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Problem description

• Known as cocktail party problem [Cherry, 1953]

• Distinguishing speech of different speakers is more 

difficult than separating speech from noise

• Long history of research
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Blind Source Separation: Taxonomy of Approaches

• ICA (Independent Component Analysis) based

– Assumption: mutual independence of sources and one or more of the 

following

• Non-Gaussianity, non-whiteness, non-stationarity

– Requires #sensors ≥ #sources

• Sparseness based

– Assumption: in an appropriate domain, each source does not occupy the 

whole space, e.g, time-frequency sparseness of speech

– #sensors can be smaller than #sources

• NMF (Non-negative Matrix Factorization) based 

– Assumption: sources are non-negative and mixing system is additive; 

sources have low rank

– Originally single-channel approach, has been extended to multi-channel

• And combinations / variants of them: IVA, ILRMA, IDLMA, …

IV.4Haeb-Umbach and Nakatani, Speech Enhancement – Source separation



Here: Blind Speech Separation

• Sparseness based approaches are particularly effective

– Sparseness of speech in the time-frequency (STFT) domain 

[Yilmaz and Rickard, 2004]

• 90% of the speech power is concentrated in 10% of the tf-bins

• Different speakers populate different tf-bins
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Spkr #1 Spkr #2 (Spkr #1) ⊙ (Spkr #2)



BLIND speech separation

• Unknown mixing system

– Unknown spkr location

– Unknown array geometry

– Unknown acoustic transfer 

function

• Unknown diarization

– Unknown on/offset times

• Unknown speakers

– Speaker-independent 

source separation
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Supervised / Guided Blind

• Known mixing system

– Speaker location

– Array geometry

– Acoustic transfer function

• Known diarization

– On/offset times of speakers

• Known speakers



Model in STFT domain
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• Narrowband assumption 

(length of acoustic impulse response << STFT analysis window):

• Our goal is to reconstruct the images of the source signals at

a reference microphone (e.g. mic #1):

• Often, noise is neglected or treated as an additional source: 



Separation cues: spectro-temporal vs spatial
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• Spectro-temporal cues
 Model speech characteristics

 Can work with single-channel
input

 Leverage training data

 Typically supervised trng

 DNN based

• Spatial cues
 Exploits spatial selectivity

 Requires multi-channel input

 Does not require trng phase

 Unsupervised learning
(EM alg.)

 Spatial mixture model based

t
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Spectra vs masks as training targets
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Input

Output

Mask based extraction performs better than direct signal estimation



Mask estimation

• Two types of objective functions

– Mask approximation, e.g., cross entropy between estimated and ground 

truth mask

• Appropriate if we do not need a decision for every tf bin

• See spatial covariance matrix estimation in beamforming section

• Does not measure reconstruction error
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– Signal approximation:

• Now, the training objective is the reconstruction error

• Predict, for each tf-bin, the presence/absence of a target speaker

Signal approximation performs better than mask approximation



Masks for signal approximation
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• The optimal mask for the above trng objective is the

ideal complex mask

– But phase estimation is tricky …

• To avoid  phase estimation, use best real-valued approximation 

to it: ideal phase-sensitive mask [Erdogan et al., 2015]

– Thus trng objective fu:

This trng objective has consistently shown better results than Ideal Binary 

Mask, Ideal Ratio Mask, etc. [Erdogan et al., 2015] [Kolbæk et al., 2017b] 



DNN-based single-channel BSS

• Permutation Invariant Training (PIT)

• Deep Clustering (DC)

• Time Domain Audio Separation Network (Tasnet)
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Utterance-PIT [Kolbæk et al., 2017b]
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BLSTM/DNN

?

• Label ambiguity: • Compute all permutations

between the targets and the

estimated sources and find 

permutation (over whole

utterance) which minimizes MSE

E.g.:



Example configuration

• Example configuration

– Sampling rate 8 kHz; STFT window size: 

64 ms; advance: 16 ms

– Input: log-spectral magnitude features

– 3 BLSTM layers with 896 nodes each

– 1 FF layer with (I x F) nodes: I: #spkrs; 

F: #freq.bins (e.g., I=2, F=257); 

sigmoid output nonlinearity 
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BLSTM

BLSTM

BLSTM

FF



Demonstration
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BLSTM

BLSTM

BLSTM

FF



Deep Clustering [Hershey et al., 2016]
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k-means

BLSTM/DNN

• Map each tf-bin to an embedding 

vector       , where 

• Goal: tf-bins dominated by the same 

speaker form a cluster

– Mapping via BLSTM network

• Mask estimation

– K-means clustering of embedding vectors: 

hard assignments 

– Alternatively: estimate mixture model on 

embedding vectors: soft assignments



Training objective

• Affinity matrix A of size                     :

– if n-th and n‘-th tf-bin from same speaker

– n stands for certain time-frequency bin (t,f)

– E.g, first and third tf-bin occupied by same speaker:
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1 0 1 0

0 1 0 0

1 0 1 0

0 0 0 1

• Training objective: Minimize Frobenius norm of difference between

estimated and true affinity matrix:

– Estimated affinity matrix , where E is matrix of embedding vectors et,f



Example configuration and results
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• Example configuration:

– Embedding network:  3 BLSTM layers with

300 units in each direction

– Final linear layer with (K x F) nodes: K: 

embedding dimension; F: #freq.bins (e.g., 

K=40, F=257)

BLSTM

BLSTM

BLSTM

FF

k-means



TasNet [Luo and Mesgarani, 2018]
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encoder
separation

network

decoder

• Time-domain source separation

– STFT replaced by learnt transformation (encoder):

• Form segments of speech (e.g. 20 samples, i.e., 2.5 ms)

• 1-D convolution layers applied to overlapping segments of speech 

• Encoder transforms time-domain signal to nonnegative representation using N

encoder basis functions

– Mask estimation in transform domain 

– Source extraction by masking:

– Learned decoder generates waveform:

decoder



Learned transformations

• Encoder / Decoder

– No constraint on orthogonality of bases

– Non-negativity constraint on encoder output

– Decoder is not inverse of encoder (as in STFT)
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• Can the learned bases be interpreted?

– Most filters at low frequencies

– Filters of same frequencies with different 

phases

Basis functions of encoder/decoder

and the magnitudes of their FFT;

taken from

[Luo and Mesgarani, 2018]



Example configuration and results

• Example configuration

– Encoder: sampling rate 8 kHz; 1-D convolution 

operation with

window of L = 20 (2.5ms); N = 256 basis 

functions

– Separator: 

• Stacked 1-D dilated convolutional blocks, 

see [Luo and Mesgarani, 2018]

– Decoder: 1-D transposed convolution operations
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Encoder

Separator

Decoder



Discussion

• PIT, DC, TasNet and DAN (Deep Attractor Network) achieve 

very good speaker independent BSS
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• TasNet naturally incorporates phase restoration, while the others 

estimate only magnitude spectrum

• TasNet achieves largest SDR improvement

– Others come close when phase reconstruction component is added

• As a time domain approach TasNet has lowest latency

Method SDR [dB]

PIT (10.0)

DC 10.8

TasNet 14.6

• Number of speakers must be known

– In PIT, even the network architecture depends on the (max.) no of speakers

Results on wsj0-2mix:

[Le Roux et al., 2018b]



Extensions 

• Combinations of approaches, e.g., PIT network trained with 

additional DC loss [Wang and Wang, 2019]

• Extension to multi-channel input: use cross-channel features as 

additional input (e.g. inter-channel phase differences)   

• Now that magnitude reconstruction is so good, phase 

reconstruction has come in the focus of research

– Time-domain solutions (TasNet)

– Phase reconstruction at the output of a good magnitude estimation 

network [Wang et al., 2018b]

– Estimation of phase masks using discrete representation of phase diff. 

between noisy and clean phase [Le Roux et al., 2018a]
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Separation cues: spectro-temporal vs spatial
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• Spectro-temporal cues
 Model speech characteristics

 Can work with single-channel
input

 Leverage training data

 Typically supervised trng

 DNN based

• Spatial cues
 Exploits spatial selectivity

 Requires multi-channel input

 Does not require trng phase

 Unsupervised learning
(EM alg.)

 Spatial mixture model based

t

f



Spatial mixture model

• Straightforward extension of beamforming case 

IV.26Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

• EM algorithm to estimate speaker presence probabilities

– E.g., Complex angular central

Gaussian Mixture Model with

I+1 components



Source extraction
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Beamforming coeff.

computation

2nd-order statistics

estimation

Speaker presence

prob. estimation
Speaker presence

prob. estimation

by masking by beamforming

Beamforming achieves

better perceptual quality

(and WER performance)
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Integration of Deep Clustering and mixture models

• Goal: combine the strengths of both methods 

– Exploit spectral and spatial cues for separation

– Leverage trng data and do unsupervised learning on test utterance

• Weak integration

– Use k-means result of DC as initialization of       (speaker presence prob.) 

of the spatial mixture model and run EM steps on test utterance

• Strong integration

– Take embedding vectors       and microphone signals       as two 

observations in a mixture model
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Mixture model for DC embeddings

• Model embedding vectors as r.v.

– Mixture of von-Mises Fisher distributions

– K-means replaced by EM
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Recall spatial mixture model
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Strong integration

• Coupling via latent class affiliation variable (speaker presence prob.)

• Hypothesis: better estimates when estimated jointly
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Integrated mixture model



Overall system
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Deep Clustering

Beamforming ASR

Beamforming ASR



Results [Drude and Haeb-Umbach, 2019]
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Model

WER [%]

Clean Image

Spatial mixture model (cACGMM) 40.9 28.2

Deep Clustering (DC) 42.5 26.6

Weak integration 34.4 21.6

Strong integration (DC + cACGMM) 33.4 18.9

oracle 31.1 10.7

• Database: spatialized multi-channel wsj-2mix

– Artificial 2-speaker mixtures from WSJ utterances

– 8 channels

– T60 = 0.2 – 0.6 s

• Acoustic model trained either on clean speech or on image of

clean speech at reference microphone (includes reverb.)



Pros and cons of NN and spatial mixture model 

based BSS

Spatial mixture models Neural networks

Spatial characteristics 

modeling

• Strong • Moderate (use of cross-

channel features at input)

Spectro-temporal 

characteristics modeling 

(for speech)

• Weak

- Permutation problem

• No concept of human 

speech (pros and cons)

• Very strong

- Strong speech model 

based on a priori training

#channels required • Multi-channel • Single channel

Leverage training data • No training phase • Yes, but parallel data 

required

Adaptation to test 

condition

• Strong 

- Unsupervised learning 

applicable

• Weak 

- Poor generalization

- Sensitive to mismatch
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Software
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• Spatial mixture models: https://github.com/fgnt/pb_bss

– Different spatial mixture models

• complex angular central Gaussian , complex Watson, von-Mises-Fisher

– Methods: init, fit, predict

– Beamformer variants

– Ref: [Drude and Haeb-Umbach, 2017]

https://github.com/fgnt/pb_bss


Summary of part IV

• Speaker-independent single-channel DNN-based BSS is a major 

improvement over earlier approaches

• Source extraction by beamforming produces less artifacts than 

by masking

• Both DNN-based and spatial mixture model based BSS achieve 

comparable results when used with beamformer for source 

extraction

• DNN based and spatial mixture model based BSS have 

complementary strengths and can be combined

• Often simplifying assumptions:

– # active speakers known

– All speakers speak all the time

– Most investigations on artificially mixed speech and static scenario

– offline
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Some of those assumptions will be lifted in the next presentation
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