

Part V. Meeting Analysis

Tomohiro Nakatani

Speech recording in meeting situation

 Estimation of who speaks when (=diarization) is crucial for speech enhancement and ASR

Problems in meeting analysis

Two approaches to diarization

- Clustering of time segments
 - Based on spectral features
 - MFCC, i-vector, d-vector, x-vector, etc.
 - Speaker overlapping segments are disregarded
 - 1-ch processing

Clustering of TF points

- Mask-based source separation for unknown #sources
- Speaker overlapping segments can be separated
- 1-ch/multi-ch processings

Approaches to diarization

- Clustering of time segments
 - Based on spectral features
 - MFCC, i-vector, d-vector, x-vector, etc.
 - Speaker overlapping segments are disregarded
 - 1-ch processing

Clustering of TF points

- Mask-based source separation for unknown #sources
- Speaker overlapping segments can be separated
- 1-ch/multi-ch processings

JHU DIHARD challenge system [Sell et al., 2018]

- Best score at Track 1 of DIHARD-I challenge
 - DIHARD-I,II: diarization challenges with HARD corpora [Ryant et al., 2019]

Robust speaker feature extraction and scoring are crucial

x-vector [Snyder et al., 2018]

- A bottleneck feature of speaker verification NN
 - Trained using data augmentation (noise, reverb)

A speaker characteristic essential for speaker verification

PLDA [Silovsky et al., 2011]

Decompose an x-vector into different factors

$$\mathbf{e} = \mathbf{m} + \mathbf{F}\mathbf{h}_i + \mathbf{G}\mathbf{w}_{i,j} + \mathbf{n}_{i,j}$$

Speaker Speaker Utterance noise independent inherent dependent mean feature feature

i: Speaker index

j: Utterance index

 $\mathbf{m}, \mathbf{F}, \mathbf{G} \text{ and } \Sigma$: Model parameters determined in advance using training data

$$p(\mathbf{e} \mid \mathbf{h}_i, \mathbf{w}_{i,j}; \theta) = \mathcal{N}(\mathbf{m} + \mathbf{F}\mathbf{h}_i + \mathbf{G}\mathbf{w}_{i,j}, \Sigma)$$

Cluster likelihood :
$$p(\mathbf{e}_1, \dots, \mathbf{e}_J) = \mathcal{N}(\mathbf{m}', \mathbf{A}\mathbf{A}^\top + \Sigma')$$

where
$$\mathbf{m'} = (\mathbf{m}, \dots, \mathbf{m})^{\top}$$
 $\mathbf{A} = \begin{pmatrix} \mathbf{F} & \mathbf{G} & 0 & \dots & 0 \\ \mathbf{F} & 0 & \mathbf{G} & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ \mathbf{F} & 0 & 0 & \dots & \mathbf{G} \end{pmatrix} \Sigma' = \begin{pmatrix} \Sigma & 0 & \dots & 0 \\ 0 & \Sigma & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & \Sigma \end{pmatrix}$

Diarization can be performed with speaker inherent features

Evaluation metric for diarization

Diarization error rates (DER) [NIST speech group, 2007]

$$DER = \frac{\#frames \text{ with wrongly estimated speaker}}{total \#frames}$$

 Includes: missed speaker time (MST), false active time (FAT), and speaker error time (SET)

DERs with DIHARD-I challenge [Sell et al., 2018]

Dataset includes: clinical interviews, child language acquisition recordings, YouTube videos, speech in restaurants

Track1: w/ oracle speech segmentation (Challenge top for Eval: 23.73 %)

Track2: w/o oracle speech segmentation (Challenge top for Eval: 35.51 %)

	Track1	Track2
All same speaker	39.01 %	55.93 %
i-vector + PLDA	28.06 %	40.42 %
x-vector + PLDA	25.94 %	39.43 %
x-vector + PLDA, with seg. refinement	23.73 %	37.29 %

Approaches to diarization

- Clustering of time segments
 - Based on spectral features
 - MFCC, i-vector, d-vector, x-vector, etc.
 - Speaker overlapping segments are disregarded
 - 1-ch processing

- Clustering of TF points
 - Mask-based source separation for unknown #sources
 - Speaker overlapping segments can be separated
 - 1-ch/multi-ch processings

Recurrent Selective Attention Network (RSAN) [Kinoshita et al., 2018, von Neumann et al., 2019]

- Neural network based mask estimator for unknown #speakers
- Perform block online meeting analysis
 - By dynamically assigning a NN to extract a source every time it detects a new source,
- Can be optimized in an end-to-end manner for feature extraction, source counting, diarization, and source separation

Overall online processing flow by RSAN

How to control #iterations at each block

Training of RSAN: loss function

$$\mathcal{L} = \mathcal{L}^{\text{Sep}} + \alpha \mathcal{L}^{\text{Count}}$$

Loss for separation

$$\mathcal{L}^{ ext{Sep}} = \sum_{i} \|\hat{\mathbf{Y}}_{i} - \mathbf{Y}_{i}^{ref}\|_{2}^{2}$$

 $\hat{\mathbf{Y}}_i, \mathbf{Y}_i^{ref}$: Estimated and clean speech spectra

Loss for source counting

$$\mathcal{L}^{\text{Count}} = \max\left(\mathbf{R}, 0\right)$$

$$\mathbf{R} = \mathbf{1} - \sum_{\mathbf{i}} \mathbf{M^{(i)}}$$

: Attention mask after masks for all the sources are extracted

Source separation, counting, feature extraction, and diarization are jointly optimized in an end-to-end processing manner

Preliminary results with simulated conversation

Test data:

- Simulated conversation composed of utterances (WSJ)
- Average conversation length: 30 s

	DER	SCER	DER+ SCER
All same speaker	38.8 %	27.4 %	66.2 %
Bottom up clustering of RSAN speaker vectors (batch)	15.8 %	6.2 %	22.0 %
PIT based mask estimation (batch)	9.8 %	4.4 %	14.2 %
RSAN (online)	6.6 %	4.9 %	11.5 %

Speaker confusion error rate (SCER): [von Neumann et al., 2019]

$$SCER = \frac{\#frames \text{ with confused speaker assignments}}{total \ \#frames}$$

- Confused assignments: speakers correctly detected but assigned to wrong clusters
- SCER is not counted by DER, and DER+SCER accounts for total errors

Approaches to diarization

- Clustering of time segments
 - Based on spectral features
 - MFCC, i-vector, d-vector, x-vector, etc.
 - Speaker overlapping segments are disregarded
 - 1-ch processing

- Clustering of TF points
 - Mask-based source separation for unknown #sources
 - Speaker overlapping segments can be separated
 - 1-ch/multi-ch processings

Clustering of TF bins (Multi-ch)

- Features for localization
 - DOAs, and many variants
- Online processing works
 - Multi-target tracking problem
 - Leader-follower clustering [Hori et al., 2012]
 - Probabilistic hypothesis density filter with random finite set [Evers and Naylor, 2018]
 - Zone-based speaker diarization [Fallon and Godsill, 2011, Ito et al., 2017]
 - Divides possible speaker locations into pre-determined zones
 - VAD at each zone results in diarization

Leader-follower clustering

Zones for speaker diarization

Probabilistic spatial dictionary based diarization [Ito et al., 2017]

- Model of signal from each possible speaker location
 - Complex Watson distribution

$$p(\tilde{\mathbf{y}}_{tf}^{(k)}) = \mathcal{W}(\tilde{\mathbf{y}}_{tf}^{(k)}; \kappa_f^{(k)}, \mathbf{a}_f^{(k)})$$

 $\mathbf{a}_f^{(k)}$: parameter for RIR (dictionary, pretrained)

 $\kappa_f^{(k)}$: parameter for variance (dictionary, pretrained)

Model of meeting recording: mixture model

$$p(\tilde{\mathbf{y}}_{tf}) = \sum_{k=1}^{K} \alpha_t^{(k)} \mathcal{W}(\tilde{\mathbf{y}}_{tf}; \kappa_f^{(k)}, \mathbf{a}_f^{(k)})$$

 $\alpha_t^{(k)}$: mixture weight (estimated from test data) which indicates active speaker locations

Useful for online diarization

Recording condition

k : possible speaker location

Processing diagram of probabilistic spatial dictionary based diarization

Simulated microphone signals (with a plain wave assumption) can be used for the training

Posterior of source location: $\alpha_t^{(k)} = \sum_f \left\{ \frac{\mathcal{W}\left(\tilde{\mathbf{y}}_{tf}; \kappa_f^{(k)}, \mathbf{a}_f^{(k)}\right)}{\sum_{k'=1}^K \mathcal{W}\left(\tilde{\mathbf{y}}_{tf}; \kappa_f^{(k')}, \mathbf{a}_f^{(k')}\right)} \right\}$

DERs under reverberant babble noise condition

Reverberation time: 500 ms #mics: 8
Length of meeting: 15-20 min K=65

SNR: 3-15 dB Information on chair locations is given

Session	#Speakers	Noise level (babble noise)	DER		
ID			Leader-follower clustering [Hori 2012]	Probabilistic spatial dictionary	
1	6	No noise	46.8 %	9.3 %	
2			64.6 %	12.2 %	
3	5		23.8 %	17.2 %	
4		Low	47.5 %	18.9 %	
5	6		62.6 %	15.6 %	
6	4	High	70.9 %	27.7 %	
7			73.6 %	24.8 %	
8	6		67.2 %	18.9 %	

Discussion

- 1-ch processing
 - Use of neural network is a key to successful diarization
 - End-to-end neural processing is also investigated
 - Treatment of adverse noise conditions is still a challenging problem
- Multi-ch processing
 - Spatial features work effectively even under noisy reverberant envs
 - Hard to track speakers who move with no utterance

Integration of 1-ch and multi-ch approaches should be explored

- only a few attempts made so far

Meeting analysis based on source separation with integration of NN and microphone array

 NN-based source counting is combined with beamforming [Chazan et al., 2018]

- Segment-wise separation of fixed #sources based on NN and beamforming [Yoshioka et al., 2018]
 - Applicable without performing source counting or diarization

Software

- JHU diarization system (DIHARD-II challenge baseline)
 - https://github.com/iiscleap/DIHARD_2019_baseline_alltracks
 - Based on JHU diarization system developed for the DIHARD-I challenge, and prepared for the DIHARD-II challenge by Ganapathy et al.
 - Segmentation refinement block is omitted

Table of contents

1. Introduction by Tomohiro

2. Noise reduction by Reinhold

3. Dereverberation by Tomohiro

Break (30 min)

4. Source separation by Reinhold

5. Meeting analysis by Tomohiro

6. Other topics by Reinhold

7. Summary by Reinhold & Tomohiro

QA

