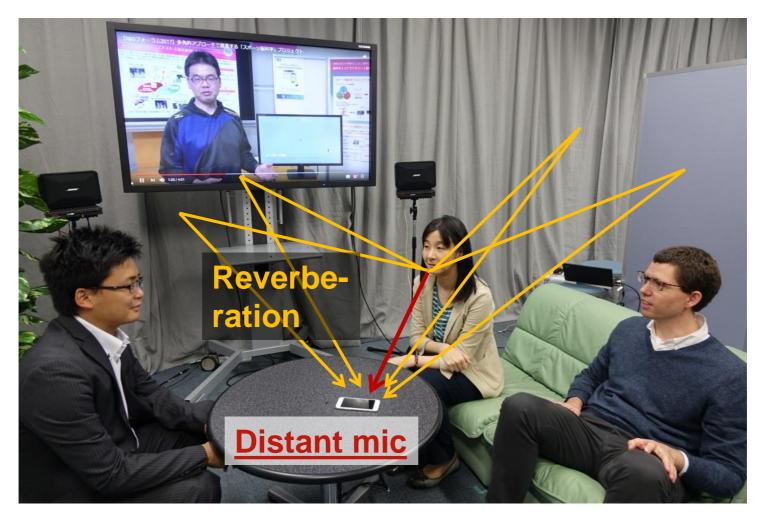


Part III. Dereverberation

Tomohiro Nakatani

Speech recording in reverberant environments

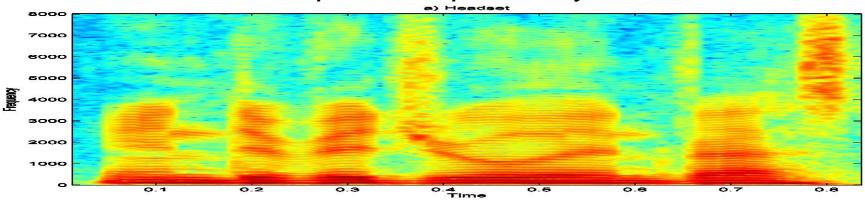


Dereverberation is needed to enhance the quality of recorded speech by reducing reverberation included in it

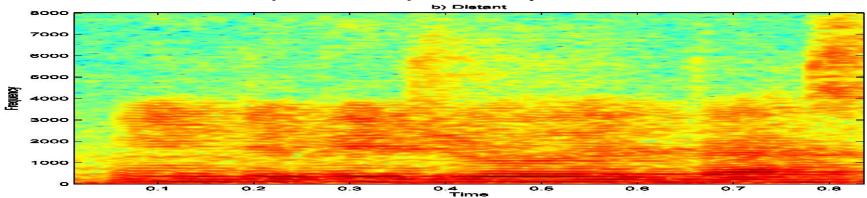
Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Effect of reverberation

Non-reverberant speech captured by a headset



Reverberant speech captured by a distant mic



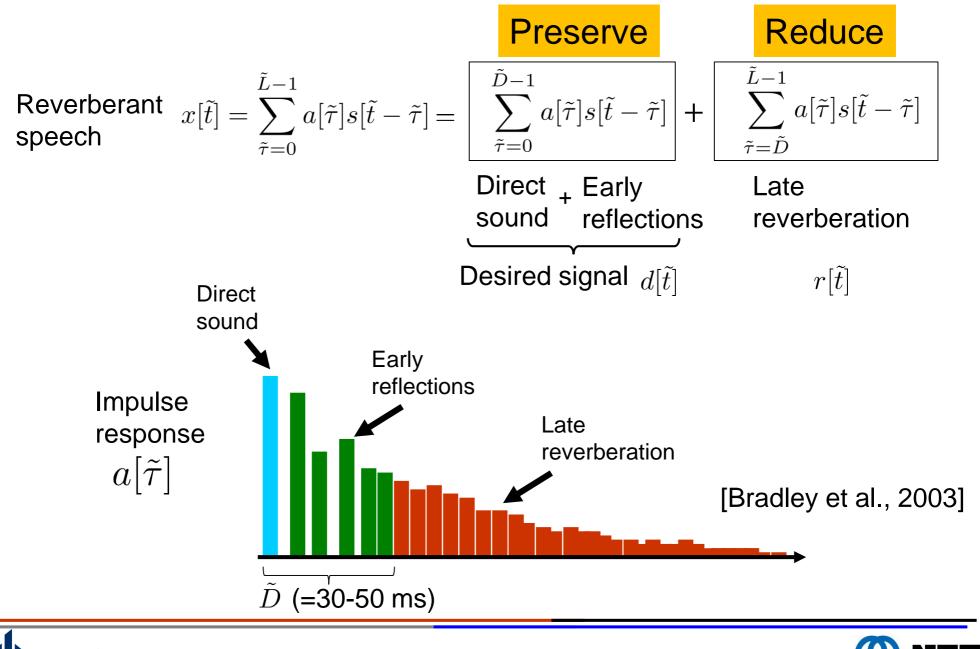
Speech becomes less intelligible and ASR becomes very hard

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Table of contents in part III

- Goal of dereverberation
- Approaches to dereverberation
 - Signal processing based approaches
 - A DNN-based approach
- Integration of signal processing and DNN approaches
 - DNN-WPE

Goal of dereverberation: time domain



Model of reverberation: STFT domain

- Time domain convolution is approximated by frequency domain convolution at each frequency [Nakatani et al. 2008]
 - If frame shift << analysis window (e.g., frame shift <= analysis window/4)

STFT domain
(1-ch)
$$x_{t,f} = \sum_{\tau=0}^{L-1} a_{\tau,f} s_{t-\tau,f} = \begin{bmatrix} Desired signal \\ \sum_{\tau=0}^{D-1} a_{\tau,f} s_{t-\tau,f} \\ \sum_{\tau=D} a_{\tau,f} s_{t-\tau,f} \end{bmatrix} + \begin{bmatrix} \sum_{\tau=D}^{L-1} a_{\tau,f} s_{t-\tau,f} \\ \sum_{\tau=D} a_{\tau,f} s_{t-\tau,f} \end{bmatrix}$$
STFT domain
(multi-ch)
$$x_{t,f} = \sum_{\tau=0}^{L-1} a_{\tau,f} s_{t-\tau,f} = \begin{bmatrix} \sum_{\tau=0}^{D-1} a_{\tau,f} s_{t-\tau,f} \\ \sum_{\tau=0} a_{\tau,f} s_{t-\tau,f} \end{bmatrix} + \begin{bmatrix} \sum_{\tau=D}^{L-1} a_{\tau,f} s_{t-\tau,f} \\ \sum_{\tau=D} a_{\tau,f} s_{t-\tau,f} \end{bmatrix}$$

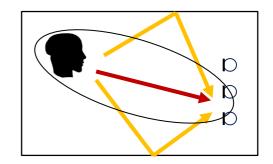
Convolutional transfer function:

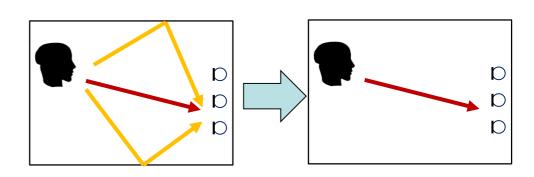
$$\mathbf{a}_{\tau,f} = (a_{1,\tau,f}, a_{2,\tau,f}, \dots, a_{M,\tau,f})^{\top}$$
 for $\tau = 0, \dots, L-1$

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

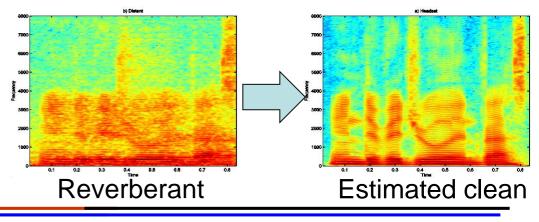
Approaches to dereverberation

- Beamforming (multi-ch)
 - Enhance desired signal from speaker direction
 - Mostly the same as denoising
- Blind inverse filtering (multi-ch)
 - Cancel late reverberation
 - Multi-channel linear prediction
 - Weighted prediction error (WPE) method





- DNN-based spectral enhancement (1ch)
 - Estimate clean spectrogram
 - Mostly the same as denoising autoencoder

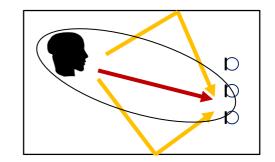


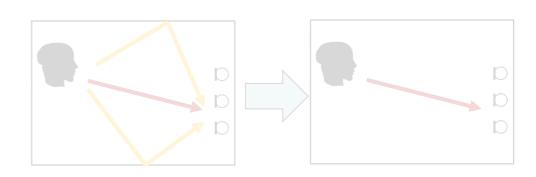
III.7

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

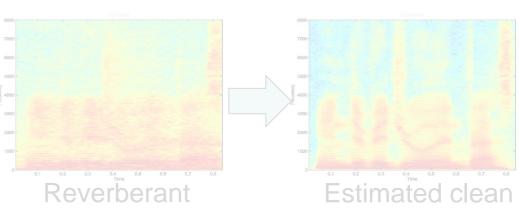
Approaches to dereverberation

- Beamforming (multi-ch)
 - Enhance desired signal from speaker direction
 - Mostly the same as denoising
- Blind inverse filtering (multi-ch)
 - Cancel late reverberation
 - Multi-channel linear prediction
 - Weighted prediction error (WPE) method





- DNN-based spectral enhancement (1ch)
 - Estimate clean spectrogram
 - Mostly the same as denoising autoencoder



III.8

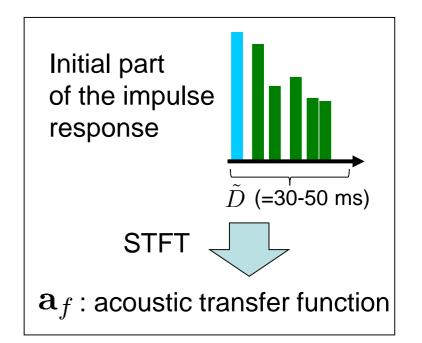
Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Dereverberation based on beamforming

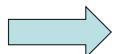
Time domain model of desired signal Time domain $\mathbf{d}[\tilde{t}] = \sum_{\tilde{\tau}=0}^{\tilde{D}} \mathbf{a}[\tilde{\tau}]s[\tilde{t}-\tilde{\tau}]$ Assume $\tilde{D} <<$ STFT window, then

STFT domain
$$\mathbf{d}_{t,f} = \mathbf{a}_f s_{t,f}$$

 $\mathbf{x}_{t,f} = \mathbf{a}_f s_{t,f} + \mathbf{r}_{t,f}$



III.9

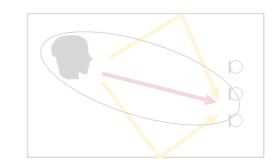


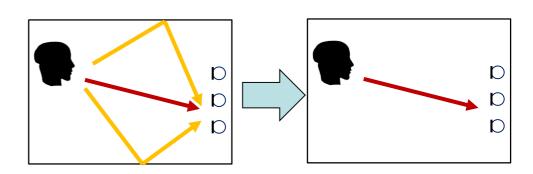
Beamforming is applicable to reduce $\mathbf{r}_{t,f}$

- Techniques for estimating spatial covariances, $\Psi_{\mathbf{dd},f}$ and $\Psi_{\mathbf{rr},f}$
 - Maximum-likelihood estimator [Schwartz et al., 2016]
 - Eigen-value decomposition based estimator [Heymann, 2017b, Kodrasi and Doclo, 2017, Nakatani et al., 2019a]

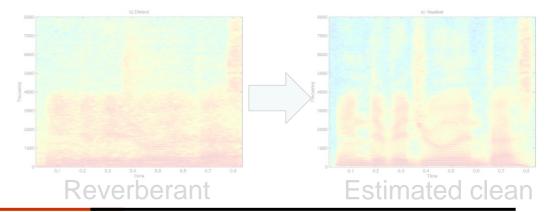
Approaches to dereverberation

- Beamforming (multi-ch)
 - Enhance desired signal from speaker direction
 - Mostly the same as denoising
- Blind inverse filtering (multi-ch)
 - Cancel late reverberation
 - Multi-channel linear prediction
 - Weighted prediction error (WPE) method





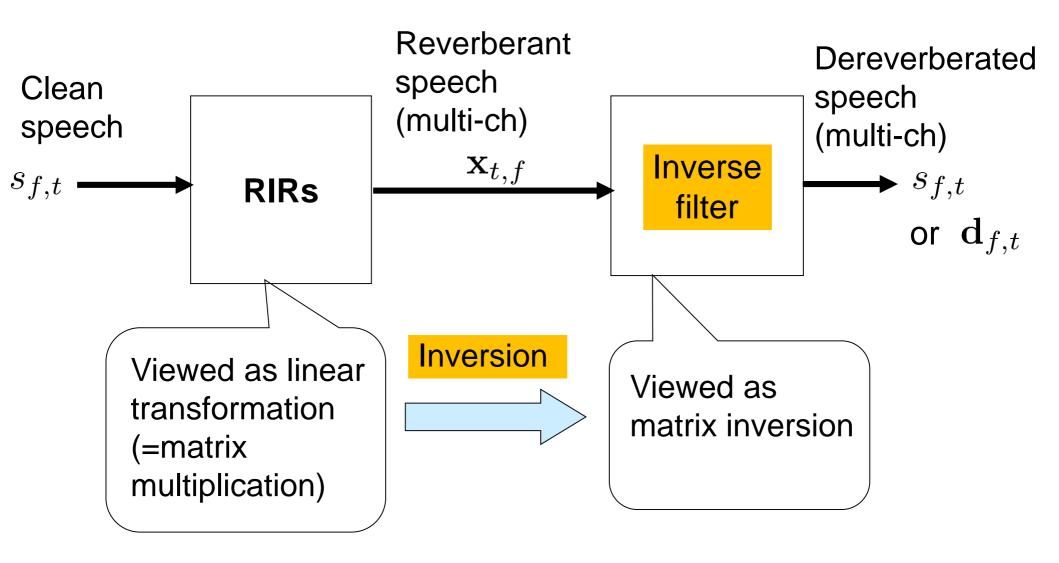
- DNN-based spectral enhancement (1ch)
 - Estimate clean spectrogram
 - Mostly the same as denoising autoencoder



III.10

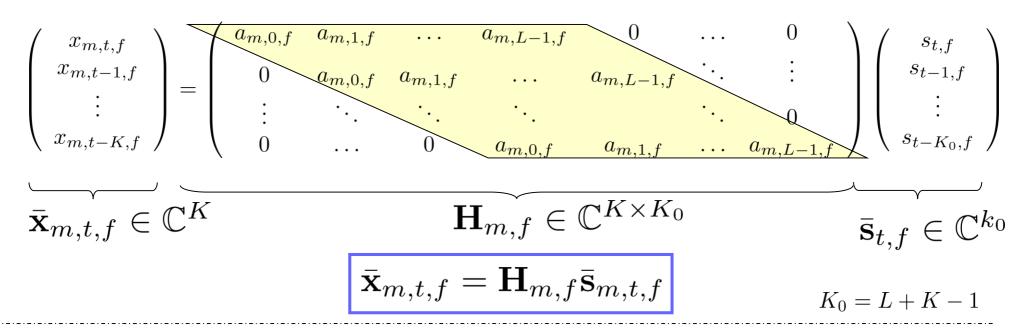
Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

What is inverse filtering



Represent RIR convolution by matrix multiplication

1-ch representation



Multi-ch representation

$$\begin{pmatrix} \bar{\mathbf{x}}_{1,t,f} \\ \vdots \\ \bar{\mathbf{x}}_{M,t,f} \end{pmatrix} = \begin{pmatrix} \mathbf{H}_{1,f} \\ \vdots \\ \mathbf{H}_{M,f} \end{pmatrix} \bar{\mathbf{s}}_{t,f} \quad \bar{\mathbf{x}}_{t,f} = \mathbf{H}_{f} \bar{\mathbf{s}}_{t,f}$$
$$\bar{\mathbf{x}}_{t,f} \in \mathbb{C}^{KM} \quad \mathbf{H}_{f} \in \mathbb{C}^{KM \times K_{0}}$$

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Existence of inverse filter [Miyoshi and Kaneda, 1988]

• Given \mathbf{H}_f , the inverse filter $\bar{\mathbf{W}}_f$ should satisfy

 $\bar{\mathbf{W}}_{f}^{\mathsf{H}}\mathbf{H}_{f} = \mathbf{I}$ **I** : identity matrix

• Solution exists and is obtained as:

 $\bar{\mathbf{W}}_{f}^{\mathsf{H}} = (\mathbf{H}_{f}^{\mathsf{H}}\mathbf{H}_{f})^{-1}\mathbf{H}_{f}^{\mathsf{H}}$

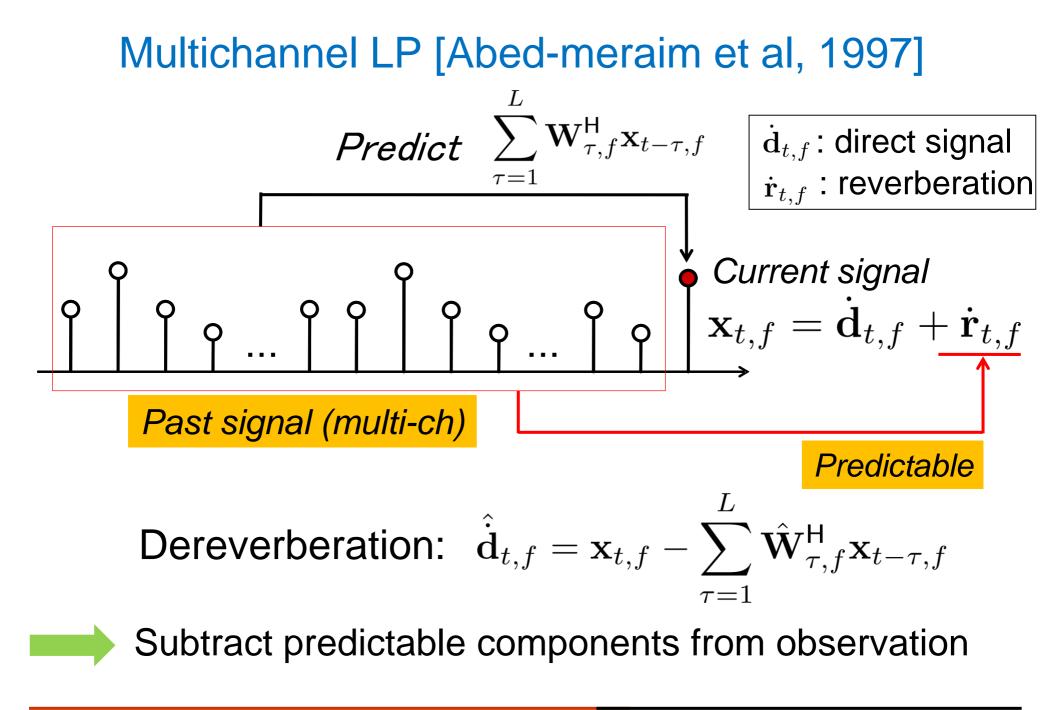
– When \mathbf{H}_{f} is full column rank (roughly #mics>1)

How can we estimate $\bar{\mathbf{W}}_{f}$ without knowing \mathbf{H}_{f} ?

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Approaches to blind inverse filtering

- Blind RIR estimation + robust inverse filtering
 - Blind RIR estimation is still an open issue
 - Eigen-decomposition [Gannot, 2010]
 - ML estimation approaches [Juang and Nakatani, 2007, Schmid et al., 2012]
 - Robust inverse filtering
 - Regularization [Hikichi et al., 2007]
 - Partial multichannel equalization [Kodrasi et al., 2013]
- Blind and direct estimation of inverse filter
 - Multichannel linear prediction (LP) based methods
 - Prediction Error (PE) method [Abed-Meraim et al., 1997]
 - Delayed Linear Prediction [Kinoshita et al., 2009]
 - Weighted Prediction Error (WPE) method [Nakatani et al., 2010]
 - Multi-input multi-output (MIMO) WPE method [Yoshioka and Nakatani, 2012]
 - Higher-order decorrelation approaches
 - Kurtosis maximization [Gillespie et al., 2001]

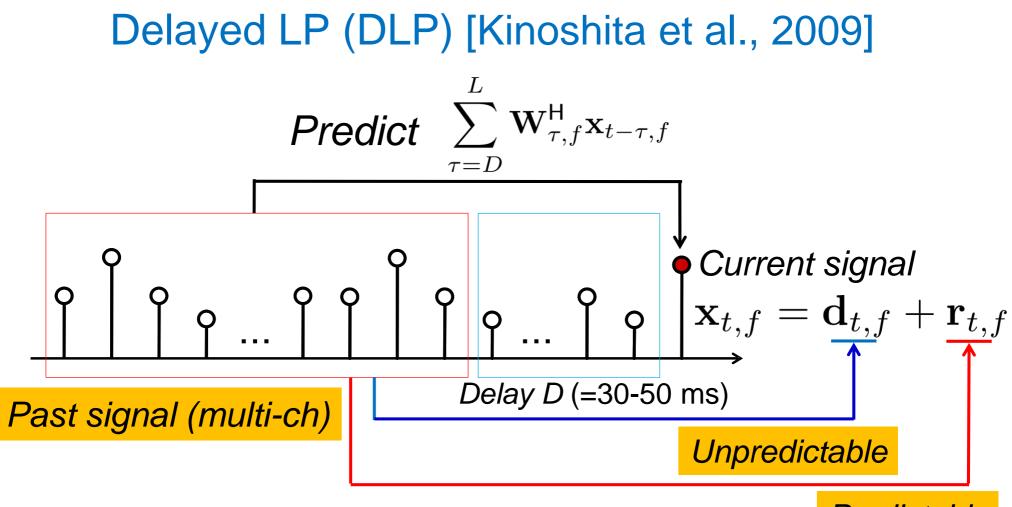


Definition of multichannel LP

Multichannel autoregressive model • $\mathbf{x}_{t,f} = \sum \mathbf{W}_{\tau,f}^{\mathsf{H}} \mathbf{x}_{t-\tau,f} + \dot{\mathbf{d}}_{t,f}$ $\tau = 1$ $\mathbf{W}_{\tau,f} \in \mathbb{C}_{\tau}^{M \times M}$: prediction matrices. – Assuming $\mathbf{d}_{t,f}$ stationary white noise, ML solution becomes $\{\hat{\mathbf{W}}_{\tau,f}\} = \operatorname*{argmin}_{\{\mathbf{W}_{\tau,f}\}} \sum_{t} \|\mathbf{x}_{t,f} - \sum_{\tau=1} \mathbf{W}_{\tau,f}^{\mathsf{H}} \mathbf{x}_{t-\tau,f}\|_{2}^{2}$ - With estimated \mathbf{W}_{τ} , $\dot{\mathbf{d}}_{t,f}$ is estimated (= inverse filtering) as $\hat{\mathbf{d}}_{t,f} = \mathbf{x}_{t,f} - \sum_{\tau} \hat{\mathbf{W}}_{\tau,f}^{\mathsf{H}} \mathbf{x}_{t-\tau,f}$

Problems in conventional LP

- Speech is not stationary white noise
 - LP assumes the target signal d to be temporally uncorrelated
 - Speech signal exhibits short-term correlation (30-50 ms)
 LP distorts the short-time correlation of speech
 - LP assumes the target signal d to be stationary
 - Speech is not stationary for long-time duration (200-1000 ms)
 LP destroys the time structure of speech
- Solutions:
 - Use of a prediction delay [Kinoshita et al., 2009]
 - Use of a better speech model [Nakatani et al, 2010]



Predictable

Delayed LP can only predict $\mathbf{r}_{t,f}$ from past signal

Only reduce
$$\mathbf{r}_{t,f}$$

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Introduction of better source model [Nakatani et al., 2010, Yoshioka et al., 2011]

Model of desired signal: time-varying Gaussian (local Gaussian)

$$p(\mathbf{d}_{t,f};\theta) = N_c(\mathbf{d}_{t,f};0,\sigma_{t,f}^2\mathbf{I})$$
 $\theta = \{\sigma_{t,f}^2\}$: source PSD

• ML estimation for time-varying Gaussian source

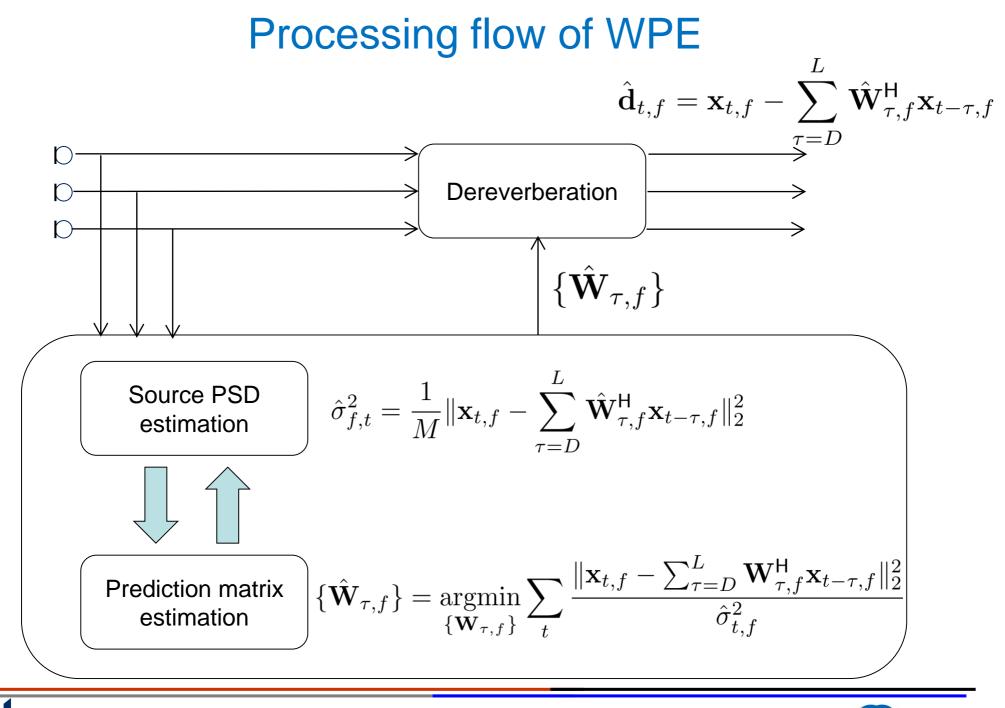
$$\{\hat{\mathbf{W}}_{\tau,f}, \hat{\sigma}_{t,f}^2\} = \operatorname*{argmax}_{\{\mathbf{W}_{\tau,f}, \sigma_{t,f}^2\}} \prod_t \frac{1}{\pi \sigma_{t,f}^2} \exp\left(\frac{-\|\mathbf{x}_{t,f} - \sum_{\tau=D}^L \mathbf{W}_{\tau,f}^{\mathsf{H}} \mathbf{x}_{t-\tau,f}\|_2^2}{\sigma_{t,f}^2}\right)$$

Minimization of weighted prediction error (WPE)

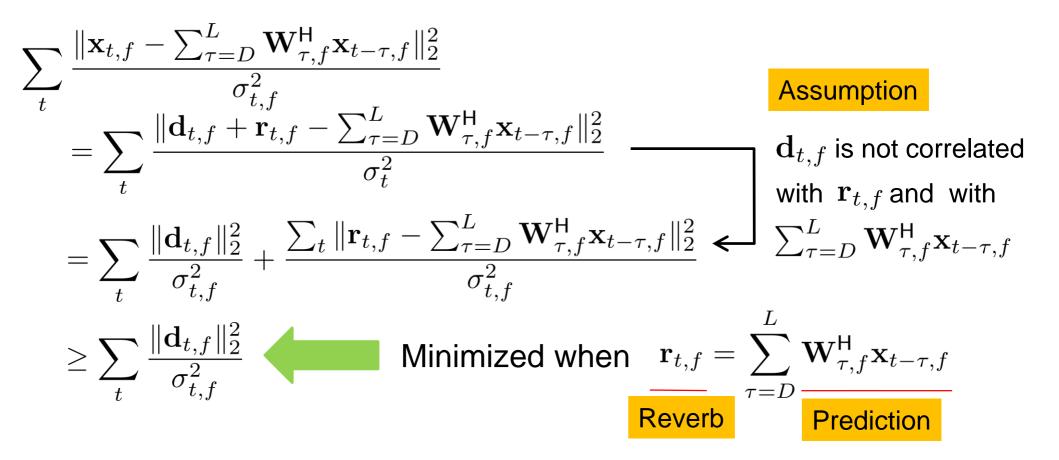
III.19

Blind inverse filtering can be achieved based only on a few seconds of observation

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation



Why WPE achieves inverse filtering?



Existence of $W_{\tau,f}$ is guaranteed when the inverse filter exists

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

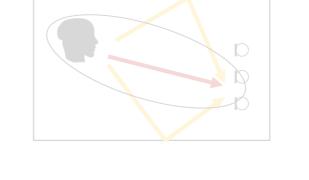
Extensions

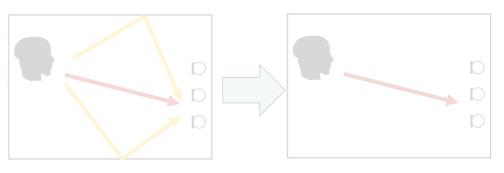
- Elaboration of probabilistic models
 - Sparse prior for speech PSD [Jukic et al., 2015]
 - Bayesian estimation with student-T speech prior [Chetupalli and Sreenivas, 2019]
- Frame-by-frame online estimation
 - Recursive least square [Yoshioka et al., 2009], [Caroselli et al., 2017]
 - Kalman filter for joint denoising and dereverberation [Togami and Kawaguchi, 2013], [Braun and Habets, 2018], [Dietzen et al., 2018]

Approaches to dereverberation

- Beamforming (multi-ch)
 - Enhance desired signal while reducing late reverberation
 - Mostly the same as denoising
- Blind inverse filtering (multi-ch)
 - Cancel late reverberation
 - (Multi-channel) Inear prediction
 - Weighted prediction error method
- DNN-based spectral enhancement (1ch)
 - Estimate clean spectrogram
 - Mostly the same as denoising autoencoder

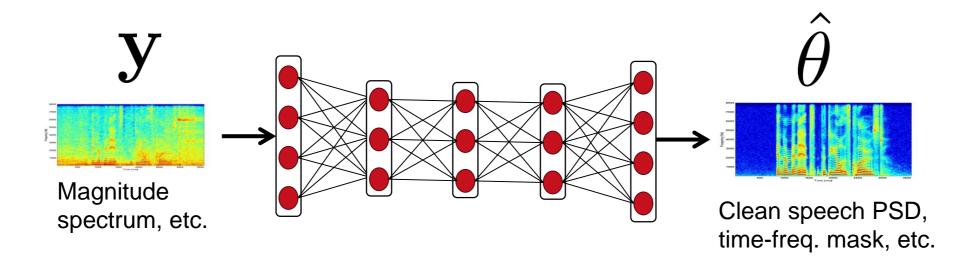
Reverberant





Neural networks based dereverberation

• Train neural networks based on huge amount of parallel data

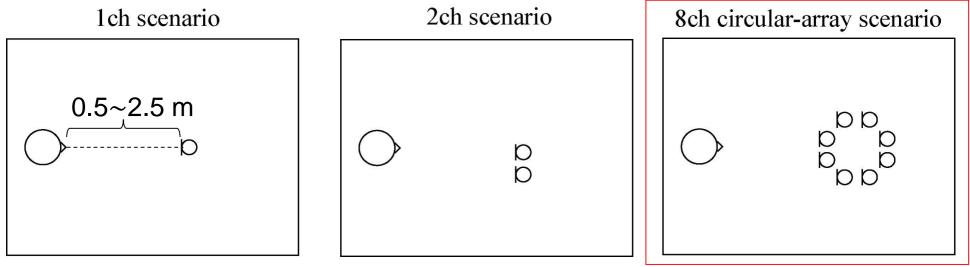


Many variations are proposed depending on tasks (masking/ regression), cost functions, and network structures

[Weninger et al., 2014, Williamson and Wang, 2017]

REVERB Challenge task [Kinoshita et al., 2016]

- Task
 - Speech enhancement
 - ASR
- Acoustic conditions
 - Reverberation (Reverberation time 0.2 to 0.7 s.)
 - Stationary noise (SNR ~20dB)



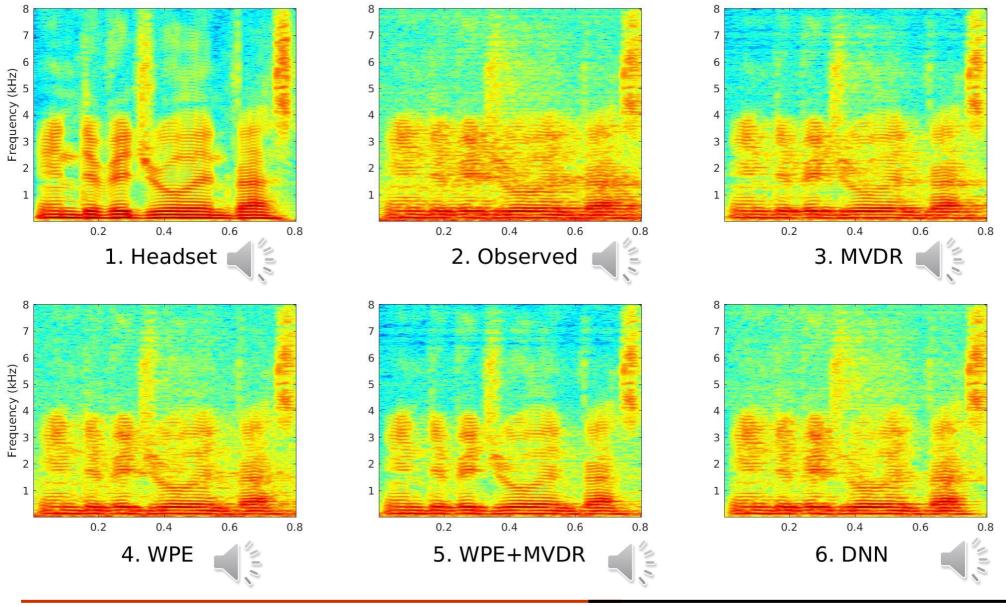
Comparison of three approaches

	Simu data				Real data
	FWSSNR	CD	PESQ	WER	WER
Observed	3.62 dB	3.97 dB	1.48	5.23 %	18.41 %
MVDR	6.59 dB	3.43 dB	1.75	6.65 %	14.85 %
WPE	4.79 dB	3.74 dB	2.33	4.35 %	13.24 %
WPE+MVDR	7.30 dB	3.01 dB	2.38	3.85 %	9.90 %
DNN (soft mask estimation)	7.52 dB	3.11 dB	1.46	7.98 %	23.38 %

FWSSNR: Frequency-weighted segmental SNR CD: Cepstral distortion PESQ: Perceptual evaluation of speech quality WER: Word error rate (obtained with Kaldi REVERB baseline)

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Demonstration

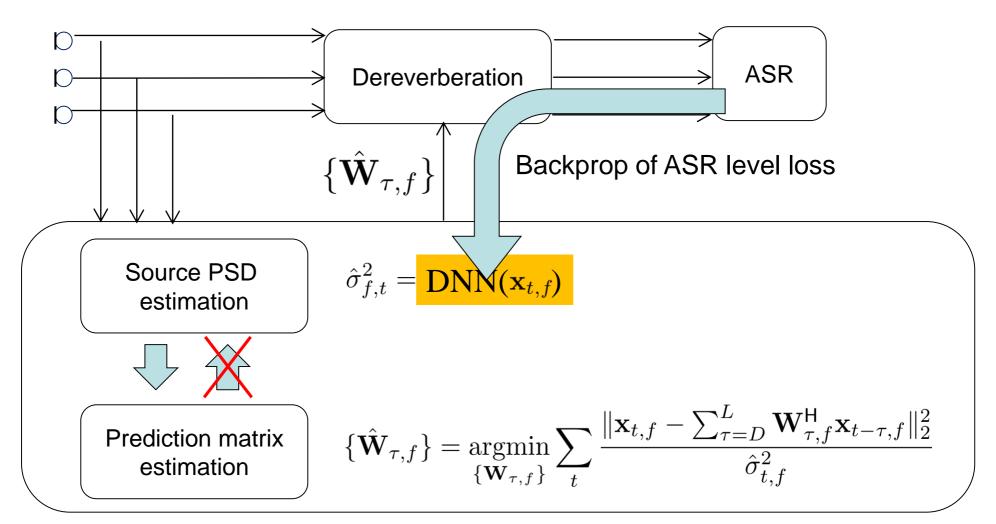


Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Pros and cons of three approaches

	Pros	Cons
Beamforming	 Low computational complexity Capable of simultaneous denoising and dereverberation High contribution to ASR 	Less effective dereverberation
WPE	 Effective dereverberation High contribution to ASR 	 No denoising capability Computationally demanding Iteration required for source PSD estimation
Neural networks	 Effective dereverberation (source PSD estimation with no iterations) 	 Sensitive to mismatched condition Low contribution to ASR

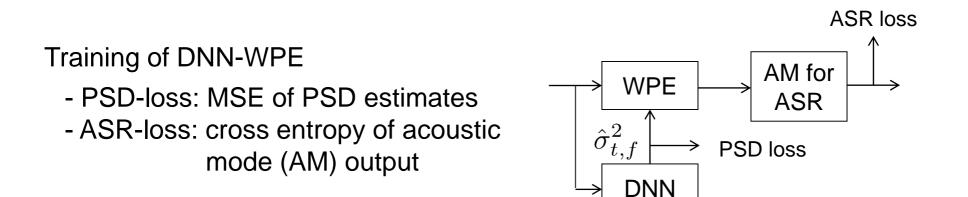
DNN-WPE [Kinoshita et al., 2017, Heyman et al., 2019]



Advantages 1. No iterative estimation → Effective for online processing
 2. DNN can be optimized jointly with an ASR system

Haeb-Umbach and Nakatani, Speech Enhancement - Dereverberation

Effectiveness of DNN-WPE [Heymann et al., 2019]

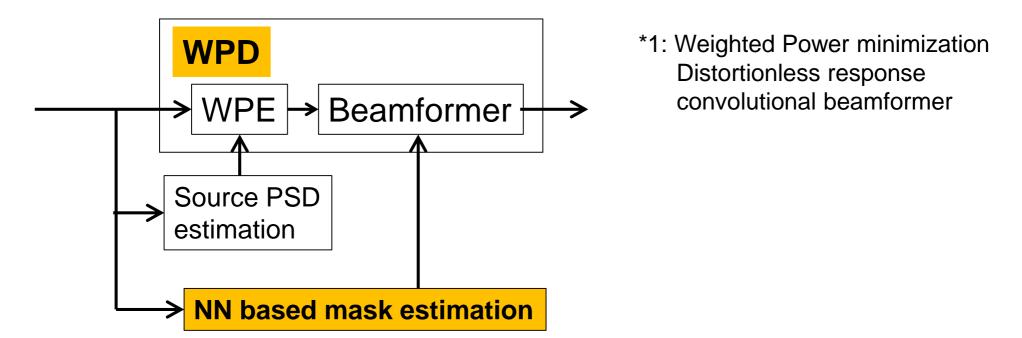


	REVERB (real)		WSJ+VoiceHome	
	Offline	Online	Offline	Online
Unprocessed	17.6		24.3	
WPE	13.0	16.2	18.6	20.0
DNN-WPE (PSD loss)	10.8	14.6	18.1	19.3
DNN-WPE (ASR loss)	11.8	13.4	17.7	18.4

Denoising are not performed, and different ASR backend is used.

Frame-online framework for simultaneous denoising and dereverberation

 WPD*1: a convolutional beamformer integrates WPE, beamformer, and DNN-based mask estimation



Presentation at Interspeech 2019: 12:40-13:00, Mon, Sep. 16 [Nakatani et al, 2019b]

Software

- WPE
 - Matlab p-code for iterative offline, and block-online processing

http://www.kecl.ntt.co.jp/icl/signal/wpe/

 Python code w/ and w/o tensorflow for iterative offline, block-online, and frame-online processing

https://pypi.org/project/nara-wpe/

- WPE, DNN-WPE
 - Python code with pytorch for offline and frame-online processing

https://github.com/nttcslab-sp/dnn_wpe

 Joint optimization of beamforming and dereverberation with end-to-end ASR enabled with espnet (https://github.com/espnet/espnet)

Table of contents

- 1. Introduction
- 2. Noise reduction
- 3. Dereverberation

by Tomohiro by Reinhold by Tomohiro

Break (30 min)

4. Source separation

- 5. Meeting analysis
- 6. Other topics
- 7. Summary

by Reinhold by Tomohiro by Reinhold by Reinhold & Tomohiro

QA

