

Part IV. Source Separation

Reinhold Haeb-Umbach

Problem description

- Known as cocktail party problem [Cherry, 1953]
- Distinguishing speech of different speakers is more difficult than separating speech from noise
- Long history of research

Table of contents in part IV

- Preliminary remarks
- DNN-based single-channel BSS
 - PIT: Permutation invariant training
 - DC: Deep clustering
 - TasNet: Time domain audio separation network
- Spatial mixture model based multi-channel BSS
- Integration of spatial mixture models and DNN-based methods
 - Weak integration
 - Strong integration

Blind Source Separation: Taxonomy of Approaches

- ICA (Independent Component Analysis) based
 - Assumption: mutual independence of sources and one or more of the following
 - Non-Gaussianity, non-whiteness, non-stationarity
 - Requires #sensors \geq #sources
- Sparseness based
 - Assumption: in an appropriate domain, each source does not occupy the whole space, e.g, time-frequency sparseness of speech
 - #sensors can be smaller than #sources
- NMF (Non-negative Matrix Factorization) based
 - Assumption: sources are non-negative and mixing system is additive; sources have low rank
 - Originally single-channel approach, has been extended to multi-channel
- And combinations / variants of them: IVA, ILRMA, IDLMA, ...

Here: Blind Speech Separation

- Sparseness based approaches are particularly effective
 - Sparseness of speech in the time-frequency (STFT) domain [Yilmaz and Rickard, 2004]
 - 90% of the speech power is concentrated in 10% of the tf-bins
 - Different speakers populate different tf-bins

BLIND speech separation

Supervised / Guided

- Known mixing system
 - Speaker location
 - Array geometry
 - Acoustic transfer function
- Known diarization
 - On/offset times of speakers
- Known speakers

- Unknown spkr location
- Unknown array geometry
- Unknown acoustic transfer function
- Unknown diarization
 - Unknown on/offset times
- Unknown speakers
 - Speaker-independent source separation

Model in STFT domain

 Narrowband assumption (length of acoustic impulse response << STFT analysis window):

$$\mathbf{y}_{t,f} = \sum_{i=1}^{I} \mathbf{a}_{f}^{(i)} s_{t,f}^{(i)} + \mathbf{n}_{t,f} =: \sum_{i=1}^{I} \mathbf{x}_{t,f}^{(i)} + \mathbf{n}_{t,f}$$

• Often, noise is neglected or treated as an additional source:

$$\mathbf{y}_{t,f} = \sum_{i=1}^{I} \mathbf{x}_{t,f}^{(i)}; \quad \mathbf{y}_{t,f} = \sum_{i=0}^{I} \mathbf{x}_{t,f}^{(i)}$$

• Our goal is to reconstruct the images of the source signals at a reference microphone (e.g. mic #1):

$$x_{1,t,f}^{(i)}; \ i = 1, \dots I$$

Separation cues: spectro-temporal vs spatial

- Spectro-temporal cues
 - Model speech characteristics
 - Can work with single-channel input
 - Leverage training data
 - Typically supervised trng
 - DNN based

- Spatial cues
 - Exploits spatial selectivity
 - Requires multi-channel input
 - Does not require trng phase
 - Unsupervised learning (EM alg.)
 - Spatial mixture model based

Spectra vs masks as training targets

Mask based extraction performs better than direct signal estimation

Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Mask estimation

- Predict, for each tf-bin, the presence/absence of a target speaker
- Two types of objective functions
 - Mask approximation, e.g., cross entropy between estimated and ground truth mask
 - Appropriate if we do not need a decision for every tf bin
 - See spatial covariance matrix estimation in beamforming section
 - Does not measure reconstruction error
 - Signal approximation:

$$J(\theta) = \sum_{i,t,f} \left| \hat{x}_{t,f}^{(i)}(\theta) - x_{t,f}^{(i)} \right|^2 = \sum_{i,t,f} \left| \hat{M}_{t,f}^{(i)}(\theta) y_{t,f} - x_{t,f}^{(i)} \right|^2$$

• Now, the training objective is the reconstruction error

Signal approximation performs better than mask approximation

Masks for signal approximation

$$J(\theta) = \sum_{i,t,f} \left| \hat{x}_{t,f}^{(i)}(\theta) - x_{t,f}^{(i)} \right|^2 = \sum_{i,t,f} \left| \hat{M}_{t,f}^{(i)}(\theta) y_{t,f} - x_{t,f}^{(i)} \right|^2$$

- The optimal mask for the above trng objective is the ideal complex mask $M_{t,f}^{(i)} = \frac{x_{t,f}^{(i)}}{u_{t,f}}$
 - But phase estimation is tricky …
- To avoid phase estimation, use best <u>real-valued</u> approximation to it: *ideal phase-sensitive mask* [Erdogan et al., 2015]

$$M_{t,f}^{(i)} = \Re\left\{\frac{x_{t,f}^{(i)}}{y_{t,f}}\right\} = \frac{|x_{t,f}^{(i)}|}{|y_{t,f}|} \cos\left[\varphi_{t,f}^{(x^{(i)})} - \varphi_{t,f}^{(y)}\right]$$

- Thus trng objective fu:

$$\left|\hat{M}_{t,f}^{(i)}y_{t,f} - x_{t,f}^{(i)}\right|^2 \propto \left(\hat{M}_{t,f}^{(i)}|y_{t,f}| - |x_{t,f}^{(i)}|\cos\left[\varphi_{t,f}^{(x^{(i)})} - \varphi_{t,f}^{(y)}\right]\right)^2$$

This trng objective has consistently shown better results than Ideal Binary Mask, Ideal Ratio Mask, etc. [Erdogan et al., 2015] [Kolbæk et al., 2017b]

DNN-based single-channel BSS

- Permutation Invariant Training (PIT)
- Deep Clustering (DC)
- Time Domain Audio Separation Network (Tasnet)

Utterance-PIT [Kolbæk et al., 2017b]

• Label ambiguity:

Compute all permutations between the targets and the estimated sources and find permutation φ (over whole utterance) which minimizes MSE

$$J = \min_{\phi \in \mathcal{P}} \sum_{i,t,f} \left| \hat{M}_{t,f}^{(i)} y_{t,f} - x_{t,f}^{(\phi(i))} \right|^2$$

$$\mathsf{E.g.:} \min\left[\sum_{t,f} \left\{ \left| \hat{M}^{(1)}y - x^{(1)} \right|^2 + \left| \hat{M}^{(2)}y - x^{(2)} \right|^2 \right\}; \sum_{t,f} \left\{ \left| \hat{M}^{(1)}y - x^{(2)} \right|^2 + \left| \hat{M}^{(2)}y - x^{(1)} \right|^2 \right\} \right]$$

Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Example configuration

- Example configuration
 - Sampling rate 8 kHz; STFT window size:
 64 ms; advance: 16 ms
 - Input: log-spectral magnitude features
 - 3 BLSTM layers with 896 nodes each
 - 1 FF layer with (*I x F*) nodes: I: #spkrs;
 F: #freq.bins (e.g., *I=2, F=257*);
 sigmoid output nonlinearity

Demonstration

Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Deep Clustering [Hershey et al., 2016]

- Map each tf-bin to an embedding vector $\mathbf{e}_{t,f}$, where $\|\mathbf{e}_{t,f}\| = 1$
- Goal: tf-bins dominated by the same speaker form a cluster
 - Mapping via BLSTM network
- Mask estimation
 - K-means clustering of embedding vectors: hard assignments
 - Alternatively: estimate mixture model on embedding vectors: soft assignments

Training objective

- Affinity matrix **A** of size $(T \cdot F \times T \cdot F)$:
 - $[\mathbf{A}]_{n,n'} = 1$ if *n*-th and *n* '-th tf-bin from same speaker
 - *n* stands for certain time-frequency bin (*t*,*f*)
 - E.g, first and third tf-bin occupied by same speaker:

1	0	1	0
0	1	0	0
1	0	1	0
0	0	0	1

IV.17

 Training objective: Minimize Frobenius norm of difference between estimated and true *affinity* matrix:

$$J(\theta) = \|\hat{\mathbf{A}}(\theta) - \mathbf{A}\|_{\mathrm{F}}^2$$

- Estimated affinity matrix $\hat{\mathbf{A}} = \mathbf{E}\mathbf{E}^{\top}$, where \mathbf{E} is matrix of embedding vectors $\mathbf{e}_{t,f}$

Example configuration and results

- Example configuration:
 - Embedding network: 3 BLSTM layers with 300 units in each direction
 - Final linear layer with (K x F) nodes: K: embedding dimension; F: #freq.bins (e.g., K=40, F=257)

TasNet [Luo and Mesgarani, 2018]

- Time-domain source separation
 - STFT replaced by learnt transformation (encoder):
 - Form segments of speech (e.g. 20 samples, i.e., 2.5 ms)

$$\mathbf{y}[tB] = [y[tB], y[tB-1] \dots, y[tB-L+1]^{\mathsf{T}}$$

• 1-D convolution layers applied to overlapping segments of speech

 $\mathbf{w}_t = \operatorname{ReLU}\left(\mathbf{y}[tB] \circledast \mathbf{U}\right); \quad \mathbf{U} \in \mathbb{R}^{N \times L}$

• Encoder transforms time-domain signal to nonnegative representation using *N* encoder basis functions

- Mask estimation in transform domain
- Source extraction by masking: $\hat{\mathbf{x}}_t^{(i)} = \mathbf{w}_t \odot \hat{\mathbf{M}}_t^{(i)}$
- Learned decoder generates waveform: $\hat{\mathbf{x}}^{(i)}[tB] = \hat{\mathbf{x}}_t^{(i)} \circledast \mathbf{V}$

Learned transformations

- Encoder / Decoder
 - No constraint on orthogonality of bases
 - Non-negativity constraint on encoder output
 - Decoder is not inverse of encoder (as in STFT)
- Can the learned bases be interpreted?
 - Most filters at low frequencies
 - Filters of same frequencies with different phases

Basis functions of encoder/decoder and the magnitudes of their FFT; taken from [Luo and Mesgarani, 2018]

Example configuration and results

- Example configuration
 - Encoder: sampling rate 8 kHz; 1-D convolution operation with window of L = 20 (2.5ms); N = 256 basis functions
 - Separator:
 - Stacked 1-D dilated convolutional blocks, see [Luo and Mesgarani, 2018]
 - Decoder: 1-D transposed convolution operations

Discussion

• PIT, DC, TasNet and DAN (Deep Attractor Network) achieve very good speaker independent BSS

Results on wsj0-2mix: [Le Roux et al., 2018b]

Method	SDR [dB]
PIT	(10.0)
DC	10.8
TasNet	14.6

- TasNet naturally incorporates phase restoration, while the others estimate only magnitude spectrum
- TasNet achieves largest SDR improvement
 - Others come close when phase reconstruction component is added
- As a time domain approach TasNet has lowest latency
- Number of speakers must be known
 - In PIT, even the network architecture depends on the (max.) no of speakers

Extensions

- Combinations of approaches, e.g., PIT network trained with additional DC loss [Wang and Wang, 2019]
- Extension to multi-channel input: use cross-channel features as additional input (e.g. inter-channel phase differences)
- Now that magnitude reconstruction is so good, phase reconstruction has come in the focus of research
 - Time-domain solutions (TasNet)
 - Phase reconstruction at the output of a good magnitude estimation network [Wang et al., 2018b]
 - Estimation of phase masks using discrete representation of phase diff.
 between noisy and clean phase [Le Roux et al., 2018a]

Table of contents in part IV

- Preliminary remarks
- DNN-based single-channel BSS
 - PIT: Permutation invariant training
 - DC: Deep clustering
 - TasNet: Time domain audio separation network
- Spatial mixture model based multi-channel BSS
- Integration of spatial mixture models and DNN-based methods
 - Weak integration
 - Strong integration

Separation cues: spectro-temporal vs spatial

- Spectro-temporal cues
 - Model speech characteristics
 - Can work with single-channel input
 - Leverage training data
 - Typically supervised trng
 - DNN based

- Spatial cues
 - Exploits spatial selectivity
 - Requires multi-channel input
 - Does not require trng phase
 - Unsupervised learning (EM alg.)
 - Spatial mixture model based

Spatial mixture model

• Straightforward extension of beamforming case

 $p(\mathbf{y}_{t,f}) = \sum_{i} \Pr(M_{t,f} = i) p(\mathbf{y}_{t,f} | M_{t,f} = i); \ i \in \{0, 1, \dots, I\}$

 E.g., Complex angular central Gaussian Mixture Model with *I*+1 components

• EM algorithm to estimate speaker presence probabilities

$$\gamma_{t,f}^{(i)} = \hat{\Pr}(M_{t,f} = i | \mathbf{y}_{t,f}) =: \hat{M}_{t,f}^{(i)}$$

Source extraction

by masking

by beamforming

Beamforming coeff.

 \mathbf{W}

IV.27

 $\hat{x}_{1,t,f}^{(1)}$

 \mathbf{W}

 $\hat{x}_{1,t,f}^{(I)}$

Beamforming achieves better perceptual quality (and WER performance)

Table of contents in part IV

- Preliminary remarks
- DNN-based single-channel BSS
 - PIT: Permutation invariant training
 - DC: Deep clustering
 - TasNet: Time domain audio separation network
- Spatial mixture model based multi-channel BSS
- Integration of spatial mixture models and DNN-based methods
 - Weak integration
 - Strong integration

Integration of Deep Clustering and mixture models

- Goal: combine the strengths of both methods
 - Exploit spectral and spatial cues for separation
 - Leverage trng data and do unsupervised learning on test utterance
- Weak integration
 - Use k-means result of DC as initialization of $\gamma_{t,f}^{(i)}$ (speaker presence prob.) of the spatial mixture model and run EM steps on test utterance
- Strong integration
 - Take embedding vectors $\mathbf{e}_{t,f}$ and microphone signals $\mathbf{y}_{t,f}$ as two observations in a mixture model

Mixture model for DC embeddings

- Model embedding vectors as r.v.
 - Mixture of von-Mises Fisher distributions
 - K-means replaced by EM

$$p(\mathbf{e}_{tf}) = \sum_{i} \Pr(M_{t,f} = i) p(\mathbf{e}_{t,f} | M_{tf} = i)$$
$$= \sum_{i} \pi_f^{(i)} \cdot \operatorname{vMF}(\mathbf{e}_{tf}^{(i)}; \boldsymbol{\mu}^{(i)}, \kappa^{(i)})$$

Recall spatial mixture model

$$p(\tilde{\mathbf{y}}_{t,f}) = \sum_{i} \Pr(M_{t,f} = i) p(\tilde{\mathbf{y}}_{t,f} | M_{t,f} = i)$$
$$= \sum_{i} \pi_f^{(i)} \operatorname{cACG}(\tilde{\mathbf{y}}_{t,f}; \mathbf{B}_f^{(i)})$$

IV.31

Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Strong integration

Integrated mixture model

- Coupling via latent class affiliation variable (speaker presence prob.)
- Hypothesis: better estimates when estimated jointly

Overall system

Haeb-Umbach and Nakatani, Speech Enhancement – Source separation

Results [Drude and Haeb-Umbach, 2019]

- Database: spatialized multi-channel wsj-2mix
 - Artificial 2-speaker mixtures from WSJ utterances
 - 8 channels
 - $-T_{60} = 0.2 0.6 s$
- Acoustic model trained either on clean speech or on image of clean speech at reference microphone (includes reverb.)

WER [%]		R [%]
Model	Clean	Image
Spatial mixture model (cACGMM)	40.9	28.2
Deep Clustering (DC)	42.5	26.6
Weak integration	34.4	21.6
Strong integration (DC + cACGMM)	33.4	18.9
oracle	31.1	10.7

Pros and cons of NN and spatial mixture model based BSS

	Spatial mixture models	Neural networks
Spatial characteristics modeling	Strong	 Moderate (use of cross- channel features at input)
Spectro-temporal characteristics modeling (for speech)	 Weak Permutation problem Notconcept of human speech (pros and cons) 	 Very strong Strong speech model based on a priori training
#channels required	Multi-channel Same	 Single channel
Leverage training data	No training phase	Yes, but parallel data
Adaptation to test condition	 Strong Unsupervised learning applicable 	Weak Poor generalization Sensitive to mismaterial

1.35

Software

- Spatial mixture models: <u>https://github.com/fgnt/pb_bss</u>
 - Different spatial mixture models
 - complex angular central Gaussian , complex Watson, von-Mises-Fisher
 - Methods: init, fit, predict
 - Beamformer variants
 - Ref: [Drude and Haeb-Umbach, 2017]

Summary of part IV

- Speaker-independent single-channel DNN-based BSS is a major improvement over earlier approaches
- Source extraction by beamforming produces less artifacts than by masking
- Both DNN-based and spatial mixture model based BSS achieve comparable results when used with beamformer for source extraction
- DNN based and spatial mixture model based BSS have complementary strengths and can be combined
- Often simplifying assumptions:
 - # active speakers known
 - All speakers speak all the time
 - Most investigations on artificially mixed speech and static scenario
 - offline

Some of those assumptions will be lifted in the next presentation

Table of contents

Introduction
 Noise reduction
 Dereverberation
 by Tomohiro

Break (30 min)

- 4. Source separation
- 5. Meeting analysis
- 6. Other topics
- 7. Summary

by Reinhold by Tomohiro by Reinhold by Tomohiro & Reinhold

IV.38

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

