List of Abbreviations

AM	Acoustic Model
ASR	Automatic Speech Recognition
ATF	Acoustic Transfer Function
BAN	Blind Analytic Normalization
BLSTM	Bi-directional LSTM
BSS	Blind Source Separation
CACGMM	Complex Angular Central GMM
CD	Cepstral Distortion
CE	Cross Entropy
CNN	Convolutional Neural Network
DAN	Deep Atractor Network
DC	Deep Clustering
DER	Diarization Error Rate
DL	Deep Learning
DNN	Deep Neural Network
DOA	Direction-Of-Arrival
DSP	Digital Signal Processing
EM	Expectation-Maximization
FF	Feed Forward
FWSSNR	Frequency-Weighted Segmental SNR
GEV	Generalized Eigenvalue Decomposition
GMM	Gaussian Mixture Model
ICA	Independent Component Analysis
IVA	Independent Vector Analysis
ILRMA	Independent Low-Rank Matrix Analysis
LP	Linear Prediction
LSTM	Long-Short Term Memory
ML	Maximum Likelihood
MMSE	Minimum Mean Squared Error
MPDR	Minimum Power Distortionless Response

MSE
MVDR
MWF
NMF
NN
PESQ
PIT
PLDA
PSD
RIR
RNN
RSAN
RTF
SCER
SDW
SDR
SDW-MWF
SNR
SPP
STFT
STOI
TasNet
TF
TDOA
TDNN
VAD
WER
WPE
WSJ

Mean Squared Error
Minimum Variance Distortionless Response
Multichannel Wiener Filter
Nonnegative Matrix Factorization
Neural Network
Perceptual Evaluation of Speech Quality
Permutation Invariant Training
Probabilistic Linear Discriminant Analysis
Power Spectral Density
Room Impulse Response
Recurrent Neural Network
Recursive Selective Attention Network
Relative Transfer Function
Speaker Confusion Error Rate
Speech Distortion Weighted
Signal to Distortion Ratio
Speech Distortion Weighted MWF
Signal to Noise Ratio
Speech Presense Probability
Short-Time Fourier Transformation
Short-Time Objective Intelligibility
Time Domain Audio Separation Network
Time-Frequency
Time Difference Of Arrival
Time-Delay Neural Network
Voice Activity Detection
Word Error Rate
Weighted Prediction Error
Wall Street Journal

List of Notations

Mathematical expressions and operations			
\top and \mathbf{H}	Non-conjugate and conjugate transpose.		
a	A scalar variable.		
\mathbf{a}	A column vactor.		
\mathbf{A}	A matrix.		
D	A constant.		
σ	A scalar parameter, such as a power spectral density (PSD) of a source.		
Ψ	A matrix parameter, such as a spatial covariance matrix.		
$\mathbb{E}[X]$	Expectation operator.		
$\operatorname{Pr}(A=$	Probability		
$a)$	Probability density function $p(x)$ $\mathcal{N}(\mathbf{x} ; \mathbf{m}$, $\mathbf{R P r o b a b i l i t y}$ distribution of (multi-dimensional) (complex) normal distribution $\operatorname{tr}\{\mathbf{\Phi}\}$		
$\\|\cdot\\|_{2}$	Trace of a matrix		
\mathbb{R} and \mathbb{C}	A set of real scalars, and a set of complex scalars.		
\mathbb{R}^{M} and	A set of M dimentional real vectors, and a set of $M \times M$ $\mathbb{R}^{M \times M}$		
$\nabla_{\mathbf{w}} J(\mathbf{w})$	dimentional real matrices. \mathbb{C}^{M} and $\mathbb{C}^{M \times M}$ are defined similarly.		
$\mathbb{R}^{N \times 1}$	Note: $\nabla_{\mathbf{w}} J(\mathbf{w})=\frac{\partial}{\partial \mathbf{w}} J(\mathbf{w})$		

Symbols for Short Time Fourier Transformation (STFT) domain signals	
t, f, m, and i	Indicies of time frames, frequency bins, microphones, and sources.
$T, F, \quad M$ and I	The numbers of time frames, frequency bins, microphones, and sources.
$s_{t, f}^{(i)} \in \mathbb{C}$	A clean signal for the i-th source.
$x_{m, t, f}^{(i)} \in \mathbb{C}$	A microphone image of the i-th source at the m-th microphone, i.e, noiseless reverberant signal for the source captured at the microphone.
$n_{m, t, f} \in \mathbb{C}$	Diffuse noise.
$y_{m, t, f} \in \mathbb{C}$	A signal captured at the m-th microphone. When I sources and diffuse noise are included, it is typically modeled by $y_{m, t, f}=\sum_{i=1}^{I} x_{m, t, f}^{(i)}+n_{m, t, f}$.
$d_{m, t, f}^{(i)} \in \mathbb{C}$	A part of $x_{m, t, f}^{(i)}$ composed of its direct signal and early reflections.
$r_{m, t, f}^{(i)} \in \mathbb{C}$	A part of $x_{m, t, f}^{(i)}$ composed of its late reverberation.
$\mathbf{y}_{t, f} \in \mathbb{C}^{M}$	A vector composed of $y_{m, t, f}$ for all m, i.e., $\mathbf{y}_{t, f}=$ $\left(y_{1, t, f}, \ldots, y_{M, t, f}\right)^{\top} . \mathbf{n}_{t, f}, \mathbf{x}_{t, f}^{(i)}, \mathbf{d}_{n, f}^{(i)}$, and $\mathbf{r}_{n, f}^{(i)}$ are defined similarly.
$\mathbf{x}_{t, f} \in \mathbb{C}^{M}$	Sum of $\mathbf{x}_{t, f}^{(i)}$ for all i, namely $\mathbf{x}_{t, f}=\sum_{i=1}^{I} \mathbf{x}_{t, f}^{(i)}$.

Symbols for time domain signals

\tilde{t} and \tilde{T}	A time sample index and the number of time samples in time domain. The same symbols as those for STFT domain signals are used for m, i, M, and I.
$y_{m}[\tilde{t}]$	A signal captured at the m-th microphone. $x_{m}^{(i)}[\tilde{t}]$ and $n_{m}[\tilde{t}]$ are defined similarly.

