe, at all frequencies. 
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in-phase 

component

quadrature 

component

~cos

~sin

(.)2

(.)2

+
power

How to measure electrical powers

Asynchronous electrical power measurement in the carrier or radio frequency domain 

yields total power in 2 quadratures. This is also possible via downconversion:

Review of electrical noise figure

If there is only 1 mixer to the baseband then noise is measured in only 1 quadrature. 

If a downconversion receiver is a heterodyne receiver it needs an image rejection filter 

at the input. Otherwise doubled noise power from the amplifier would be measured 

(for a given input noise power spectral density).

NF measurement is transparent to frequency up/downconversion. 

NF is SNR degradation factor; 2 available RX quadratures; linearity;                         

powers ~ squares of amplitudes: All this must hold for all frequencies!                                      

Hopefully also: Gaussian noise; ideal NF = 1

signal 

~cos(t+)

cos(t)

−sin(t)

LPF

LPF

2 quadratures are always available.

Using 2 mixers with local oscillator 

signals having  /2 mutual phase 

difference, one downconverts to the 

baseband. Addition of the squares of 

the resulting I&Q signals gives total 

power in the 2 quadratures.
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power evolution in purely amplifying optical medium

power evolution in purely attenuating optical medium

power gain of optical amplifier (group velocity:      )

                 added output noise energy per mode

= noise energy in independent I&Q carrier sample

= J / (s (observation time) · Hz (bandwidth))

spontaneous emission factor, calculated from stimulated 

emission a and absorption b coefficients per time unit

expectation value of equivalent noise photons per mode

Gain and noise energy in optical amplifiers

aPdtdP =

bPdtdP −=
( ) ( ) gvzbatba eeG

−− == gv

( )hfGnhfGhfP spn 1~ −=== 

ba

a
nsp

−
=

 at output or     at input~

Wave aspect: During electromagnetic wave propagation, no photons manifest! 

Particle aspect: Generation and detection of light occurs with quantized energy       

and can be explained by photons, not waves. 

See pp. 52-61. Photons in this talk manifest only during their absorption or emission! 

For waves it is the opposite, they exist only during transmission.
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Noise figure Ffas 

Review of prior noise figures

0=n

pnfIofas FFGF ==+= ,1~2   

Needs 1-quadrature (homodyne)

receiver, or

direct detection!

IQofas FGF ,1~   =+= 

asefas FF =+= 1~

( ) 


~11 −



G

nsp

I&Q NF?

Not an optical NF!

(earlier 

versions)

(final version)

2...3 unequal, conflicting 

versions of Ffas!

“fas” = “fluctuation of amplitude squares”

Fluctuation of amplitudes: SNR = (squared mean) / variance

Fluctuation of amplitude squares: SNR = (squared mean of the square) / (variance of 

the square). That’s exactly what happens for Fpnf ! Quadratic nonlinearity!

But Ffas is determined by “linear” detection. 

Name “fluctuation of amplitude squares” is misleading compared to “linear” detection.

Expressions for Ffas:





Probably not, since this seems to be a mistake, instead of G.


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                              involves nonlinearity and requires                                                                    

redefinition of power. For that reason it is not a NF. And it maps 2 quadratures into 1.

                                                     becomes                                           in the optical 

domain, which means there is 1 quadrature. It is defined for all f with the intention 

of becoming                    in the electrical domain, where there are 2 quadratures.  

But number of quadratures must not change vs. f.  Hence          is not a unified NF, 

due to 1  2. If 1 RX quadrature had been specified for optical and electrical, and  

corrected into     ,           would be the 1-quadrature unified NF, due to                  .

Exactly this has been specified for the 1-quadrature unified NF

                                                                 .

A NF without special denomination must correspond to Fe with its 2 RX quadratures. 

Therefore the optical NF is only                              and the unified NF is only

                                                            . 

                       is not the SNR degradation factor in any optical receiver. So, Fase is 

not an optical NF. Hence it is pointless to generalize it to a unified Fase .

GFpnf 1~2 += 

Iofas FGF ,1~2 =+= 

efas FF =

eIe FF =,

( ) ( )
2

21~2

hfTk

hfGTTk
F ex

I
+

+++
=



GF IQo 1~
, += 

( ) ( )
hfTk

hfGTTk
F ex

IQ
+

+++
=

1~

~1+=aseF

fasF

fasF

fasF

2 RX quadratures are common today 

in cases where amplifier noise matters!

(         is close to this special case.)

Review of prior noise figures

k
k



Univ. Paderborn, R. Noe  47

( )( )...12

22

,
+−+

=
nGGnnG

nG
SNR

sp
outpnf

Defined by optical amplifier pioneer E. Desurvire (1990ies), 

denoted photon number fluctations by H.A. Haus (1998).

Traditional optical noise figure Fpnf

Review of prior noise figures

22
npnf nSNR =

Photon number n ~ photocurrent ~ optical power P ~             ~       . This means:  

Amplitude squarer is „built“ into signal path, which becomes nonlinear!

„Power“ is ~  |E|4! Fpnf with sp-sp beat noise depends on power+bandwidths!

2 optical quadratures → only 1 available electrical quadrature!

Minimum NF of amplifier with large gain:

Widely used! Defined for optical DD receiver. But today‘s standard in 

applications where amplifier noise matters are coherent optical I&Q RX.

HE
2

E

2=pnfF

n

n
SNR inpnf

2

, =

( )
G

G

Gn

SNR

SNR
F

sp

outpnf

inpnf
pnf 1~2

121

,

,
+=

−+
= 

for Poisson 

distribution

signal 

shot 

noise

signal-

sp(ontaneous) 

beat noise

sp-sp 

beat 

noise

neglect for 

<n> → 

A check: If photons were present in the wave then this would hold also at 

the input of a ficticious noise-free amplifier with nsp = 0. According to the 

below that would improve SNR by a factor G. This cannot be.
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Defined and denoted amplified spontaneous emission by 

noise figure pioneer H.A. Haus (1998).

Optical noise figure Fase

Review of prior noise figures

Linear system, 2 quadratures, power ~ squared field amplitude, like for Fe! 

But:

Fase is not the SNR degradation factor in any optical receiver.

So, Fase is not an optical NF. 

                 for amplifiers with high gain

Due to NF confusion I have initially used in my lectures only     . After                       

was defined I have used it as optical NF, also in https://doi.org/10.1007/978-3-662-

49623-7. But that doesn‘t make sense: It is not the SNR degradation factor.

~1+=aseF

~ ~1+=aseF
2aseF

H.A. Haus defined his NF as replacements of          , obviously because he did not

accept           to be a valid NF. Seemingly, all NF definitions prior to             have been

guided by the idea that the NF of an ideal optical amplifier should be 2. But an optical 

NF without special denomination (such as homodyne) implies that there are 2 available 

RX quadratures, like in the electrical domain. That or the SNR degradation have not 

been complied with. In reality, an ideal optical amplifier does not degrade the SNR in a 

system with 2 available RX quadratures. It hence has an optical NF of 1 (              ). 

pnfF

pnfF IQoF ,

IQoF ,=
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H.A. Haus has standardized the electrical NF. Later (2000) he was the first to bring up  

inspiring unified NF. Using kT and hf noises he has generalized his two optical NF for 

all f from electrical, where they seemingly shall become Fe, to optical:  

A NF Ffas (fluctuation of amplitude squares) was defined finally, and generalized. But:

For rising f (and depending on T; transition f  kT/h), 

2 electrical quadratures must gradually become 1 optical quadrature, 

signal detection gradually needs phase recovery.                     ( how? )

If one does the same with Fpnf (for large input power) then, for rising f,
signal phase is gradually lost,

the linear system must gradually become nonlinear,                 ( how? )

2nd must gradually become 4th powers of amplitudes.

Fase was also generalized from electrical to optical f. But:

Fase is not the SNR degradation factor in any optical receiver. ( no NF! )

All above: kT was taken for all f, which is correct only for hf << kT.

 All prior optical and unified/generalized NF violate systematics                                           

    of electrical NF or linearity requirement or technical function!

Prior unified noise figures

Review of prior noise figures
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Synchronous downconversion allows separating signal S and noise N.                         .

Responsivity                       is known. Electrical RX part has gain H and equivalent 

thermal noise PSD                  . At 2nd RX input, absorber temperature is       and

thermal noise energy per mode is                                            . We can determine:

1. No signal, with amplifier

2. No signal, no amplifier

3. No signal, no amplifier, other source temperature

4. Signal, amplifier

5. Signal, no amplifier

From S5 we get H. From S4 and S5 we get G. Without LO we get noise                         .

( )hfeR h=

SLOGPPHRS 2
4 =

dfid
2

( )( )1−=
TkhfehfTk

T 

( ) eLOLOeLO BdfideRPGhfPRTkTkGFPRHN 




 ++++=

222
1

~

SLOPPHRS 2
5 =

eBdfidH
2

eo BB 21 == 

( ) eLOLO BdfideRPTkTkPRHN 




 +++=

22
2

( ) eLOLO BdfideRPTkTkPRHN 




 +++=

22
3

( ) eLOLOeLO BdfidRPeTkPRHBeRPH
TkTk

TkNTkN
N 





 +−+=−

−

−
=

2232
6 1 hh

( )( )1−=
TkhfehfTk

(Synchronous downconversion, 

to get signal without noise.)
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( ) hfGhfTkGF
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Alternative path, with the same result: Measure noises with signal
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Master equation of photo(electro)n statistics

Review of photoelectron statistics

• How many photons can be detected behind optical amplifiers / attenuators?

• Probability evolution of photon number (dt → 0; multiple transitions neglected)

( ) ( ) ( ) ( ) ( ) ( ) ( )tnPnnPtnPnnPtnPnnPdttnP ,11,11,, +++−−+=+

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )dtcbannnPnnPnnPnnP

bdtnnnPdtcannnP

++−=+−−−−=

+=++−=−

11111

1111

stimulated emission spontaneous emission absorption

Solution example for absorption only (a = c = 0): Poisson distribution

( ) ( ) btetn −= 000 ( )
!

00

n
enP

n−
=

Master equation of photo(electro)n statistics
( )

( )( ) ( ) ( )( ) ( ) ( ) ( )tnbPntnPcantnPcban
dt

tndP
,11,11,

,
+++−+−+++−=

Optical noises are 

derived from this. 
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Moment generating function

Review of photoelectron statistics

Can be inverted by inverse Laplace or z transform (e−s = z−1)

Addition of statistically independent RVs: convolution of PDFs or multiplication of MGFs

MGF is now be applied to both sides of master equation. This results in ...

( ) ( )


−=

−−− ==

n

snsns
n enPeeM ( ) ( )



−

−−− == dxexpeeM sx
x

sxs
x

( )
( )

( )
0

1,

=

−

−=

s
k

sk
kkk

ds

eMd
xnMGF allows calculating all moments:
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Solution of partial differential equation for MGF

Review of photoelectron statistics

Derived from master equation of photo(electro)n statistics. Solution:

( ) ( ) ( ) ( )( ) ( )teM
s

ebeateMecteM
t

s
n

sss
n

ss
n ,1,1, −−−−−




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



( ) ( )( ) ( )
( ) 














−+

−
−−+=

−

−−−− 0,
11

1
111,

s

s

n

Nss
n

e

eG
MeteM




( ) ( )tbaetGG −==

ba

a
nsp

−
=

power gain during time t:

spontaneous emission factor:

mean noise photon number per mode: ( )1−= Gnsp

number of modes: acN =

MGF at (flight) time t is given in terms of the MGF at time 0 !
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Discrete distributions (photoelectrons)

Review of photoelectron statistics
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Poisson transformation and normalization

Review of photoelectron statistics

Assume that the probability distribution of the photon number n can be expressed by the 

Poisson transform of the PDF of a continuous nonnegative RV x:

For G →  no limit of P(n) is found because the mean photon number scales with G. 

A normalized variable                has a             which depends only weakly on G and allows 

finding                     .

This is the continuous form of                                                          where the conditional 

probability                    is that of a Poisson distribution with a mean         . We find:

            is obtained by backtransforming                .
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Continuous distributions (intensity, power, photocurrent)

Review of photoelectron statistics
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Eliminating and adding shot noise

Review of photoelectron statistics
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Direct detection receiver model (1)

Review of photoelectron statistics

Assume independent zero-mean Gaussian noise variables with equal variances!

Bandpass filter has rectangular impulse response of duration 1. Electrical field at its output:

Photocurrent:

A lowpass filter with a continuous impulse response of length 2 or better                  is 

modeled as a (ficticious, infinite bandwidth) lattice filter having M Dirac impulses spaced by 

1 each. The signal at its output is 2 distributed with 4M = 2N degrees of freedom:

N modes = p polarizations · M samples
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Direct detection receiver model (2)

Review of photoelectron statistics

tt

idealized 

model:

optical bandpass filter electrical filter

tt

for approxi-

mation of:
electrical lowpass filter

2
1

2
22  −

12  M=

1

tt
model:

optical bandpass filter electrical filter

tt

for approxi-

mation of:
electrical lowpass filter

2
1

2
22  −

12  M=

1

t
12  M=

t

t

optical NRZ input signal 

evelope for             :T=2

optical bandpass filter output 

envelope in model receiver:

photocurrent in model receiver:

Optical and electrical impulse 

responses in optical receiver 

Optical field envelopes and 

photocurrent for idealized 

model sketched above

Samples with statistically 

independent noises are  

marked by ●.
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Understanding optical amplifier and photodetection

Review of photoelectron statistics

• Signal and noise together have a noncentral negative binomial photoelectron 

distribution. It contains optical amplifier noise + shot noise.

• For G → , shot noise of detection becomes negligible. We get a              

noncentral 2 intensity distribution. Its noise is only optical amplifier noise.

• Noncentral 2 intensity distribution occurs in DD RX with Gaussian field noise. 

• The only possible explanation is:                                                                        

Amplifier adds Gaussian field noise in phase and in quadrature (wave aspect).

Detection adds shot noise (particle aspect). 

Duality: Particles contain no wave. Wave contains no particles. Connection: W = hf
This avoids contradictions (interference, sub-photon energies, ...)!

• Gaussian field noise + shot noise characterize optical noise and NF completely. 

• The known noise distribution allows calculating bit error ratio exactly.                   
This works better than the Gaussian approximation for which Fpnf was derived.

• Field noise occurs  field amplitudes must be considered, not „power amplitudes“. 

  We need linear receivers! Coherent optical receivers are linear in amplitudes! 
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Optical field noise as amplified zero point fluctuations

Review of photoelectron statistics

( ) ( )( ) ( ) ( )bdtnnnPdtcannnP 1111 +=++−=−

( ) ( ) ( ) ( ) dtbnnnPdtaNnnnP 0111 +=−+=+ acN =

( ) bnaNndtnd −+=
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ba

a
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12
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ff

ff
neGffbffa sp
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−
==−=−=

−

noisy 

modes

Amplifier adds Gaussian field noise in phase and in quadrature (wave aspect).

Detection adds shot noise (particle aspect). 

The above was derived from:

Resulting field noise may also be understood as amplified zero-point energy hf/2:

Zero-point energy works like 1 / 0 detectable photons for emission / absorption.

Emission and absorption combined:                                                        

                                                             This is equivalent to our earlier results. Only

probability distribution of field noise and existence of shot noise are not derived here.

If electron occupation probabilities in upper and lower states are f2, f1:  

 

See also: M. Yamada, „Theory of of Semiconductor Lasers“, Springer, 2014
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