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Optical Network Analysis and Longitudinal
Structure Characterization of Fiber Bragg Grating

David Sandel, Reinhold Noé, G. Heise, and B. Borchert

Abstract—A method for polarization-resolved optical fiber
Bragg grating (FBG) characterization is reported on. The com-
plete reflectance Jones matrix is measured interferometrically.
Required polarization transformers need not be accurate, just
to operate reproducibly, because redundant measurements yield
pairs of orthogonal polarizations. Local dichroic reflectivity and
birefringence of a sampled grating was derived from this data.
Knowledge of these quantities should allow improvement of the
ultraviolet (UV) illumination process and to effectively correct
phase mask errors by longitudinally selective UV light postpro-
cessing.

Index Terms—Birefringence, Bragg scattering, gratings, in-
verse problems, optical interferometry, optical polarization, scat-
tering parameters measurement.

I. INTRODUCTION

FIBER Bragg gratings (FBG’s) [1] are finding applications
in optical transmission technology. Of great interest are

chirped gratings for dispersion compensation [2]–[4], but
these require highest fabrication accuracy. For unrestricted,
polarization-insensitive operation not only the desired refrac-
tive index modulation must be met precisely, but the grating
must also be free of birefringence [5] and dichroism. The
fabrication process has, therefore, to be optimized in all these
respects.

We will see that optical network analysis, the analogon
of electrical network analysis, is suitable for characterizing
gratings during and after fabrication. A number of activities
have been reported concerning optical network analysis.

Noninterferometric methods rely on modulation. In fact, any
direct detection experiment with analog intensity modulation
and an electrical network analyzer connected to transmitter
input and receiver output yields an electrical transfer function
from which optical transfer function magnitude and group
delay are obtained. This scheme may be expanded to include
different polarizations [6]. Anyway, sensitivity is limited due
to the direct-detection process. The phase of the optical transfer
function is only accessible by way of integrating the group
delay over frequency. This limits accuracy, and does not allow
for determining the correct phase relationship between transfer
functions obtained from different polarizations.

Interferometric measurement with fixed polarizations
[7]–[9] is the simplest, one-port form of optical network
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analysis. Low-coherence interferometry [7] in particular
directly yields the impulse response of a device with an
excellent 100 m spatial resolution. In contrast, frequency-
domain interferometry [9], which is also being used in
this work, gives a frequency-dependent reflection factor
(reflectance) from which the impulse response may be
calculated. Spatial resolution is limited by the laser tuning
range, but large grating lengths may be investigated due to
the high coherence of a singlemode laser. In any case, the
impulse response allows to determine the structure of an
isotropic grating [8], [10]. The knowledge of refractive index
modulation depth and phase should allow for a correction
of aberrations from the desired structure by local ultraviolet
(UV) light postprocessing [10].

In the following, we first derive both dichroic reflectivity
and fiber birefringence along the grating from given network
analysis data [11]–[14] (Section II), then describe how an
optical network analyzer can be setup without calibrated
polarization transformers (Section III). These algorithms have
been used experimentally to characterize a sampled FBG
(Section IV). We hope the results will eventually allow for
improvement of the fabrication accuracy of gratings.

II. CALCULATION OF REFRACTIVE INDEX MATRIX

The refractive index matrix in a lossy grating may be written
as

(1)

where is a fixed optical angular center frequency,a mean
refractive index assumed to be constant,the speed of light,
and the longitudinal position. The coupling matrix

(2)
with

(3)

represents grating reflectivity which behaves like a retardation-
free partial polarizer. A hermitian matrix with peak-to-peak
refractive index modulation amplitudes is preceded
by a phasor containing the mean reflection or grating phase

. Diagonalization of (2) yields two complex eigenvalues
with equal phase angles (3 unknowns), and complex

orthogonal eigenmodes (2 unknowns) which form a unitary
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eigenvector matrix . The hermitian conjugate (superscript
“ ”) may therefore be used instead of the matrix inverse. The
birefringence matrix

(4)

represents a lossless retarder with refractive index differences
. This special hermitian matrix has real eigenvalues

the sum of which equals zero (one unknown) and complex
orthogonal eigenmodes (two unknowns) which form a uni-
tary eigenvector matrix . The hermitian gain (or negative
attenuation) matrix

(5)

is assumed to be known and has been included here for the
purpose of allowing for modeling constant background loss.
It has real eigenvalues and again a unitary eigenvector
matrix, .

and vary slowly with position . The eight real
unknowns in and are balanced by the four complex
elements of the 2 2 grating reflectance matrix

(6)

Subsubscripts and refer to pairs of orthogonal polariza-
tions, both at the input of the device undertest and asreference
analyzed at its output (subscripts ). For grating structure
characterization, the matrix impulse response

(7)

is calculated by inverse Fourier transform of each of the
reflectances

(8)

The column vectors of represent the causal envelope
vectors reflected at position for orthogonally polarized
cartesian envelope vectors and , respectively,
incident at the grating input . Abstractly speaking,

may be considered to be the impulse response to
, a Dirac impulse unity matrix.

More generally, propagation of the wave envelopes in time
and one-dimensional (1-D) space is governed by the

coupled differential equations

(9)

where is the electric field matrix of the forward-, and the
matrix of the backward-propagating wave. In order to calculate

and we discretize (9), using a position step and
a corresponding time step .

Fig. 1. Wave propagation and solution sequence.

A pair of discrete equations

(10)

is derived from piecewise solutions of (9) under the assump-
tion of locally constant . Matrices

(11)

(12)

(13)

cover coupling, birefringence and gain (inverse loss), respec-
tively, of one position step, and are given in diagonalized
forms here. Transmission matrixmust satisfy the losslessness
relation

(14)

It is hermitian and has the same eigenmodes as. In the
calculation

(15)

positive signs must be chosen for its real eigenvalues .
Fig. 1 shows wave propagation and solution sequence in a

grid of time and space. Solution starts from the knowledge of
the incident unity matrix (the only nonzero component
of a discretized ) and the measured impulse
response matrix (discretized ). Waves
and, as far as yet unknown, matricesand are calculated
in a sequence given by the dashed arrow.

Mathematically speaking, for calculation of and
all , and with must be known.
This is automatically the case if one starts with . Each
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solution step then requires (10) to be solved successively for
. and are obtained as

an intermediate result. Their matrix quotient

(16)

has to be decomposed into the product of a partial polarizer
matrix and two lossless retarder matrices as shown on
the right side of (16). First, the product

(17)

delivers as the square roots of its eigenvalues. The
missing argument is

or (18)

Second, the eigenvector matrix of (17) allows for
the calculation of the matrix

(19)

Third, we obtain

(20)

which successively leads to

(21)

(22)

(23)

Ambiguities in (18), (21) have to be settled so thathas the
smallest possible eigenvalue arguments. Otherwisewould
approach infinity for vanishing .

Finally, local grating birefringence

(24)

and local coupling strength

(25)

are calculated. Comparison with (2), (4) yields grating refrac-
tive index modulation amplitudes , grating phase ,
and refractive index differences for birefringence.

The matrices (15) are now ready to be used in (10)
for further solution steps until the complete grating structure
is obtained. Matrix must likewise be known. Obvious
choices are no or constant background loss. However, a loss
proportional to the mean local coupling factor or any other
assumed dependence ofon the just-calculated matrices

can also be applied.
Fig. 2 summarizes the full, polarization-resolved grating

characterization procedure undertaken in this work. Some
more details will be explained in Sections III and IV.

Circular birefringence merits special attention. In (4) it
is characterized by vanishing and imaginary .
In a lossless medium, this means the three-dimensional (3-
D) dielectricity tensor has imaginary off-diagonal elements

Fig. 2. Summary of grating characterization procedure.

and is hermitian. Such a medium is nonreciprocal because
reciprocity would require a symmetric. As a consequence,
the circular birefringence determined by our algorithm is
nonreciprocal like the Faraday rotation.

However, fiber twist causes reciprocal circular birefringence
of photoelastic origin just like any chiral molecule (optical
activity). From the above it may be concluded that fiber twist
can not be described macroscopically by a single dielectricity
tensor that is valid for both propagation directions along the
twist axis. Fortunately, reciprocal circular birefringence as a
single effect in an otherwise isotropic reflecting device cancels
in forward and backward directions. But the coordinate system
which in the general case defines both linear birefringence and
linear reflection dichroicity rotates along the fiber according
to reciprocal circular birefringence. This rotation is0.08
times the actual twist angle [15]. Unknown twist will therefore
falsify the coordinate system of linear birefringence and linear
reflection dichroicity.

For the purpose of optimizing grating performance fiber
twist is not expected to be a big issue. Only if one intended
to create specific linear birefringence or reflection dichroicity
one would have to apply a small test quantity thereof in order
to determine the local orientation. If the goal is simply to
optimize fabrication conditions such that an isotropic grating
is created automatically, then the detection of birefringence
(with the exception of circular reciprocal birefringence) and
reflection dichroism is sufficient, and this is always possible.
Anyway, mechanical relaxation of a fiber piece with loose
ends should normally eliminate twist.

III. POLARIZATION ORTHOGONALIZATION

The 2 2 grating reflectance matrix (6) can be measured
interferometrically. However, depending on available appa-
ratus it may be difficult to generate the required orthogonal
polarization pairs without breaking or moving optical fiber. In
order to be able to use uncalibrated polarization transformers
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in a fiber-optic interferometer, a polarization orthogonalization
procedure is derived in the following.

A birefringent or dichroic optical device, e.g., an FBG, has
a reflection factor which depends on input and
analyzed output polarizations. An interferometric measurement
determines a complex reflection factor (reflectance)

(26)

where is the Jones vector in thereference branch, and
the Jones vector at the device undertest. Only copolarized
wave components interfere.

In order to determine the complete reflectance matrix, a
2 2 Jones matrix, four factors have to be measured,
and these will be the elements of if are two
pairs of cartesian unit vectors. If are unknown but
orthogonal pairs, are the elements of a transformed
that has been multiplied by unitary matrices

from left and right, respectively. Knowledge of
the transformed is generally sufficient because it reveals
dichroism, and differential group delay between principal
states of polarization.

When orthogonal polarization pairs are not available the
transformed elements corresponding to orthogonal pairs
of and can be deduced from 16 reflectances

(27)

measured with four arbitrary and four arbitrary .
Polarization transformers which generate these waves must
operate reproducibly but calibration is not needed. Elements

corresponding to orthogonal pairs of and can be
derived from . Special cases excluded, every can
be expressed by a linear combination of any two others, for
example

(28)

For fixed the reflectances can be expressed using the same
coefficients

(29)

Factors are determined by measurement using
(29).

Every can further be expressed by the desired orthog-
onal pair as

(30)

For let by definition. There are nine
degrees-of-freedom (DOF) in . The eight real equations
in (28) balance them except for the phase of one component
of , which can be freely chosen. For example, can be
set to be a positive real.

For the and polarization components the insertion
of (30) into (28) results in

(31)

and

(32)

respectively. This allows the expression of
by

(33)

(34)

The expressions , with (33),
(34) inserted for , lead to a set of two equations linear
in Re and Im . The solution is

Re
Im

Re Im
Re Im

(35)

The positive real factor can be derived from

(36)

and are in principle sufficient to calculate from
and and the corresponding reflection factors

(37)

In practice there are random errors in every measured.
These lead to errors in , which are enhanced by the factor

. Since are easily derived from and
using (33), (34), the index in (37) may be replaced

by , or an average over all is taken which
may be a better choice. -weighted averages

(38)

result in a field vector and a corresponding reflection
factor with minimum errors for a given set of

.
An analogous process orthogonalizes the reference polariza-

tions, and a (transformed) 2 2 reflectance Jones matrix (6)
results. By the way, this orthogonalization procedure is also
applicable for transmissive devices.

For a sensitivity analysis, we assume the measured re-
flectances to be disturbed by some random errors

(noise) of variance

(39)

The orthogonalized Jones matrix will also be disturbed. If
desired it may be multiplied by unitary matrices

from left and right, respectively, in order to obtain
a Jones matrix aligned to the laboratory coordinate system. Its
elements

(40)

are also disturbed by noise, with variance.
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Fig. 3. Measurement setup, optical network analyzer.

Extensive, systematic numerical simulations have shown
that this variance can be expressed by the approximation

(41)

if (38) and its analogon for the reference polarization are
applied. The normalized Stokes vector of an electric field
vector is given by

Re
Im

(42)

The normalized Stokes vectors of the 4 reference polarizations
form a tetrahedron. Its volume, normalized with respect to
that of a regular tetrahedron, is . Its counterpart for the
four test polarizations is . Variance is minimized if
the tetrahedrons are regular. The factor A depends on the
correlation properties of noise power spectral density and
reflectances. In the experiment described in Section IV, the
chosen tetrahedron volumina happened to be

. For simulated noise with a correlation bandwidth
of 3.5 GHz, was found, which allowed to
determine for this case.

IV. EXPERIMENT

The function of an electrical network analyzer may be
implemented in the optical domain by interferometric measure-
ment techniques. In our transportable optical network analyzer
(Fig. 3) a tunable twin-guide (TTG) laser [17] is used as a
tunable laser source. The pump current is left constant. The
tuning current introduces a strong decrease of the refractive
index of the DFB grating region by the plasma effect, thereby
overwhelming the thermal effect which has opposite sign. A
set of currently three TTG lasers covers the wavelength range
from 1542 to 1556 nm, corresponding to a tuning range of
around 4–5 nm for an indivual chip. This is also a typical
electronic tuning range of the TTG laser device. Between 0 and
24 mA tuning current, the maximum used in this experiment,
the laser linewidth increased from 21 to 45 MHz. The latter
value decreases the interferometer contrast toif there is a

Fig. 4. UV beams for initial exposure of the grating from the backside (1)
and grating fabrication via the phase mask (2).

0.7 m path length difference between the arms. Only a 220-
GHz tuning range was used in order to keep the measurement
time short. The pump current was 100 mA.

Two variable polarization transformers (PT) control input
polarization of the device under test (DUT) and reference
polarization, respectively. The polarization transformers con-
sist of two magnetic fiber squeezers each, with 45azimuth
angle differences and 1 ms response times [17]. Additional
fixed polarization transformers (fiber loops) were also used.
The bottom Mach–Zehnder interferometer (MZI) measures
the complex transmission factor of the DUT. A 3 3
coupler [18] with three photodiodes at its outputs is chosen
because it allows a more accurate phase measurement than
a 2 2 coupler. Real and imaginary parts of a complex
grating reflection factor (reflectance) are calculated from
two linear combinations of the three photodiode currents in
the measurement interferometer.

The top MZI has its path length delay adjusted to0.5
m. It works as a high-resolution wavelength meter. Corner
points of the laser tuning range are checked using an optical
spectrum analyzer. A linear frequency dependence of the
phase difference is assumed to exist in the MZI’s. Higher
order frequency dependences, caused by fiber dispersion, are
presently neglected. The reading accuracy of the corner points
of the laser tuning range results in a center frequency error
of the grating and in a scaling error of thedimension of
the grating. The latter can be calibrated at the beginning of a
grating fabrication process. For this purpose local reflectivity
has to be created by application of UV light at two specific,
known positions of the fiber.

A number of optical isolators (not shown) prevents re-
flections. Reflecting DUT’s such as FBG’s are connected
by means of an additional coupler (could be replaced by a
circulator).

A sampled fiber Bragg grating was fabricated as follows: A
hydrogenized fiber (SMF-28) was exposed to UV light from
a Kr-F excimer laser (247 nm). An initial backside exposure
dose of nominal 3.6 J/mm2 was applied to compensate for
some of the birefringence created by the writing process [5].
Then the front was illuminated through a phase mask (Fig. 4).
As the beam moved along the fiber, nominal exposure dose
was varied from 0 to 20 J/mm2 with a 2 mm period, but
seventh and eighth period received only 88 and 50% doses,
respectively, as in an apodized grating. A sampled grating
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Fig. 5. Magnitudes of reflectances (top) and, as an example, a phase (bot-
tom).

with eight spatially equidistant reflecting regions was thus
created. Actual may differ from nominal UV dose, and writing
efficiency may vary.

The grating was characterized by the network analyzer,
using above-described polarization orthogonalization proce-
dure. Reference frequency was nm, and
tuning range was 220 GHz. This corresponds to a spatial
resolution of 0.46 mm when calculating the grating structure.
Frequency resolution was fine enough to cause us to expect
successful characterization of gratings of1 m length, at least
if linewidth data were taken into account.

Reflectance spectra were recorded 12 times for each of
the 16 polarization states, with sampled frequency points and
frequency resolutions increasing by a factor of two each time.
The coarse sweeps take little time and are affected by drift
only to a small extent. Their data is used to correct phase
drifts in the sweeps with finer resolution. Most of the thermal
interferometer drift is thereby eliminated.

Fig. 5 shows the four orthogonalized reflectance magnitudes
and, as an example of measured phases,

after removal of a 136 ps group delay. The near-periodic
behavior of the magnitudes (many maxima and minima)
indicates Fabry–Perot resonances, as expected for a sampled
grating. A spectral superstructure with50 GHz periodity
is caused by the 2 mm distance between adjacent reflecting
regions. Some dichroism is visible.

An Inverse fast Fourier transform (FFT) yields the complex
impulse response matrix . Magnitude plots
(Fig. 6) reveal again that the grating is sampled. More than
nine impulses are produced by the eight reflecting grating
regions. Discrepancies between the impulse response and the
grating structure are caused by multiple reflections inside the
grating. Furthermore, the impulse response shows a falling

Fig. 6. Magnitudes of impulse responses.

tendency of the impulse heights which is caused by the fading
of the initial forward-propagating impulse due to previous
reflections. Phases are not shown for simplicity.

The grating structure was derived from the impulse response
matrix in terms of the eight unknowns of local grating reflec-
tivity and birefringence , assuming . It was possible
to choose input and reference polarizationsand such
that and nearly vanish. In this coordinate
system reflectivity eigenmodes are nearly linear polarizations
with 0 and 90 azimuths. The eight reflecting regions are
clearly identified [Fig. 7(a)]. Some reflection dichroism is
present. Smaller than expected reflectivities, as observed in the
middle of the grating, may be due to a gap between phase mask
and fiber. We expect they could be improved by additional UV
light. Grating phase and birefringence matrix can only be
determined meaningfully for mm where nonzero
reflectivity exists.

If the grating had a constant physical pitch and no mask-
induced stitch errors we could replace the grating phase
in (2) by a term proportional to the integral over a global
mean refractive index deviation , as can be seen from
comparison with (1)

(43)

Grating phase varies strongly [Fig. 7(b)]. There are oscilla-
tions with a 2 mm period. Inside the reflecting regions (bursts)

is falling, between them it is rising. The calculated refractive
index deviation was found to be
more positive by inside the bursts than outside,
with substantial variations between different bursts. This figure
is believed to be the mean refractive index increase caused by
the UV exposure inside the reflecting regions. Comparison of
the measured refractive index modulation depths to
twice the mean refractive index increase also allows to roughly
estimate the UV interference pattern contrast in a burst.

Even if is smoothed over 2 mm periods an irregular pat-
tern persists which shows that the phase mask is of bad quality.
However, the optical path lengths between reflecting regions
are thereby revealed. This should allow for compensation of
stitch errors of the phase mask. To this purpose UV light would
have to be applied through a dithered phase mask or in absence
of a phase mask so that mainly the mean refractive index but
not the refractive index difference should increase.

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on April 30,2010 at 11:22:46 UTC from IEEE Xplore.  Restrictions apply. 



SANDEL et al.: OPTICAL NETWORK ANALYSIS AND LONGITUDINAL STRUCTURE OF FBG 2441

(a)

(b)

(c)

Fig. 7. Experimentally determined structure parameters [(a) elements of�,
(b) grating phase�, and (c) elements of�] of a sampled grating.

Birefringence terms and [Fig. 7(c)] have 2
mm periods like the reflecting regions. This may be due to
periodic front and uniform backside UV illumination, but
further investigation is required. Obtained birefringence data
might be used to improve the UV exposure process.

Additional, though weak structures outside the reflecting
region [Fig. 7(a)] suggest measurement accuracy could still
be improved. In a test, polarizations were adjusted for maxi-
mum reflectance. Overall measurement time is thereby greatly
reduced. Equations were simplified for 11 complex scalars
and solved, with as results. And indeed, in Fig. 8,
bottom trace, pre- and postcursors outside
mm are better suppressed than in Fig. 7(a). The estimated
measurement accuracy is roughly . In another
measurement the grating was reversed. “Forward” and “back-
ward” results agree very well. The discrepancies allowed us to
estimate the cumulative grating loss as 0.6 dB. Other discrep-
ancies between the traces in Fig. 8 could be due to polarization

Fig. 8. One-dimensional simplification: Scalar algorithm yields results sim-
ilar to Fig. 7(a). Connecting either “front” or “back” of the grating to the
interferometer makes little difference.

sensitivity, and uncompensated interferometer drift. It may bee
seen that the postcursors ( mm in top, mm
in bottom trace) are stronger than the respective precursors
( mm in top, mm in bottom trace). The reason
for this is error propagation in the inverse scattering algorithm.

Uncompensated interferometer drift is indeed assumed to be
the main error source, although most of it is eliminated by the
described countermeasure. Future work will therefore aim at
minimizing the measurement time. Zero-bias operation of the
photodiodes presently requires 12 sweeps (with increasing res-
olutions) per spectrum, and this takes10 min. The lower ac-
curacy of the polarization-resolved data (dichroic coupling and
birefringence in Fig. 7) with respect to scalar data (refractive
index difference in Fig. 8 and grating phase) can be understood
from the fact that 16 such spectra have to be recorded.

A much smaller measurement time should also allow us
to increase frequency span and, as a consequence, spatial
resolution.

In contrast, based on previous experience we do not think
that polarization drift in the interferometers played a significant
role.

V. SUMMARY

We have measured the complete complex 22 Jones
matrix of a fiber Bragg grating, using an optical network ana-
lyzer. An orthogonalization procedure eliminates the need for
accurate polarization transformers; they just need to operate re-
producibly. Local dichroic reflectivity and birefringence of the
FBG have been derived from this data. The isotropic structure
has also been obtained, in less time and with higher accuracy.
Agreement between grating fabrication process, scalar, and
matrix structure data has been found. Results may be used to
optimize refractive index modulation depth, phase mask pitch,
and UV illumination process.
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