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LIST OF ABBREVIATIONS

AM Acoustic Model

ASR Automatic Speech Recognition

ATF Acoustic Transfer Function

BAN Blind Analytic Normalization

BLSTM Bi-directional LSTM

BSS Blind Source Separation

CACGMM Complex Angular Central GMM

CD Cepstral Distortion

CE Cross Entropy

CNN Convolutional Neural Network

DAN Deep Atractor Network

DC Deep Clustering

DER Diarization Error Rate

DL Deep Learning

DNN Deep Neural Network

DOA Direction-Of-Arrival

DSP Digital Signal Processing

EM Expectation-Maximization

FF Feed Forward

FWSSNR Frequency-Weighted Segmental SNR

GEV Generalized Eigenvalue Decomposition

GMM Gaussian Mixture Model

ICA Independent Component Analysis

IVA Independent Vector Analysis

ILRMA Independent Low-Rank Matrix Analysis

LP Linear Prediction

LSTM Long-Short Term Memory

ML Maximum Likelihood

MMSE Minimum Mean Squared Error

MPDR Minimum Power Distortionless Response
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MSE Mean Squared Error

MVDR Minimum Variance Distortionless Response

MWF Multichannel Wiener Filter

NMF Nonnegative Matrix Factorization

NN Neural Network

PESQ Perceptual Evaluation of Speech Quality

PIT Permutation Invariant Training

PLDA Probabilistic Linear Discriminant Analysis

PSD Power Spectral Density

RIR Room Impulse Response

RNN Recurrent Neural Network

RSAN Recursive Selective Attention Network

RTF Relative Transfer Function

SCER Speaker Confusion Error Rate

SDW Speech Distortion Weighted

SDR Signal to Distortion Ratio

SDW-MWF Speech Distortion Weighted MWF

SNR Signal to Noise Ratio

SPP Speech Presense Probability

STFT Short-Time Fourier Transformation

STOI Short-Time Objective Intelligibility

TasNet Time Domain Audio Separation Network

TF Time-Frequency

TDOA Time Difference Of Arrival

TDNN Time-Delay Neural Network

VAD Voice Activity Detection

WER Word Error Rate

WPE Weighted Prediction Error

WSJ Wall Street Journal
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LIST OF NOTATIONS

Mathematical expressions and operations

⊤ and H Non-conjugate and conjugate transpose.

a A scalar variable.

a A column vactor.

A A matrix.

D A constant.

σ A scalar parameter, such as a power spectral density (PSD) of

a source.

Ψ A matrix parameter, such as a spatial covariance matrix.

E[X] Expectation operator.

Pr(A =

a)

Probability

p(x) Probability density function

N (x;m,R)Probability distribution of (multi-dimensional) (complex) normal

distribution

tr{Φ} Trace of a matrix

‖ · ‖2 Eucredean norm of a vector

R and C A set of real scalars, and a set of complex scalars.

R
M and

R
M×M

A set of M dimentional real vectors, and a set of M × M

dimentional real matrices. CM and C
M×M are defined similarly.

∇
w
J(w) ∈

R
N×1

Gradient in denominator layout: Gradient is a column vector;

Note: ∇
w
J(w) =

∂

∂w
J(w)
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Symbols for Short Time Fourier Transformation (STFT) domain signals

t, f , m, and

i

Indicies of time frames, frequency bins, microphones, and

sources.

T , F , M ,

and I

The numbers of time frames, frequency bins, microphones,

and sources.

s
(i)
t,f ∈ C A clean signal for the i-th source.

x
(i)
m,t,f ∈ C A microphone image of the i-th source at the m-th micro-

phone, i.e, noiseless reverberant signal for the source captured

at the microphone.

nm,t,f ∈ C Diffuse noise.

ym,t,f ∈ C A signal captured at the m-th microphone. When I sources

and diffuse noise are included, it is typically modeled by

ym,t,f =
I∑

i=1

x
(i)
m,t,f + nm,t,f .

d
(i)
m,t,f ∈ C A part of x

(i)
m,t,f composed of its direct signal and early

reflections.

r
(i)
m,t,f ∈ C A part of x

(i)
m,t,f composed of its late reverberation.

yt,f ∈ C
M A vector composed of ym,t,f for all m, i.e., yt,f =

(y1,t,f , . . . , yM,t,f )
⊤. nt,f , x

(i)
t,f , d

(i)
n,f , and r

(i)
n,f are defined

similarly.

xt,f ∈ C
M Sum of x

(i)
t,f for all i, namely xt,f =

∑I

i=1 x
(i)
t,f .

Symbols for time domain signals

t̃ and T̃ A time sample index and the number of time samples in time

domain. The same symbols as those for STFT domain signals

are used for m, i, M , and I .

ym[t̃] A signal captured at the m-th microphone. x
(i)
m [t̃] and nm[t̃]

are defined similarly.
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Part I.
Introduction

Tomohiro Nakatani



Speech recording from a conversation

• Speech enhancement is needed to extract each 

speaker’s voice from various interferences

Distant mics
Overlapping

speakers

Reverbe-
ration

Background noise

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.2



Applications of speech enhancement
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Deep Learning – One Hammer for all Nails?

Deep Learning is used everywhere

• Speech enhancement, ASR, …

Does this mean we can forget microphone array signal processing?

No!

Goal of this talk

• Demonstrate the complementary power of deep neural network 

(DNN) and microphone array signal processing

• Argue that their integration is very helpful

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.4



Quick overview of effectiveness (1/2)

REVERB 2014 

CHiME-3 2015

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

[Yoshioka et al., 2015]

[Delcroix et al., 2015]

CHiME-5 2018

[Kanda et al., 2019] 

I.5

Multi-mic frontend + robust backend

Robust backend (DNN-AM, RNN-LM)

48.9 %

22.2 %

9.0 %

Multi-mic frontend + robust backend

Robust backend (CNN-NIN-AM, RNN-LM)

33.43 %

15.60 %

7.60 %

Baseline (DNN-AM)

Multi-mic frontend + Robust backend 

(1 acoustic model)

81.10 %

63.45 %

Challenge baseline (DNN)

Robust backend (DNN)

45.14 %*1

*1: WER is further reduced to 39.94 % 
with RNN-LM and 6 acoustic models.

WER(%)

WER(%)

WER(%)

Baseline (GMM/HMM-AM, Ngram-LM)



• Observed:

Model of recorded speech: time domain

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.6

: time index

: i-th source for

: noise

: room impulse response (RIR) 
from i-th source to m-th mic



Goal of speech enhancement

• Denoising – reducing noise

• Dereverberation – reducing reverberation

• Source separation – separating mixtures to individual speeches

• Meeting analysis – diarization (detecting who speaks when) + 

speech enhancement

Speech 
enhance-

ment

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.7



Evaluation metrics

Type Examples of measures Pros and cons

Signal level 

distortion metric

• Signal to distortion Ratio (SDR)

- Many variations

• Frequency-weighted segmental SNR 

(FWSSNR), cepstral distortion (CD), 

signal-to-interference ratio (SIR), etc.

• Most frequently used

• Not directly reflect perceptual 

quality/ASR performance

• Parallel data required 

(Incompatible with real recordings)

ASR • Word error rate (WER) and character 

error rate (CER)

• Useful for ASR 

• No parallel data required

• Dependent on ASR systems

Perceptual quality

(listening test)

• Mean opinion score (MOS)

• MUltiple Stimuli with Hidden Reference 

and Anchor (MUSHRA)

• Reliable

• Costly

• Dependent on subjects, and test 

conditions

Perceptual quality 

(objective measure)

• PESQ: speech quality

• STOI: speech intelligibility

• Others : HASPI, EPSM, SIIB, 

SRMR_norm, GEDI, DNN-based, etc.

• Perceptually validated

• Applicability is limited to certain 

distortion types

None of them are “perfect”    Do not rely on one !

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.8



SDR variations

• BSSEval-SDR [Vincent et al., 2006]

– Sensitive to scale and phase estimation errors

• Variations

– Scale-invariant SDR [Le Roux et al., 2019]

• Invariant to scaling errors

– Time-invariant filter allowed distortion [Vincent et al., 2006]

• Invariant to scale and phase estimation errors

• Issues:

– Smaller but important energy components are almost disregarded,  
causing mismatch with human perceptual behavior and ASR performance

– Parallel data composed of clean and noisy signals are required 

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

Clean

Enhanced

Distortion

I.9



Evaluation metrics

Type Examples of measures Pros and cons

Signal level 

distortion metric

• Signal to distortion Ratio (SDR)

- Many variations

• Frequency-weighted segmental SNR 

(FWSSNR), cepstral distortion (CD), 

signal-to-interference ratio (SIR), etc.

• Most frequently used

• Not directly reflect perceptual 

quality/ASR performance

• Parallel data required 

(Incompatible with real recordings)

ASR • Word error rate (WER) and character 

error rate (CER)

• Useful for ASR 

• No parallel data required

• Dependent on ASR systems

Perceptual quality

(listening test)

• Mean opinion score (MOS)

• MUltiple Stimuli with Hidden Reference 

and Anchor (MUSHRA)

• Reliable

• Costly

• Dependent on subjects, and test 

conditions

Perceptual quality 

(objective measure)

• PESQ: speech quality

• STOI: speech intelligibility

• Others : HASPI, EPSM, SIIB, 

SRMR_norm, GEDI, DNN-based, etc.

• Perceptually validated

• Applicability is limited to certain 

distortion types

None of them are “perfect”    Do not rely on one !
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Cues for speech enhancement

• Spectro-temporal

 Speakers/phonemes have 

different spectro-temporal 

characteristics

 Model speech 

characteristics

• Spatial

 Exploits spatial selectivity

(multi-channel)

 Does not exploit speech

characteristics (could work

for any signal)

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.11



Three approaches to speech enhancement

• Microphone array signal processing

– Spatial cues

• Neural networks

– Spectro-temporal cues

• Hybrid of both approaches

– All cues

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.12



Microphone array signal processing (1/2)

• Typical processing flow

Beamforming

: Directions-of-arrival (DOA), 
RIRs, statistics of sources, 
etc.

Parameter 

estimation

Multi-ch observation

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.13



Microphone array signal processing (2/2)

• Use generative model to estimate unknown observation system

• Beamforming: e.g., by MMSE estimation

A generative model: 

Room acoustics Speech Noise

Inverse system: e.g. by maximum likelihood (ML) parameter estimation: 

: Speech power spectral density, voice activity, etc.

: Noise power spectral density, etc.

: Directions-of-arrival (DOAs), room impulse responses (RIRs), etc.

Effective spatial filtering is applicable with no prior info. DOAs or RIRs.

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.14



Neural networks

• Train neural networks using huge amount of training data

Interpret this as the inverse system of the generative model, 

that estimates the model parameters from observation.

Robust and accurate spectral estimation is possible

Clean speech PSD, 

time-freq. mask, etc.

Magnitude

spectrum, etc.

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

： pre-trained weights
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Pros and cons of two approaches

Microphone array 
signal processing

Neural networks

Spatial characteristics 
modeling

• Strong • Moderate (use spatial 
features as auxiliary input)

Spectro-tempral
characteristics modeling 
(for speech)

• Weak
- Permutation problem

• No concept of human 
speech (pros and cons)

• Very strong
- Strong speech model 

based on a priori training
- Single channel 

processing applicable

Adaptation to test 
condition

• Strong 
- Unsupervised learning 

applicable

• Weak 
- Poor generalization
- Sensitive to mismatch

Interpretability • Highly interpretable • Blackbox

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

Their pros and cons are highly complementary

I.16



Hybrid approaches (1/2)

Examples:

• Mask-based beamforming 
(Part II, IV, V, and VI)

NN: Mask estimation

GM: signal statistics estimation

BF: MVDR beamforming

• DNN-WPE dereverberation
(Part III)

NN: PSD estimation

GM: Inverse filter estimation

BF: Inverse filtering

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

Achieving state-of-the-

art in each example

1) Microphone array boosted by 
neural networks

• Component-wise optimization

• Joint optimization

Beam-
forming
(BF)

Generative 
model 
(GM)

Neural 
network
(NN)

I.17



Hybrid approaches (2/2)

Examples:

• Unsupervised training of 
DNN based source 
separation (part VI)

2) Unsupervised learning of 
neural networks enabled by 
microphone array

• Approach-1) can be combined 

after training

Microphone 

array

Neural 

network

NN-loss

Back-
prop

Show complementary 

power of microphone 

array and DNN

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.18



Focus in this tutorial

• This tutorial concentrates on enhancement as a frontend of ASR. 

This implies different constraints than enhancement for human-

to-human communication

– Less tight latency requirements 

• Utterance-wise processing

• Quasi-static acoustic scenes assumed

– Perceptual quality of output less important 

• as long as WER is good

• The solutions here are not readily suitable for enhancing human-

to-human speech communication

I.19Haeb-Umbach and Nakatani, Speech Enhancement – Introduction



Benchmarks and Challenges

wsj0-2mix, WHAM!

CHiME-3/4

DIRHA

CHiME-1,2Simulation

(Benchmark)

Real

CHiME-5

#targets=1 #targets>1

MC-WSJ

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.20



Roles of simulation data vs real recordings

• Simulation data : sounds are mixed on computer

– Pros:

• Useful for data augmentation and training of NN

• Parallel data available, useful for detailed performance analysis

– Variations

• Noise: simulated (e.g., pink/white noise) or recoded 

• Reverb: convolution with simulated/measured RIR

• Unrealistic data for benchmark: e.g., fixed #speakers keep uttering 

simultaneously with no noise or reverberation

• Real recordings: all sounds are recorded simultaneously

– Pros:

• Includes various varying factors inherently in real recordings

• Essential for reliable evaluation

– Variations

• Recordings under controlled conditions for evaluation purposes

• Recordings of real applications

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction I.21
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Popular corpora for speech enhancement

Haeb-Umbach and Nakatani, Speech Enhancement – Introduction

Task Name of task

Recording condition

Environment
#mics (Spk-

Mic dist)
Simulated or Real

Denoising AURORA 4 [Parihar et al., 2002] Noise in public areas 1 (close mic) Sim (measured noise, 
channel distortion) 

CHiME-1/2 [Barker et al., 2013, 

Vincent et al., 2013]

Home 2 (2m) Sim (measured noise and 
RIR)

CHiME-3/4 [Barker et al., 2017] Public areas 6 (0.5m) Sim (measured noise and
RIR) + Real

Dereverbe-
ration

REVERB [Kinoshita et al., 2016] Reverberant conference room 1/2/8
(0.5-2m)

Sim (measured noise and
RIR) + Real

Aspire [Harper 2015] 7 different rooms 1/6 Real

DIRHA [Ravanelli et al. 2015] Home (distributed mics) 32 Real (distributed mics)

Source 
separation

wsj0-mix [Hershey et al., 2016] Mixture of clean signal 1 (close mic) Sim (no noise, no reverb)

wsj0-mix [Wang et al., 2018c] Mixture of anechoic/ 
reverberated signal

8 (1.3∓0.4m) Sim (no noise, simulated 
RIR)

WHAM! [Wichern et al., 2019] Noise in public areas 1 (close mic) Sim (measured noise, no 
reverb)

MC-WSJ-AV [Lincoln et al., 2005] Reverberant conference room 8  (0.5-2m) Real

Meeting
analysis

AMI [Carletta 2006] Meeting room 8 Real

CHiME-5 [Barker et al., 2018] Home (distributed mics) 24 Real

DIHARD-I,II [Ryant et al., 2019] Multiple sources, incl. child 
recs, youtube

1 Real



Software for evaluation

• BSS Eval

– Matlab: http://bass-db.gforge.inria.fr/bss_eval/

– Python: https://sigsep.github.io/sigsep-mus-eval/museval.metrics.html

• REVERB challenge (FWSSNR, CD, SRMR, LLR, PESQ)

– Matlab: https://reverb2014.dereverberation.com/download.html

• Perceptual evaluation of speech quality (PESQ)

– https://www.itu.int/rec/T-REC-P.862

• Short-Time Objective Intelligibility (STOI)

– Matlab: http://insy.ewi.tudelft.nl/content/short-time-objective-intelligibility-
measure

– Python: https://github.com/actuallyaswin/stoi

Haeb-Umbach and Nakatani, Speech Enhancement I.23



Table of contents

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

1. Introduction by Tomohiro

2. Noise reduction by Reinhold

3. Dereverberation by Tomohiro

Break (30 min)

4. Source separation by Reinhold

5. Meeting analysis by Tomohiro

6. Other topics by Reinhold

7. Summary by Reinhold & Tomohiro

QA
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Part II.
Noise Reduction – Beamforming

Reinhold Haeb-Umbach



Speech capture in noisy environments

• Forming a beam of increased sensitivity towards the 

desired speaker reduces noise and other distortions

II.2Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Distant mics



Table of contents in part II

• Some physics

• From physics to signal processing

• Optimal beamforming design criteria

• Speech presence probability (mask) estimation

– Spatial mixture models

– Neural networks

• Speaker-conditioned spectrogram masking

II.3Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Some physics

• In free space, waveform at point i caused by a waveform emitted 
at point j

where lij is distance from position i to j

• Far-field:  lij much larger than inter-microphone distance d

– Plane wave

– Attenuation factor                 the same for all mics

– Signal delay between microphones                 where                    

• Example: for                                                        samples @ 16 kHz

II.4

Delay matters, attenuation does not!

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

lij

sj
xi

d



Basics of acoustic beamforming

II.5

Steering vector:

Beamformer output: 

Signal at mth microphone: 

Beamformer coeff.:

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Delay-Sum Beamformer (DSB)

II.6

• Delay-Sum Beamformer:

with phase term

– DSB steered towards geometric angle

• Beampattern:

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Example beampatterns

II.7

small
inter-element

distance /
low frequency

large 
inter-element

Distance /
high frequency

Broadside
(here: top/bottom)

Endfire
(here: left/right)   

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



From physics to signal processing

Real acoustic environments:

• Reverberation

– Time differences of arrival (TDOAs) inappropriate 

• Wideband beamforming

– Fourier transform domain processing 

• Interferences

– Need appropriate objective functions

• Unknown and time-varying acoustic environment

– Estimation of beamformer coefficients

II.8Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Most common model

• Signal at m-th microphone:

II.9Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

• Short-Time Fourier Transform (STFT):

• Narrowband assumption (multiplicative transfer function approx.):
length of acoustic impulse response << STFT analysis window

– convolution in time domain corresponds to multiplication in STFT domain

• Time-invariant Acoustic Transfer Function (ATF)



ATF vs RTF

II.10

• Scale ambiguity of ATF

• Fix ambiguity: Relative transfer function (RTF)

• Thus our goal is to estimate the image of the source at a 
reference microphone (e.g., mic. #1)

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

– Thus, we do not attempt to dereverberate the signal!



Optimal beamforming design criteria: MMSE

• Beamformer output: 

II.11

Add weight µ

Speech Distortion Weighted Multi-channel Wiener Filter
(SDW-MWF)

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

• MMSE: 

Results in:

(points to reference microphone)

(spatial covar. matrix of speech)

(spatial covar. matrix of noise)



Optimal beamforming design criteria: M(P|V)DR 

• MPDR: Minimum Power Distortionless Response:

gives 

II.12Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

• MVDR: Minimum Variance Distortionless Response:

gives



Optimal beamforming design criteria: maxSNR

• Maximize output SNR:

leads to generalized eigenvalue problem.
which can be transformed to ordinary eigenvalue problem by 
Cholesky factorization:  

II.13Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

Solution:

(Notation:             Eigenvector corresponding to largest Eigenvalue of A)



Rank-1 Constraint

II.14Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

Narrowband (rank-1) assumption: 

Use in SDW-MWF: gives1: 

With µ=0 we obtain

Enforcing rank-1 constraint on maxSNR beamformer gives

All beamformers point in same direction

and differ only in complex (freq.dep.) constant

1 employ matrix inversion lemma



Beamforming Criteria: Discussion

• maxSNR beamformer introduces speech distortions, while 
MVDR does not

– Can be compensated by postfilter [Warsitz and Haeb-Umbach, 2007]

• There is no unanimous opinion which of the beamformers
performs best for enhancement for ASR

– Advice: try out all of them

• A good estimate of the spatial covariance matrices is more 
important

II.15Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 



How do we estimate the spatial covariance matrix?

• Spatial covariance estimation:

II.16Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

where: speech presence prob. (SPP), speech mask

noise presence prob., noise mask



How do we estimate the RTF?

II.17Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

• Estimation of RTF     :

– Solve above (generalized) eigenvalue problem:

– Exploit nonstationarity of speech [Gannot et al., 2001] – not described here

• Advice: use beamformer formulation, which avoids explicit 
computation of RTF, e.g.,

[Souden et al., 2010]



Summary: processing steps

II.18

Beamforming coeff.
computation

2nd-order statistics
estimation

Speech / noise presence
prob. estimation

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

e.g.:

to be discussed next!



Speech Presence Probability (SPP) / mask estimation

• Estimate for each tf-bin, the probability that it contains speech 
and the probability that it contains noise, using

– spatial information

– or spectral information

– or both

II.19

Given: Wanted:

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Options for SPP estimation

• Hand-crafted spectro-temporal smoothing

• Spatial mixture models

• Neural networks

II.20Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



• Mixture model for vector of
microphone signals
or for representation derived from it

Spatial mixture model

• Sparsity assumption [Yilmaz and Rickard, 2004]

– 90% of the speech power is concentrated 
in 10% of the tf-bins

– sparsity most pronounced 
for STFT window lengths of approx 64 ms

II.21Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

t

f



Example spatial mixture model

• Complex angular central Gaussian (cACG) Mixture Model for 
normalized observation vector
[Ito et al., 2016]:

II.22Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming



Parameter estimation

II.23

• Parameter Estimation via Expectation Maximization (EM) alg.

– E-step: estimate source activity indicator        for all t, f and i =0,1

– M-step: estimate model parameters:

– Iterate until convergence

• Actually, we are only interested in 

Note: separate EM for each frequency causes frequency permutation problem:
In one frequency i=1 may stand for speech, in another for noise!

Permutation solver required, e.g. [Sawada et al., 2011]
(or use permutation-free model with time-variant mixture weights [Ito et al., 2013])



SPP estimation with neural network

• SPP as supervised learning problem

– Mask estimation formulated as 
classification problem

– Objective function: binary cross entropy:

II.24Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

• Note: masks need not sum up to one!



Example configuration

• Input: spectral magnitudes

• Output: speech and noise masks

II.25Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

Layer Units Type Non-linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0



Example masks

II.26

Beamforming coeff.
computation

2nd-Order Statistics
Estimation

Speech Presence Prob.
(SPP) estimation

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming
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Demonstration NN-based mask estimation

II.27
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Beamforming coeff.
computation

2nd-Order Statistics
Estimation

Speech Presence Prob.
(SPP) estimation



ASR results: Spatial mixture model mask estimation

• CHiME-3 (2015) [Barker et al., 2017]

– WSJ utterances

– „Fixed“ speaker positions
– Low reverberation

– Noisy environment: bus, café, street, pedestrian

– Trng set size: 18 hrs x 6 channels

• The winning system [Yoshioka et al., 2015,
Higuchi et al., 2016] used a cACGMM
spatial mixture model:  

II.28

WER [%]
Dev
Real

Test 
Real

No beamforming 9.0 15.6

DSB with DoA estimation 9.4 16.2

Spatial mixture model 4.8 8.9
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ASR results: Neural network mask estimation

• CHiME-3 [Heymann et al., 2015]

– Absolute WER values not comparable with last slide (different acoustic 
model, language model, data augmentation)

II.29

WER [%]
Dev
Real

Test 
Real

No beamforming 18.7 33.2

NN supported beamforming 10.4 16.5

• CHiME-4 (2016): 

– All top 5 systems used mask-based beamforming
(either NN or spatial mixture model)
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Extensions

II.30

• Spatial mixture models

– Other mixture models, e.g., Watson MM [Tran Vu and Haeb-Umbach, 2010]

– On test utterance, with NN-based masks as priors 
[Nakatani et al., 2017]

• NN-Supported Beamforming

– Cross-channel features, e.g., [Liu et al., 2018]

– Block-online processing, e.g., [Boeddeker et al., 2018]

– Used for dereverberation [Heymann et al., 2017b]
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Pros and cons of two mask estimation methods

Spatial mixture models Neural networks

Spatial characteristics 
modeling

• Strong • Moderate (use of cross-
channel features at input)

Spectro-temporal 
characteristics modeling 
(for speech)

• Weak
- Permutation problem

• No concept of human 
speech (pros and cons)

• Very strong
- Strong speech model 

based training

#channels required • Multi-channel • Single channel

Leverage training data • No training phase • Yes, but parallel data 
required

Adaptation to test 
condition

• Strong 
- Unsupervised learning 

applicable

• Weak 
- Poor generalization
- Sensitive to mismatch
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Table of contents in part II

• Some physics

• From physics to signal processing

• „Informed“ beamforming:
– Speech presence probability estimation

• Spatial mixture models

• Neural networks

• Speaker-conditioned spectrogram masking
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Speaker-Conditioned Spectrogram Masking

II.33

• In many application, we may be interested in recognizing speech 
from a target speaker even if there is noise or other people 
speaking, e.g., smart speaker

 Target speaker extraction

– Known target speaker position  use beamformer to extract speech 
from that direction

– Unknown target speaker position  extract speaker based on his/her 
speech characteristics (SpeakerBeam)

• Idea of SpeakerBeam

– NN for mask estimation can well discriminate a target speaker from noise, 
but not when interference is another speaker

– This can be improved if the mask estimator is informed about the speaker to 
be extracted

– We assume that we have about 10 sec. of enrollment/adaptation utterance 
spoken by the target speaker
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SpeakerBeam [Zmolikova et al., 2017]

II.34Haeb-Umbach and Nakatani, Speech Enhancement – Beamforming 

Target Speaker

Adaptation 

layer

Speech mixture

Time Frequency mask 
of the target speaker

Time avg.

Auxiliary network

• Adaptation layer

– Drive NN to output mask for the target 
speaker only, given target speaker 
embedding

– Different implementations possible, e.g. 
factorized layer, scaling, etc.

• Auxiliary network

– Compute speaker embedding given the 
enrollment/adaptation utterance

– Implemented using sequence summary 
network [Vesely et al. 2016]

– Jointly optimized with mask estimation 
NN

• SpeakerBeam performs 1ch processing 
to compute mask, but it can be 
combined with beamforming for multi-ch
processing

Speaker 
embedding



Results [Zmolikova et al., 2019]

• WSJ2mix-MC

– Artificial 2-speaker mixtures from WSJ utterances

– 1ch no reverberation

– 8 channels with reverberation T60 = 0.2 – 0.6 s
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WER [%] 1 ch (no reverb) 8 ch (w/ reverb)

Single speaker 12.2 16.2

Mixtures 73.4 85.2

SpeakerBeam (1ch) 30.6 -

SpeakerBeam + 
Beamformer

- 22.5

SpeakerBeam + 
Beamformer

(w/ AM joint training)

- 20.7



Software

II.36

• Spatial mixture models: https://github.com/fgnt/pb_bss

– Different spatial mixture models

• complex angular central Gaussian , complex Watson,von-Mises-Fisher

– Methods: init, fit, predict

– Beamformer variants

– Ref: [Drude and Haeb-Umbach, 2017]

• NN supported acoustic beamforming: 
https://github.com/fgnt/nn-gev

 NN-based mask estimator and maxSNR beamformer

 Ref: [Heymann et al., 2016]

 Part of Kaldi CHiME-3 baseline
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Summary of part II

• Acoustic beamforming as a front-end for ASR

– Exploits spatial information present in multi-channel input for noise 
suppression, which typical ASR feature sets (log-mel, cepstral) ignore 

– Leads to significant WER improvements

• SPP / Mask estimation is key component of beamformer

– Both, spatial mixture models and neural networks are powerful mask 
estimators with complementary strengths

• Acoustic beamforming followed by DNN-based ASR is a typical 
representative of a combination of signal processing approaches 
with deep learning

– Leads to interpretable, lightweight system compared to a NN with multi-
channel input 
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But what about overall optimality? We‘ll come back to that…
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Part III.
Dereverberation

Tomohiro Nakatani



Speech recording in reverberant environments

Dereverberation is needed to enhance the quality of 

recorded speech by reducing reverberation included in it

Distant mic

Reverbe-
ration
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Effect of reverberation

Speech becomes less intelligible and ASR becomes very hard

Non-reverberant speech captured by a headset

Reverberant speech captured by a distant mic
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Table of contents in part III

• Goal of dereverberation

• Approaches to dereverberation

– Signal processing based approaches

– A DNN-based approach

• Integration of signal processing and DNN approaches

– DNN-WPE
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Goal of dereverberation: time domain

Reverberant
speech

+
Direct
sound

Early 
reflections

Late 
reverberation

+

Late
reverberation

Direct 
sound

Early
reflections

Impulse 
response

(=30-50 ms)

Preserve Reduce

Desired signal

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

[Bradley et al., 2003]
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• Time domain convolution is approximated by frequency domain 

convolution at each frequency [Nakatani et al. 2008] 

– If frame shift << analysis window (e.g., frame shift <= analysis window/4)

Model of reverberation: STFT domain

STFT domain
(1-ch) +Desired signal Late reverberation

STFT domain
(multi-ch) +

for

Convolutional transfer function: 
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Approaches to dereverberation

• Beamforming (multi-ch)

– Enhance desired signal from 
speaker direction

– Mostly the same as denoising

• Blind inverse filtering (multi-ch)

– Cancel late reverberation

– Multi-channel linear prediction

• Weighted prediction error (WPE) 

method

• DNN-based spectral 

enhancement (1ch)

– Estimate clean spectrogram

– Mostly the same as denoising 
autoencoder Reverberant Estimated clean
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• Beamforming (multi-ch)

– Enhance desired signal from 
speaker direction

– Mostly the same as denoising

• Blind inverse filtering (multi-ch)

– Cancel late reverberation

– Multi-channel linear prediction

• Weighted prediction error (WPE) 

method

• DNN-based spectral 

enhancement (1ch)

– Estimate clean spectrogram

– Mostly the same as denoising
autoencoder Reverberant Estimated clean

Approaches to dereverberation
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Dereverberation based on beamforming

• Time domain model of desired signal

• Assume       << STFT window, then

• Techniques for estimating spatial covariances,            and           

– Maximum-likelihood estimator [Schwartz et al., 2016]

– Eigen-value decomposition based estimator [Heymann, 2017b, 

Kodrasi and Doclo, 2017, Nakatani et al., 2019a]

: acoustic transfer function

Beamforming is applicable to reduce

Time domain

STFT domain

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation III.9

Initial part 
of the impulse 
response

(=30-50 ms)

STFT



• Beamforming (multi-ch)

– Enhance desired signal from 
speaker direction

– Mostly the same as denoising

• Blind inverse filtering (multi-ch)

– Cancel late reverberation

– Multi-channel linear prediction

• Weighted prediction error (WPE) 

method

• DNN-based spectral 

enhancement (1ch)

– Estimate clean spectrogram

– Mostly the same as denoising
autoencoder Reverberant Estimated clean

Approaches to dereverberation
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Inverse

filter

What is inverse filtering

Reverberant 

speech 

(multi-ch)
Clean

speech

Dereverberated

speech 

(multi-ch)

RIRs

Viewed as 

matrix inversion

InversionViewed as linear 

transformation 

(=matrix 

multiplication)

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

or
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Represent RIR convolution by matrix multiplication

1-ch representation

Multi-ch representation
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Existence of inverse filter [Miyoshi and Kaneda, 1988]

• Given       , the inverse filter      should satisfy

• Solution exists and is obtained as:

– When       is full column rank (roughly #mics>1)

How can we estimate        without knowing       ?

: identity matrix
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Approaches to blind inverse filtering

• Blind RIR estimation + robust inverse filtering

– Blind RIR estimation is still an open issue

• Eigen-decomposition [Gannot, 2010] 

• ML estimation approaches [Juang and Nakatani, 2007, Schmid et al., 2012]

– Robust inverse filtering

• Regularization [Hikichi et al., 2007]

• Partial multichannel equalization [Kodrasi et al., 2013]

• Blind and direct estimation of inverse filter

– Multichannel linear prediction (LP) based methods

• Prediction Error (PE) method [Abed-Meraim et al., 1997]

• Delayed Linear Prediction [Kinoshita et al., 2009]

• Weighted Prediction Error (WPE) method [Nakatani et al., 2010]

• Multi-input multi-output (MIMO) WPE method  [Yoshioka and Nakatani, 2012]

– Higher-order decorrelation approaches

• Kurtosis maximization [Gillespie et al., 2001]
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・・・ ・・・・・・ ・・・

Multichannel LP [Abed-meraim et al, 1997]

Current signal

Predict

Past signal (multi-ch)

Predictable

Subtract predictable components from observation

Dereverberation: 

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation III.15

: direct signal

: reverberation



Definition of multichannel LP

• Multichannel autoregressive model

– Assuming            stationary white noise, ML solution becomes

– With estimated         ,          is estimated (= inverse filtering) as

: prediction matrices.
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Problems in conventional LP

• Speech is not stationary white noise

– LP assumes the target signal d to be temporally uncorrelated

– Speech signal exhibits short-term correlation (30‐50 ms)

LP distorts the short-time correlation of speech

– LP assumes the target signal d to be stationary

– Speech is not stationary for long-time duration (200-1000 ms)

LP destroys the time structure of speech

• Solutions: 

– Use of a prediction delay [Kinoshita et al., 2009]

– Use of a better speech model [Nakatani et al, 2010]
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Only reduce

・・・ ・・・・・・ ・・・

Delayed LP (DLP) [Kinoshita et al., 2009]

Unpredictable

Predictable

Delayed LP can only predict        from past signal

Delay D (=30-50 ms)

Current signal

Predict

Past signal (multi-ch)

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation III.18



Introduction of better source model
[Nakatani et al., 2010, Yoshioka et al., 2011]

• Model of desired signal: time-varying Gaussian (local Gaussian)

• ML estimation for time-varying Gaussian source

Blind inverse filtering can be achieved based 

only on a few seconds of observation

: source PSD

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Minimization of weighted 
prediction error (WPE)
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Processing flow of WPE

Dereverberation

Source PSD

estimation

Prediction matrix

estimation

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation III.20



Why WPE achieves inverse filtering?

Minimized when

Reverb Prediction

Assumption

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

is not correlated

with         and  with

Existence of            is guaranteed when the inverse filter exists
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Extensions

• Elaboration of probabilistic models

– Sparse prior for speech PSD [Jukic et al., 2015]

– Bayesian estimation with student-T speech prior [Chetupalli and 
Sreenivas, 2019]

• Frame-by-frame online estimation

– Recursive least square [Yoshioka et al., 2009], [Caroselli et al., 2017]

– Kalman filter for joint denoising and dereverberation [Togami and 
Kawaguchi, 2013], [Braun and Habets, 2018], [Dietzen et al., 2018]
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Approaches to dereverberation

• Beamforming (multi-ch)

– Enhance desired signal while 
reducing late reverberation

– Mostly the same as denoising

• Blind inverse filtering (multi-ch)

– Cancel late reverberation

– (Multi-channel) lnear prediction

• Weighted prediction error method

• DNN-based spectral 

enhancement (1ch)

– Estimate clean spectrogram

– Mostly the same as denoising 
autoencoder Reverberant Estimated clean
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Neural networks based dereverberation

• Train neural networks based on huge amount of parallel data

Many variations are proposed depending on tasks  (masking/

regression), cost functions, and network structures

Clean speech PSD, 

time-freq. mask, etc.

Magnitude

spectrum, etc.

[Weninger et al., 2014, Williamson and Wang, 2017]
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REVERB Challenge task [Kinoshita et al., 2016]

 Task

 Speech enhancement

 ASR

 Acoustic conditions

 Reverberation (Reverberation time 0.2 to 0.7 s.)

 Stationary noise （SNR ～20dB)

0.5~2.5 m
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Comparison of three approaches

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Simu data Real data

FWSSNR CD PESQ WER WER

Observed 3.62 dB 3.97 dB 1.48 5.23 % 18.41 %

MVDR 6.59 dB 3.43 dB 1.75 6.65 % 14.85 %

WPE 4.79 dB 3.74 dB 2.33 4.35 % 13.24 %

WPE+MVDR 7.30 dB 3.01 dB 2.38 3.85 % 9.90 %

DNN (soft mask 

estimation)
7.52 dB 3.11 dB 1.46 7.98 % 23.38 %

FWSSNR: Frequency-weighted segmental SNR
CD: Cepstral distortion
PESQ: Perceptual evaluation of speech quality
WER: Word error rate (obtained with Kaldi REVERB baseline) 
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Demonstration
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Pros and cons of three approaches

Pros Cons

Beamforming • Low computational complexity
• Capable of simultaneous 

denoising and dereverberation
• High contribution to ASR

• Less effective 
dereverberation

WPE • Effective dereverberation
• High contribution to ASR

• No denoising capability
• Computationally

demanding
• Iteration required for 

source PSD estimation

Neural
networks

• Effective dereverberation
(source PSD estimation with 
no iterations)

• Sensitive to mismatched
condition

• Low contribution to ASR
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1. No iterative estimation  Effective for online processing

2. DNN can be optimized jointly with an ASR system 

DNN-WPE  [Kinoshita et al., 2017, Heyman et al., 2019]

Dereverberation

Source PSD 

estimation

Prediction matrix

estimation

DNN(     )

Advantages

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

ASR

Backprop of ASR level loss
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Effectiveness of DNN-WPE [Heymann et al., 2019]

REVERB (real) WSJ+VoiceHome

Offline Online Offline Online

Unprocessed 17.6 24.3

WPE 13.0 16.2 18.6 20.0

DNN-WPE (PSD loss) 10.8 14.6 18.1 19.3

DNN-WPE (ASR loss) 11.8 13.4 17.7 18.4

WPE

DNN

AM for

ASR

Training of DNN-WPE

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

- PSD-loss: MSE of PSD estimates
- ASR-loss: cross entropy of acoustic 

mode (AM) output
PSD loss

ASR loss

Denoising are not performed, and different ASR backend is used.
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• WPD*1: a convolutional beamformer integrates WPE, 

beamformer, and DNN-based mask estimation

Frame-online framework for simultaneous 
denoising and dereverberation

WPE Beamformer

WPD

Source PSD
estimation

NN based mask estimation

*1: Weighted Power minimization 

Distortionless response
convolutional beamformer

Presentation at Interspeech 2019: 12:40-13:00, Mon, Sep. 16

[Nakatani et al, 2019b]
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Software

• WPE

– Matlab p-code for iterative offline, and block-online processing

– Python code w/ and w/o tensorflow for iterative offline, block-online, and 
frame-online processing

• WPE, DNN-WPE

– Python code with pytorch for offline and frame-online processing

• Joint optimization of beamforming and dereverberation with end-to-end ASR 

enabled with espnet (https://github.com/espnet/espnet)

http://www.kecl.ntt.co.jp/icl/signal/wpe/

https://pypi.org/project/nara-wpe/

https://github.com/nttcslab-sp/dnn_wpe
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Part IV.
Source Separation

Reinhold Haeb-Umbach
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Problem description

• Known as cocktail party problem [Cherry, 1953]

• Distinguishing speech of different speakers is more 

difficult than separating speech from noise

• Long history of research
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Table of contents in part IV

• Preliminary remarks

• DNN-based single-channel BSS

– PIT: Permutation invariant training

– DC: Deep clustering

– TasNet: Time domain audio separation network

• Spatial mixture model based multi-channel BSS

• Integration of spatial mixture models and DNN-based methods

– Weak integration

– Strong integration
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Blind Source Separation: Taxonomy of Approaches

• ICA (Independent Component Analysis) based

– Assumption: mutual independence of sources and one or more of the 
following

• Non-Gaussianity, non-whiteness, non-stationarity

– Requires #sensors ≥ #sources

• Sparseness based

– Assumption: in an appropriate domain, each source does not occupy the 
whole space, e.g, time-frequency sparseness of speech

– #sensors can be smaller than #sources

• NMF (Non-negative Matrix Factorization) based 

– Assumption: sources are non-negative and mixing system is additive; 
sources have low rank

– Originally single-channel approach, has been extended to multi-channel

• And combinations / variants of them: IVA, ILRMA, IDLMA, …
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Here: Blind Speech Separation

• Sparseness based approaches are particularly effective

– Sparseness of speech in the time-frequency (STFT) domain 
[Yilmaz and Rickard, 2004]

• 90% of the speech power is concentrated in 10% of the tf-bins

• Different speakers populate different tf-bins

IV.5Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Spkr #1 Spkr #2 (Spkr #1) ⊙ (Spkr #2)



BLIND speech separation

• Unknown mixing system

– Unknown spkr location

– Unknown array geometry

– Unknown acoustic transfer 
function

• Unknown diarization

– Unknown on/offset times

• Unknown speakers

– Speaker-independent 
source separation

IV.6Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Supervised / Guided Blind

• Known mixing system

– Speaker location

– Array geometry

– Acoustic transfer function

• Known diarization

– On/offset times of speakers

• Known speakers



Model in STFT domain
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• Narrowband assumption 

(length of acoustic impulse response << STFT analysis window):

• Our goal is to reconstruct the images of the source signals at

a reference microphone (e.g. mic #1):

• Often, noise is neglected or treated as an additional source: 



Separation cues: spectro-temporal vs spatial
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• Spectro-temporal cues

 Model speech characteristics

 Can work with single-channel

input

 Leverage training data

 Typically supervised trng

 DNN based

• Spatial cues

 Exploits spatial selectivity

 Requires multi-channel input

 Does not require trng phase

 Unsupervised learning

(EM alg.)

 Spatial mixture model based

t

f



Spectra vs masks as training targets
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Input

Output

Mask based extraction performs better than direct signal estimation



Mask estimation

• Two types of objective functions

– Mask approximation, e.g., cross entropy between estimated and ground 
truth mask

• Appropriate if we do not need a decision for every tf bin

• See spatial covariance matrix estimation in beamforming section

• Does not measure reconstruction error

IV.10Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

– Signal approximation:

• Now, the training objective is the reconstruction error

• Predict, for each tf-bin, the presence/absence of a target speaker

Signal approximation performs better than mask approximation



Masks for signal approximation
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• The optimal mask for the above trng objective is the

ideal complex mask

– But phase estimation is tricky …
• To avoid  phase estimation, use best real-valued approximation 

to it: ideal phase-sensitive mask [Erdogan et al., 2015]

– Thus trng objective fu:

This trng objective has consistently shown better results than Ideal Binary 
Mask, Ideal Ratio Mask, etc. [Erdogan et al., 2015] [Kolbæk et al., 2017b] 



DNN-based single-channel BSS

• Permutation Invariant Training (PIT)

• Deep Clustering (DC)

• Time Domain Audio Separation Network (Tasnet)
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Utterance-PIT [Kolbæk et al., 2017b]
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BLSTM/DNN

?

• Label ambiguity: • Compute all permutations

between the targets and the

estimated sources and find 

permutation (over whole

utterance) which minimizes MSE

E.g.:



Example configuration

• Example configuration

– Sampling rate 8 kHz; STFT window size: 
64 ms; advance: 16 ms

– Input: log-spectral magnitude features

– 3 BLSTM layers with 896 nodes each

– 1 FF layer with (I x F) nodes: I: #spkrs; 
F: #freq.bins (e.g., I=2, F=257); 
sigmoid output nonlinearity 
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BLSTM

BLSTM

BLSTM

FF



Demonstration
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BLSTM

BLSTM

BLSTM

FF



Deep Clustering [Hershey et al., 2016]
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k-means

BLSTM/DNN

• Map each tf-bin to an embedding 

vector       , where 

• Goal: tf-bins dominated by the same 

speaker form a cluster

– Mapping via BLSTM network

• Mask estimation

– K-means clustering of embedding vectors: 
hard assignments 

– Alternatively: estimate mixture model on 
embedding vectors: soft assignments



Training objective

• Affinity matrix A of size                     :

– if n-th and n‘-th tf-bin from same speaker

– n stands for certain time-frequency bin (t,f)

– E.g, first and third tf-bin occupied by same speaker:

IV.17Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

1 0 1 0

0 1 0 0

1 0 1 0

0 0 0 1

• Training objective: Minimize Frobenius norm of difference between

estimated and true affinity matrix:

– Estimated affinity matrix , where E is matrix of embedding vectors et,f



Example configuration and results
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• Example configuration:

– Embedding network:  3 BLSTM layers with
300 units in each direction

– Final linear layer with (K x F) nodes: K: 
embedding dimension; F: #freq.bins (e.g., 
K=40, F=257)

BLSTM

BLSTM

BLSTM

FF

k-means



TasNet [Luo and Mesgarani, 2018]
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encoder
separation

network

decoder

• Time-domain source separation

– STFT replaced by learnt transformation (encoder):

• Form segments of speech (e.g. 20 samples, i.e., 2.5 ms)

• 1-D convolution layers applied to overlapping segments of speech 

• Encoder transforms time-domain signal to nonnegative representation using N

encoder basis functions

– Mask estimation in transform domain 

– Source extraction by masking:

– Learned decoder generates waveform:

decoder



Learned transformations

• Encoder / Decoder

– No constraint on orthogonality of bases

– Non-negativity constraint on encoder output

– Decoder is not inverse of encoder (as in STFT)
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• Can the learned bases be interpreted?

– Most filters at low frequencies

– Filters of same frequencies with different 
phases

Basis functions of encoder/decoder

and the magnitudes of their FFT;

taken from

[Luo and Mesgarani, 2018]



Example configuration and results

• Example configuration

– Encoder: sampling rate 8 kHz; 1-D convolution 
operation with
window of L = 20 (2.5ms); N = 256 basis 
functions

– Separator: 

• Stacked 1-D dilated convolutional blocks, 

see [Luo and Mesgarani, 2018]

– Decoder: 1-D transposed convolution operations
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Encoder

Separator

Decoder



Discussion

• PIT, DC, TasNet and DAN (Deep Attractor Network) achieve 

very good speaker independent BSS
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• TasNet naturally incorporates phase restoration, while the others 

estimate only magnitude spectrum

• TasNet achieves largest SDR improvement

– Others come close when phase reconstruction component is added

• As a time domain approach TasNet has lowest latency

Method SDR [dB]

PIT (10.0)

DC 10.8

TasNet 14.6

• Number of speakers must be known

– In PIT, even the network architecture depends on the (max.) no of speakers

Results on wsj0-2mix:

[Le Roux et al., 2018b]



Extensions 

• Combinations of approaches, e.g., PIT network trained with 

additional DC loss [Wang and Wang, 2019]

• Extension to multi-channel input: use cross-channel features as 

additional input (e.g. inter-channel phase differences)   

• Now that magnitude reconstruction is so good, phase 

reconstruction has come in the focus of research

– Time-domain solutions (TasNet)

– Phase reconstruction at the output of a good magnitude estimation 
network [Wang et al., 2018b]

– Estimation of phase masks using discrete representation of phase diff. 
between noisy and clean phase [Le Roux et al., 2018a]
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Table of contents in part IV

• Preliminary remarks

• DNN-based single-channel BSS

– PIT: Permutation invariant training

– DC: Deep clustering

– TasNet: Time domain audio separation network

• Spatial mixture model based multi-channel BSS

• Integration of spatial mixture models and DNN-based methods

– Weak integration

– Strong integration
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Separation cues: spectro-temporal vs spatial
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• Spectro-temporal cues

 Model speech characteristics

 Can work with single-channel

input

 Leverage training data

 Typically supervised trng

 DNN based

• Spatial cues

 Exploits spatial selectivity

 Requires multi-channel input

 Does not require trng phase

 Unsupervised learning

(EM alg.)

 Spatial mixture model based

t

f



Spatial mixture model

• Straightforward extension of beamforming case 
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• EM algorithm to estimate speaker presence probabilities

– E.g., Complex angular central
Gaussian Mixture Model with
I+1 components



Source extraction
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Beamforming coeff.
computation

2nd-order statistics
estimation

Speaker presence
prob. estimation

Speaker presence
prob. estimation

by masking by beamforming

Beamforming achieves

better perceptual quality

(and WER performance)



Table of contents in part IV

• Preliminary remarks

• DNN-based single-channel BSS

– PIT: Permutation invariant training

– DC: Deep clustering

– TasNet: Time domain audio separation network

• Spatial mixture model based multi-channel BSS

• Integration of spatial mixture models and DNN-based methods

– Weak integration

– Strong integration
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Integration of Deep Clustering and mixture models

• Goal: combine the strengths of both methods 

– Exploit spectral and spatial cues for separation

– Leverage trng data and do unsupervised learning on test utterance

• Weak integration

– Use k-means result of DC as initialization of       (speaker presence prob.) 
of the spatial mixture model and run EM steps on test utterance

• Strong integration

– Take embedding vectors       and microphone signals       as two 
observations in a mixture model
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Mixture model for DC embeddings

• Model embedding vectors as r.v.

– Mixture of von-Mises Fisher distributions

– K-means replaced by EM
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Recall spatial mixture model
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Strong integration

• Coupling via latent class affiliation variable (speaker presence prob.)

• Hypothesis: better estimates when estimated jointly
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Integrated mixture model



Overall system
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Deep Clustering

Beamforming ASR

Beamforming ASR



Results [Drude and Haeb-Umbach, 2019]
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Model
WER [%]

Clean Image

Spatial mixture model (cACGMM) 40.9 28.2

Deep Clustering (DC) 42.5 26.6

Weak integration 34.4 21.6

Strong integration (DC + cACGMM) 33.4 18.9

oracle 31.1 10.7

• Database: spatialized multi-channel wsj-2mix

– Artificial 2-speaker mixtures from WSJ utterances

– 8 channels

– T60 = 0.2 – 0.6 s

• Acoustic model trained either on clean speech or on image of

clean speech at reference microphone (includes reverb.)



Pros and cons of NN and spatial mixture model 
based BSS

Spatial mixture models Neural networks

Spatial characteristics 
modeling

• Strong • Moderate (use of cross-
channel features at input)

Spectro-temporal 
characteristics modeling 
(for speech)

• Weak
- Permutation problem

• No concept of human 
speech (pros and cons)

• Very strong
- Strong speech model 

based on a priori training

#channels required • Multi-channel • Single channel

Leverage training data • No training phase • Yes, but parallel data 
required

Adaptation to test 
condition

• Strong 
- Unsupervised learning 

applicable

• Weak 
- Poor generalization
- Sensitive to mismatch
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Software
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• Spatial mixture models: https://github.com/fgnt/pb_bss

– Different spatial mixture models

• complex angular central Gaussian , complex Watson, von-Mises-Fisher

– Methods: init, fit, predict

– Beamformer variants

– Ref: [Drude and Haeb-Umbach, 2017]



Summary of part IV

• Speaker-independent single-channel DNN-based BSS is a major 

improvement over earlier approaches

• Source extraction by beamforming produces less artifacts than 

by masking

• Both DNN-based and spatial mixture model based BSS achieve 

comparable results when used with beamformer for source 

extraction

• DNN based and spatial mixture model based BSS have 

complementary strengths and can be combined

• Often simplifying assumptions:

– # active speakers known

– All speakers speak all the time

– Most investigations on artificially mixed speech and static scenario

– offline
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Some of those assumptions will be lifted in the next presentation
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Part V.
Meeting Analysis

Tomohiro Nakatani



Speech recording in meeting situation

• Estimation of who speaks when (=diarization) is 

crucial for speech enhancement and ASR

Active speakers change 
every moment
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Problems in meeting analysis

Speech enhancement

- Denoising

- Dereverberation

- Source separation

ASR
ASR

ASR
ASR

Diarization: estimation of who speaks when

#Speakers not known in advance
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Two approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 
are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 
for unknown #sources

– Speaker overlapping segments 
can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2
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Approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 
are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 
for unknown #sources

– Speaker overlapping segments 
can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering
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Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2
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JHU DIHARD challenge system [Sell et al., 2018]

• Best score at Track 1 of DIHARD-I challenge

– DIHARD-I,II: diarization challenges with HARD corpora [Ryant et al., 2019]

Segmentation
x-vector

extraction

Bottom-up

clustering*1

Segmentation

refinement

PLDA*2

scoring

1.5 -2 s

Threshold to

determine #speakers

VAD

(to exclude speech

absent frames)

MFCCs

*2: probabilistic linear 

discriminant analysis

(to increase 

discrimination

of x-vector)

Robust speaker feature extraction and scoring are crucial
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*1: also called 

agglomerative 

hierarchical clustering
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• A bottleneck feature of speaker verification NN

– Trained using data augmentation (noise, reverb) 

x-vector [Snyder et al., 2018]

Statistics

pooling
TDNN*1 Full connect

NN layers
Softmax

x-vector

Frame-level

processing

Segment-level 

processing

Mean and 

standard 

deviation

MFCC Speaker ID

A speaker characteristic essential for speaker verification

*1: Time-delay NN
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• Decompose an x-vector into different factors

PLDA [Silovsky et al., 2011]

Speaker

independent

mean

Utterance

dependent

feature

Speaker

inherent

feature

i: Speaker index

j: Utterance index

: Model 

parameters determined in 

advance using training data 

Cluster likelihood : 

noise

where

Diarization can be performed with speaker inherent features
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Evaluation metric for diarization

• Diarization error rates (DER)  [NIST speech group, 2007]

– Includes: missed speaker time (MST), false active time (FAT), and 
speaker error time (SET)
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DERs with DIHARD-I challenge [Sell et al., 2018]

Dataset includes: clinical interviews, child language acquisition recordings, 
YouTube videos, speech in restaurants

Track1: w/ oracle speech segmentation (Challenge top for Eval: 23.73 %)
Track2: w/o oracle speech segmentation (Challenge top for Eval: 35.51 %)

Track1 Track2

All same speaker 39.01 % 55.93 %

i-vector + PLDA 28.06 % 40.42 %

x-vector + PLDA 25.94 % 39.43 %

x-vector + PLDA, with seg. refinement 23.73 % 37.29 %
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Approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 
are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 
for unknown #sources

– Speaker overlapping segments 
can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2
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Recurrent Selective Attention Network (RSAN)
[Kinoshita et al., 2018, von Neumann et al., 2019]

• Neural network based mask estimator for unknown #speakers

• Perform block online meeting analysis

– By dynamically assigning a NN to extract a source every time it detects a 
new source, 

• Can be optimized in an end-to-end manner for feature extraction, 

source counting, diarization, and source separation
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More speakers?No!

Overall online processing flow by RSAN

1st block 2nd block 3rd block 4th block

Speaker vector for A

Speaker vector for B
Speaker
Extraction NN

Speaker vector for A

Speaker vector for B

Speaker vector for C

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Time

A

B

C

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Silence

Silence

Speaker vector for A

More speakers?Yes!

More speakers?No!

- Extract any one speaker at a time

- Examine whether any more

speakers remain in the block

[RSAN model]

Residue
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How to control #iterations at each block
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Input
spectrogram

Updated 
attention
mask

-
Attention
mask

Updated 
attention
mask

-

1st iteration

Estimated
mask

NN

Input
spectrogram

Estimated
mask

NN

2nd iteration

Attention
mask

Thresholding
to stop iteration



Training of RSAN : loss function

Loss for separation Loss for source counting

: Estimated and clean 
speech spectra

Source separation, counting, feature extraction, and diarization

are jointly optimized in an end-to-end processing manner

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

: Attention mask after masks for 
all the sources are extracted
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Preliminary results with simulated conversation

DER SCER DER+

SCER

All same speaker 38.8 % 27.4 % 66.2 %

Bottom up clustering of RSAN speaker vectors (batch) 15.8 % 6.2 % 22.0 %

PIT based mask estimation (batch) 9.8 % 4.4 % 14.2 %

RSAN (online) 6.6 % 4.9 % 11.5 %

Test data: 
- Simulated conversation composed of utterances (WSJ)
- Average conversation length: 30 s

Speaker confusion error rate (SCER): [von Neumann et al., 2019]

– Confused assignments: speakers correctly detected but assigned to wrong clusters

– SCER is not counted by DER, and DER+SCER accounts for total errors
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Approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 
are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 
for unknown #sources

– Speaker overlapping segments 
can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2
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Clustering of TF bins (Multi-ch)

• Features for localization

– DOAs, and many variants 

• Online processing works

– Multi-target tracking problem

• Leader-follower clustering       

[Hori et al., 2012]

• Probabilistic hypothesis density 

filter with random finite set    

[Evers and Naylor, 2018]

– Zone-based speaker diarization
[Fallon and Godsill, 2011, Ito et al., 

2017]

• Divides possible speaker locations 

into pre-determined zones 

• VAD at each zone results in 

diarization

Leader-follower clustering

Leader Followers

D
O

A

time

Mics

zone

Zones for speaker diarization

Leader

Leader

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Followers
Followers

V.18



Probabilistic spatial dictionary based diarization
[Ito et al., 2017]

• Model of signal from each possible speaker location

– Complex Watson distribution

• Model of meeting recording: mixture model

Recording condition

k : possible speaker 

location

: parameter for RIR (dictionary, pretrained)

: parameter for variance (dictionary, pretrained)

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

: mixture weight (estimated from test data)

which indicates active speaker locations

Useful for online diarization
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Processing diagram of probabilistic spatial 
dictionary based diarization

Simulated microphone signals (with a plain wave 
assumption) can be used for the training 

Posterior of source location: 

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Reverberant

speech

Dictionary

training

Spatial dictionary

Weight

estimation
Diarization

Observed

signal

Training
stage

Test
stage
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DERs under reverberant babble noise condition

Session 

ID

#Speakers Noise

level

(babble 

noise)

DER

Leader-follower 

clustering

[Hori 2012]

Probabilistic

spatial 

dictionary

1
6 No noise

46.8 % 9.3 %

2 64.6 % 12.2 %

3
5

Low

23.8 % 17.2 %

4 47.5 % 18.9 %

5 6 62.6 % 15.6 %

6
4

High

70.9 % 27.7 %

7 73.6 % 24.8 %

8 6 67.2 % 18.9 %

Reverberation time: 500 ms
Length of meeting: 15-20 min
SNR: 3-15 dB

#mics: 8
K=65
Information on chair locations is given
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Discussion

• 1-ch processing 

– Use of neural network is a key to successful diarization

• End-to-end neural processing is also investigated

– Treatment of adverse noise conditions is still a challenging problem

• Multi-ch processing

– Spatial features work effectively even under noisy reverberant envs

– Hard to track speakers who move with no utterance

Integration of 1-ch and multi-ch approaches should be explored 

- only a few attempts made so far
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Meeting analysis based on source separation 
with integration of NN and microphone array

• NN-based source counting is combined with beamforming 

[Chazan et al., 2018]

• Segment-wise separation of fixed #sources based on NN and 

beamforming  [Yoshioka et al., 2018]

– Applicable without performing source counting or diarization

Haeb-Umbach and Nakatani, Speech Enhancement V.23

Diarization w/ multi-ch feature Beamforming

NN based source counting at each time frame

Multi-ch

input
Separated

signals

Segmentation

PIT-based mask estimation

Mask-based beamformer
Multi-ch
input

Masks of 

fixed #sources (~2)

Separated signals

for each segment

~2.4s 



Software

• JHU diarization system (DIHARD-II challenge baseline)

– https://github.com/iiscleap/DIHARD_2019_baseline_alltracks

– Based on JHU diarization system developed for the DIHARD-I challenge, 
and prepared for the DIHARD-II challenge by Ganapathy et al.

– Segmentation refinement block is omitted
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Part VI.
Other Topics

Reinhold Haeb-Umbach



Table of contents in part VI

• NN supported enhancement: Overcome need for parallel clean 

and distorted training data

– Motivation

– Joint training

– Teacher-student approach

– Direct optimization of likelihood

• Should we do speech enhancement also on the ASR training 

data?
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Motivation

• We have seen different uses of neural networks in enhancement

– E.g., speech presence probability (mask) estimation

• Those networks were trained by supervised learning

– Corrupted signal at input

– Desired/clean signal as target

• This requires parallel (clean and distorted) data

– Which is unavailable for real recordings of distorted speech

– Training only on simulated (= artificially distorted) data possible

• Thus

– No training on real recordings of distorted speech possible

– Certain effects are hard, if impossible, to realistically simulate

• e.g., Lombard speech

VI.4Haeb-Umbach and Nakatani, Speech Enhancement – Other Topics

Goal: Get rid of need for parallel data in NN training!



Option 1: Joint training

• Train NNs in front-end and back-end jointly

• Back-propagate gradient of cross entropy loss all the way to 

enhancement NN

VI.5

Signal

Enhancement

ASR

‟42”

Enhancement

(Beamforming)

ASR
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Example NN-supported beamforming

• Gradient passed through signal processing tasks

– ASR feature extraction

– Beamforming

• Complex-valued gradients

– See [Boeddeker et al., 2017] for a large collection of complex-valued 
gradients of various operations

VI.6

[Heymann et al.  2017a, Ochiai et al., 2017]
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Discussion

• Possible advantages of joint training

– Parallel clean and noisy data no longer required

– Training on real recordings of distorted speech

– Mask estimator trained with criterion closer related to WER

• Possible disadvantages of joint training

– Weaker acoustic model (AM)

• Beamforming reduces the number of input channels to one. Thus fewer 

training data for acoustic model (AM)

• Beamforming improves SNR, thus AM exposed to less variability

– Weaker beamformer

• AM learns to ignore certain distortions, thus beamformer does not need to 

remove them, meaning that beamforming is less effective in cleaning the data
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WER results on CHiME-4

VI.8

Beamformer trng AM traning Eval
Simu

Eval
Real

parallel data required

(a) i) independent i) independent on unenh. data 6.8 7.3

(b) i) independent ii) indep. on enhanced data 6.6 8.9

no parallel data required

(c) i) jointly from scratch i) jointly from scratch 6.9 9.1

(d) ii) using gradient from AM i) separate on unenh. data 7.4 7.6

Haeb-Umbach and Nakatani, Speech Enhancement – Other Topics

(a) & (c) Joint training degrades performance, in particular on 

real data

(b) & (d) The cause appears to be the weaker AM;

degradation can be reduced if AM sees enough

variability in training

Training order: first i), then ii)



Option 2: Teacher – student approach

VI.9

EM

algorithm
Neural

Network

Loss

Computation

• Speaker presence probs (     ) obtained from spatial mixture 

model used as training targets of NN mask estimator

[Drude et al., 2019a, Seetharaman et al., 2019, Tzinis et al., 2019]
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Example result for BSS [Drude et al., 2019a]

VI.10

Teacher: 

spatial mixture model

Student: 

neural network
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Results [Drude et al., 2019a]

• Database: spatialized multi-channel wsj-2mix

• Source extraction via beamforming

VI.11

Model Training Initialization
on test utt.

WER 
[%]

(a) spatial mixt. model - random 28.0

(b) deep clustering Supervised - 26.5

(c) deep clustering taught by mixt. model - 29.0

(d) spatial mixt. model - deep clustering
from (c)

20.7

(e) spatial mixture model - oracle ideal 
binary mask

19.9
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(d) On test utterance, first apply DC to obtain initial values for .

Then run EM to obtain updated .



Option 3: Direct optimization of likelihood

• Optimize likelilhood of spatial 

mixture model

• Backpropagate gradient of 

likelihood through E-step and 

M-step of spatial mixture 

model to class affiliation 

posteriors and then to NN 

parameters

• Optional: additional EM-step 

at inference time on test 

utterance  

VI.12

Neural

Network

M-Step

E-Step

Likelihood

[Drude et al., 2019b, session Tue-O-3-5]
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Results [Drude et al., 2019b]

• Beamforming

• CHiME-4 real test set

• Additional EM step on test utterance

VI.13

Estimator of Training WER [%]

spatial mixture model - 13.0

neural network Oracle masks 7.7

neural network teacher-student 7.9

neural network likelihood 7.8

Haeb-Umbach and Nakatani, Speech Enhancement – Other Topics



Table of contents in part VI

• NN supported enhancement: Overcome need for parallel training 

data

– Motivation

– Joint training

– Teacher-student approach

– Direct optimization of likelihood

• Should we do speech enhancement on the ASR training data?
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Enhancement on ASR training data?

Cons:

• Acoustic model is exposed to less variability

• Can reduce the amount of training data (e.g., if only the 

beamformed signal is used for training instead of all raw 

channels)

VI.15

Pros:

• Acoustic model can learn artifacts of the enhancement

• Cleaner training data → better alignments → better models
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Example results 

• Beamforming on CHiME-4 

VI.16

Training Data WER [%]
Eval Simu

WER [%]
Eval Real

(a) all six channels 6.8 7.3

(b) all six channels + beamformed 6.4 7.7

(c) single channel 6.9 7.6

(d) beamformed only 6.9 9.6

(e) clean 11.7 16.3

Haeb-Umbach and Nakatani, Speech Enhancement – Other Topics

(a) & (d) enhancement in trng hurts performance, in particular

on real data

(c) & (d) The reason is not fewer trng data, but removal of

variability



But look at these results

• CHiME-5

– Extremely degraded: lots of overlapped speech, reverberation, …
– Weak enhancement: (BeamformIt: variant of Delay-Sum-Beamformer)

– Strong: guided source separation [Kanda et al., 2019, session Tue-O-3-5]

VI.17

WER [%] on eval Enhancement in Test

Enhancemnt in Trng none weak strong

none 59.9 59.7 51.6

weak (BeamformIt) 59.1 58.5 49.9

strong (GSS) 73.1 69.2 45.7

• Enhancement in trng beneficial, as long as it is weaker than in test

Haeb-Umbach and Nakatani, Speech Enhancement – Other Topics

• Matched is best

• If data is extremely poor, enhance for alignment extraction, not for

NN training itself



Summary of part VI 

• There are several options to avoid the need for parallel clean and 

noisy training data 

– Direct optimization of likelihood is the (arguably) conceptually most 
appealing one

• Sofar only developed for beamforming

– Joint training of front end NN and acoustic model is tricky

• Enhancement of ASR training data

– Is only advisable as long as the training data contains still at least as much 
variability as the test data
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Table of contents

1. Introduction by Tomohiro

2. Noise reduction by Reinhold

3. Dereverberation by Tomohiro

Break (30 min)

4. Source separation by Reinhold

5. Meeting analysis by Tomohiro

6. Other topics by Reinhold

7. Summary by Tomohiro & Reinhold

QA
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Part VII.
Summary

Reinhold Haeb-Umbach & 

Tomohiro Nakatani



Combination of speech enhancement and ASR

• Speech enhancement for ASR is recommended 

– If phase (spatial) information present in multi-channel input can be 
exploited, which would be lost in traditional ASR feature repesentations

• Acoustic beamforming

– If distortions exist, which introduce huge variability in frame-based ASR 
processing

• Reverberation

• Multiple concurrent speakers

– Where excellent signal processing solutions exist (which can be further 
improved by deep learning)

• MIMO acoustic echo cancellation (not treated in this tutorial)
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Speech enhancement by DSP and DNN

• We have seen many examples in this tutorial of combinations of 

traditional signal processing and deep learning techniques

• Compared to pure DSP they offer several advantages

– Leverage training data

– Overcome restrictions of simplifying modeling assumptions otherwise 
necessary to obtain tractable solutions

• Compared to pure DNN they offer the following advantages

– Less data hungry

– Better interpretable

– Can adapt to test data via unsupervised learning 
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Trends

• End-to-end trained (enhancement + ASR) systems 

• DNNs will gain ever more grounds

– Future DNNs may include microphone array functionality

– Compact DNN on device

• Multimodal processing
• Vision, bio sensors, brain activities, etc.
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Future challenges

• Get rid of simplifying assumptions

– E.g., #speakers constant and known in a mixture

– Transcribe realistic meeting scenarios

• Leverage huge amounts of unlabeled speech and audio

– From supervised learning to unsupervised learning enabled by signal 
processing

• Cope with more challenging environments / applications

– E.g., CHiME-5 dinner party transcription (WER > 40%)

• Lack of domain/environment specific training data

– „Speech processing in the wild“
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Fortunately, there is still a lot to be done!

VII.6Haeb-Umbach and Nakatani, Speech Enhancement – Summary

Get started1, and enjoy working in this fascinating field!

1 Get hands-on experience using the various pointers to software found in this tutorial!

Tutorial

preparation
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