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Speech recording in meeting situation

• Estimation of who speaks when (=diarization) is 

crucial for speech enhancement and ASR

Active speakers change 

every moment
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Problems in meeting analysis

Speech enhancement

- Denoising

- Dereverberation

- Source separation

ASR
ASR

ASR
ASR

Diarization: estimation of who speaks when

#Speakers not known in advance
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Two approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 

are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 

for unknown #sources

– Speaker overlapping segments 

can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering
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JHU DIHARD challenge system [Sell et al., 2018]

• Best score at Track 1 of DIHARD-I challenge

– DIHARD-I,II: diarization challenges with HARD corpora [Ryant et al., 2019]

Segmentation
x-vector

extraction

Bottom-up

clustering*1

Segmentation

refinement

PLDA*2

scoring

1.5 -2 s

Threshold to

determine #speakers

VAD

(to exclude speech

absent frames)

MFCCs

*2: probabilistic linear 

discriminant analysis

(to increase 

discrimination

of x-vector)

Robust speaker feature extraction and scoring are crucial
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*1: also called 

agglomerative 

hierarchical clustering
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• A bottleneck feature of speaker verification NN

– Trained using data augmentation (noise, reverb) 

x-vector [Snyder et al., 2018]

Statistics

pooling
TDNN*1 Full connect

NN layers
Softmax

x-vector

Frame-level

processing

Segment-level 

processing

Mean and 

standard 

deviation

MFCC Speaker ID

A speaker characteristic essential for speaker verification

*1: Time-delay NN
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• Decompose an x-vector into different factors

PLDA [Silovsky et al., 2011]

Speaker

independent

mean

Utterance

dependent

feature

Speaker

inherent

feature

i: Speaker index

j: Utterance index

: Model 

parameters determined in 

advance using training data 

Cluster likelihood : 

noise

where

Diarization can be performed with speaker inherent features
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Evaluation metric for diarization

• Diarization error rates (DER)  [NIST speech group, 2007]

– Includes: missed speaker time (MST), false active time (FAT), and 

speaker error time (SET)

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis V.9



DERs with DIHARD-I challenge [Sell et al., 2018]

Dataset includes: clinical interviews, child language acquisition recordings, 

YouTube videos, speech in restaurants

Track1: w/ oracle speech segmentation (Challenge top for Eval: 23.73 %)

Track2: w/o oracle speech segmentation (Challenge top for Eval: 35.51 %)

Track1 Track2

All same speaker 39.01 % 55.93 %

i-vector + PLDA 28.06 % 40.42 %

x-vector + PLDA 25.94 % 39.43 %

x-vector + PLDA, with seg. refinement 23.73 % 37.29 %
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Approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 

are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 

for unknown #sources

– Speaker overlapping segments 

can be separated

– 1-ch/multi-ch processings

Mixture of unknown # of speakers

Segmentation

Clustering

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2

V.11



Recurrent Selective Attention Network (RSAN)
[Kinoshita et al., 2018, von Neumann et al., 2019]

• Neural network based mask estimator for unknown #speakers

• Perform block online meeting analysis

– By dynamically assigning a NN to extract a source every time it detects a 

new source, 

• Can be optimized in an end-to-end manner for feature extraction, 

source counting, diarization, and source separation
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More speakers?No!

Overall online processing flow by RSAN

1st block 2nd block 3rd block 4th block

Speaker vector for A

Speaker vector for B
Speaker
Extraction NN

Speaker vector for A

Speaker vector for B

Speaker vector for C

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Time

A

B

C

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Speaker
Extraction NN

Silence

Silence

Speaker vector for A

More speakers?Yes!

More speakers?No!

- Extract any one speaker at a time

- Examine whether any more

speakers remain in the block

[RSAN model]

Residue
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How to control #iterations at each block
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Input
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attention
mask
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mask
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attention
mask
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Estimated
mask

NN

Input
spectrogram

Estimated
mask

NN

2nd iteration

Attention
mask

Thresholding

to stop iteration



Training of RSAN : loss function

Loss for separation Loss for source counting

: Estimated and clean 

speech spectra

Source separation, counting, feature extraction, and diarization

are jointly optimized in an end-to-end processing manner
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: Attention mask after masks for 

all the sources are extracted
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Preliminary results with simulated conversation

DER SCER DER+

SCER

All same speaker 38.8 % 27.4 % 66.2 %

Bottom up clustering of RSAN speaker vectors (batch) 15.8 % 6.2 % 22.0 %

PIT based mask estimation (batch) 9.8 % 4.4 % 14.2 %

RSAN (online) 6.6 % 4.9 % 11.5 %

Test data: 

- Simulated conversation composed of utterances (WSJ)

- Average conversation length: 30 s

Speaker confusion error rate (SCER): [von Neumann et al., 2019]

– Confused assignments: speakers correctly detected but assigned to wrong clusters

– SCER is not counted by DER, and DER+SCER accounts for total errors

Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis V.16



Approaches to diarization

• Clustering of time segments

– Based on spectral features

• MFCC, i-vector, d-vector, x-

vector, etc.

– Speaker overlapping segments 

are disregarded

– 1-ch processing

• Clustering of TF points

– Mask-based source separation 
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can be separated
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Mixture of unknown # of speakers
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Haeb-Umbach and Nakatani, Speech Enhancement – Meeting analysis

Silence Spk-1 Spk-2

Clustering

Silence Spk-1 Spk-2

V.17



Clustering of TF bins (Multi-ch)

• Features for localization

– DOAs, and many variants 

• Online processing works

– Multi-target tracking problem

• Leader-follower clustering       

[Hori et al., 2012]

• Probabilistic hypothesis density 

filter with random finite set    

[Evers and Naylor, 2018]

– Zone-based speaker diarization
[Fallon and Godsill, 2011, Ito et al., 

2017]

• Divides possible speaker locations 

into pre-determined zones 

• VAD at each zone results in 

diarization

Leader-follower clustering

Leader Followers

D
O

A

time

Mics

zone

Zones for speaker diarization

Leader

Leader
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Probabilistic spatial dictionary based diarization
[Ito et al., 2017]

• Model of signal from each possible speaker location

– Complex Watson distribution

• Model of meeting recording: mixture model

Recording condition

k : possible speaker 

location

: parameter for RIR (dictionary, pretrained)

: parameter for variance (dictionary, pretrained)
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: mixture weight (estimated from test data)

which indicates active speaker locations

Useful for online diarization
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Processing diagram of probabilistic spatial 

dictionary based diarization

Simulated microphone signals (with a plain wave 

assumption) can be used for the training 

Posterior of source location: 
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Reverberant

speech

Dictionary

training

Spatial dictionary

Weight

estimation
Diarization

Observed

signal

Training

stage

Test

stage
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DERs under reverberant babble noise condition

Session 

ID

#Speakers Noise

level

(babble 

noise)

DER

Leader-follower 

clustering

[Hori 2012]

Probabilistic

spatial 

dictionary

1
6 No noise

46.8 % 9.3 %

2 64.6 % 12.2 %

3
5

Low

23.8 % 17.2 %

4 47.5 % 18.9 %

5 6 62.6 % 15.6 %

6
4

High

70.9 % 27.7 %

7 73.6 % 24.8 %

8 6 67.2 % 18.9 %

Reverberation time: 500 ms

Length of meeting: 15-20 min

SNR: 3-15 dB

#mics: 8

K=65

Information on chair locations is given
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Discussion

• 1-ch processing 

– Use of neural network is a key to successful diarization

• End-to-end neural processing is also investigated

– Treatment of adverse noise conditions is still a challenging problem

• Multi-ch processing

– Spatial features work effectively even under noisy reverberant envs

– Hard to track speakers who move with no utterance

Integration of 1-ch and multi-ch approaches should be explored 

- only a few attempts made so far
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Meeting analysis based on source separation 

with integration of NN and microphone array

• NN-based source counting is combined with beamforming 

[Chazan et al., 2018]

• Segment-wise separation of fixed #sources based on NN and 

beamforming  [Yoshioka et al., 2018]

– Applicable without performing source counting or diarization

Haeb-Umbach and Nakatani, Speech Enhancement V.23

Diarization w/ multi-ch feature Beamforming

NN based source counting at each time frame

Multi-ch

input

Separated

signals

Segmentation

PIT-based mask estimation

Mask-based beamformer
Multi-ch

input
Masks of 

fixed #sources (~2)

Separated signals

for each segment

~2.4s 



Software

• JHU diarization system (DIHARD-II challenge baseline)

– https://github.com/iiscleap/DIHARD_2019_baseline_alltracks

– Based on JHU diarization system developed for the DIHARD-I challenge, 

and prepared for the DIHARD-II challenge by Ganapathy et al.

– Segmentation refinement block is omitted
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