
Part II.

Noise Reduction – Beamforming

Reinhold Haeb-Umbach



Speech capture in noisy environments

• Forming a beam of increased sensitivity towards the 

desired speaker reduces noise and other distortions
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Distant mics
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Some physics

• In free space, waveform at point i caused by a waveform emitted 

at point j

where lij is distance from position i to j

• Far-field:  lij much larger than inter-microphone distance d

– Plane wave

– Attenuation factor                 the same for all mics

– Signal delay between microphones                 where                    

• Example: for                                                        samples @ 16 kHz
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Delay matters, attenuation does not!

Haeb-Umbach and Nakatani, Speech Enhancement - Beamforming

lij

sj
xi

d



Basics of acoustic beamforming
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Steering vector:

Beamformer output: 

Signal at mth microphone: 

Beamformer coeff.:
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Delay-Sum Beamformer (DSB)
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• Delay-Sum Beamformer:

with phase term

– DSB steered towards geometric angle

• Beampattern:
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Example beampatterns
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inter-element
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large 

inter-element

Distance /

high frequency

Broadside

(here: top/bottom)

Endfire

(here: left/right)   
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From physics to signal processing

Real acoustic environments:

• Reverberation

– Time differences of arrival (TDOAs) inappropriate 

• Wideband beamforming

– Fourier transform domain processing 

• Interferences

– Need appropriate objective functions

• Unknown and time-varying acoustic environment

– Estimation of beamformer coefficients
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Most common model

• Signal at m-th microphone:
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• Short-Time Fourier Transform (STFT):

• Narrowband assumption (multiplicative transfer function approx.):

length of acoustic impulse response << STFT analysis window

– convolution in time domain corresponds to multiplication in STFT domain

• Time-invariant Acoustic Transfer Function (ATF)



ATF vs RTF
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• Scale ambiguity of ATF

• Fix ambiguity: Relative transfer function (RTF)

• Thus our goal is to estimate the image of the source at a 

reference microphone (e.g., mic. #1)
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– Thus, we do not attempt to dereverberate the signal!



Optimal beamforming design criteria: MMSE

• Beamformer output: 
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Add weight µ

Speech Distortion Weighted Multi-channel Wiener Filter

(SDW-MWF)
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• MMSE: 

Results in:

(points to reference microphone)

(spatial covar. matrix of speech)

(spatial covar. matrix of noise)



Optimal beamforming design criteria: M(P|V)DR 

• MPDR: Minimum Power Distortionless Response:

gives 
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• MVDR: Minimum Variance Distortionless Response:

gives



Optimal beamforming design criteria: maxSNR

• Maximize output SNR:

leads to generalized eigenvalue problem.

which can be transformed to ordinary eigenvalue problem by 

Cholesky factorization:  
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Solution:

(Notation:             Eigenvector corresponding to largest Eigenvalue of A)



Rank-1 Constraint
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Narrowband (rank-1) assumption: 

Use in SDW-MWF: gives1: 

With µ=0 we obtain

Enforcing rank-1 constraint on maxSNR beamformer gives

All beamformers point in same direction

and differ only in complex (freq.dep.) constant

1 employ matrix inversion lemma



Beamforming Criteria: Discussion

• maxSNR beamformer introduces speech distortions, while 

MVDR does not

– Can be compensated by postfilter [Warsitz and Haeb-Umbach, 2007]

• There is no unanimous opinion which of the beamformers

performs best for enhancement for ASR

– Advice: try out all of them

• A good estimate of the spatial covariance matrices is more 

important
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How do we estimate the spatial covariance matrix?

• Spatial covariance estimation:
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where: speech presence prob. (SPP), speech mask

noise presence prob., noise mask



How do we estimate the RTF?
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• Estimation of RTF     :

– Solve above (generalized) eigenvalue problem:

– Exploit nonstationarity of speech [Gannot et al., 2001] – not described here

• Advice: use beamformer formulation, which avoids explicit 

computation of RTF, e.g.,

[Souden et al., 2010]



Summary: processing steps
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Beamforming coeff.

computation

2nd-order statistics

estimation

Speech / noise presence

prob. estimation
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e.g.:

to be discussed next!



Speech Presence Probability (SPP) / mask estimation

• Estimate for each tf-bin, the probability that it contains speech 

and the probability that it contains noise, using

– spatial information

– or spectral information

– or both
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Given: Wanted:
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Options for SPP estimation

• Hand-crafted spectro-temporal smoothing

• Spatial mixture models

• Neural networks
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• Mixture model for vector of

microphone signals

or for representation derived from it

Spatial mixture model

• Sparsity assumption [Yilmaz and Rickard, 2004]

– 90% of the speech power is concentrated 

in 10% of the tf-bins

– sparsity most pronounced 

for STFT window lengths of approx 64 ms
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Example spatial mixture model

• Complex angular central Gaussian (cACG) Mixture Model for 

normalized observation vector

[Ito et al., 2016]:
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Parameter estimation
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• Parameter Estimation via Expectation Maximization (EM) alg.

– E-step: estimate source activity indicator        for all t, f and i =0,1

– M-step: estimate model parameters:

– Iterate until convergence

• Actually, we are only interested in 

Note: separate EM for each frequency causes frequency permutation problem:

In one frequency i=1 may stand for speech, in another for noise!

Permutation solver required, e.g. [Sawada et al., 2011]

(or use permutation-free model with time-variant mixture weights [Ito et al., 2013])



SPP estimation with neural network

• SPP as supervised learning problem

– Mask estimation formulated as 

classification problem

– Objective function: binary cross entropy:
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• Note: masks need not sum up to one!



Example configuration

• Input: spectral magnitudes

• Output: speech and noise masks
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Layer Units Type Non-linearity pdropout

L1 256 BLSTM Tanh 0.5

L2 513 FF ReLU 0.5

L3 513 FF ReLU 0.5

L4 1026 FF Sigmoid 0.0



Example masks
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Beamforming coeff.

computation

2nd-Order Statistics

Estimation

Speech Presence Prob.

(SPP) estimation
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Demonstration NN-based mask estimation
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Beamforming coeff.

computation

2nd-Order Statistics

Estimation

Speech Presence Prob.

(SPP) estimation



ASR results: Spatial mixture model mask estimation

• CHiME-3 (2015) [Barker et al., 2017]

– WSJ utterances

– „Fixed“ speaker positions

– Low reverberation

– Noisy environment: bus, café, street, pedestrian

– Trng set size: 18 hrs x 6 channels

• The winning system [Yoshioka et al., 2015,

Higuchi et al., 2016] used a cACGMM

spatial mixture model:  

II.28

WER [%]

Dev

Real

Test 

Real

No beamforming 9.0 15.6

DSB with DoA estimation 9.4 16.2

Spatial mixture model 4.8 8.9
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ASR results: Neural network mask estimation

• CHiME-3 [Heymann et al., 2015]

– Absolute WER values not comparable with last slide (different acoustic 

model, language model, data augmentation)
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WER [%]

Dev

Real

Test 

Real

No beamforming 18.7 33.2

NN supported beamforming 10.4 16.5

• CHiME-4 (2016): 

– All top 5 systems used mask-based beamforming

(either NN or spatial mixture model)
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Extensions
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• Spatial mixture models

– Other mixture models, e.g., Watson MM [Tran Vu and Haeb-Umbach, 2010]

– On test utterance, with NN-based masks as priors 

[Nakatani et al., 2017]

• NN-Supported Beamforming

– Cross-channel features, e.g., [Liu et al., 2018]

– Block-online processing, e.g., [Boeddeker et al., 2018]

– Used for dereverberation [Heymann et al., 2017b]
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Pros and cons of two mask estimation methods

Spatial mixture models Neural networks

Spatial characteristics 

modeling

• Strong • Moderate (use of cross-

channel features at input)

Spectro-temporal 

characteristics modeling 

(for speech)

• Weak

- Permutation problem

• No concept of human 

speech (pros and cons)

• Very strong

- Strong speech model 

based training

#channels required • Multi-channel • Single channel

Leverage training data • No training phase • Yes, but parallel data 

required

Adaptation to test 

condition

• Strong 

- Unsupervised learning 

applicable

• Weak 

- Poor generalization

- Sensitive to mismatch
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Table of contents in part II

• Some physics

• From physics to signal processing

• „Informed“ beamforming:

– Speech presence probability estimation

• Spatial mixture models

• Neural networks

• Speaker-conditioned spectrogram masking
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Speaker-Conditioned Spectrogram Masking
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• In many application, we may be interested in recognizing speech 

from a target speaker even if there is noise or other people 

speaking, e.g., smart speaker

 Target speaker extraction

– Known target speaker position  use beamformer to extract speech 

from that direction

– Unknown target speaker position  extract speaker based on his/her 

speech characteristics (SpeakerBeam)

• Idea of SpeakerBeam

– NN for mask estimation can well discriminate a target speaker from noise, 

but not when interference is another speaker

– This can be improved if the mask estimator is informed about the speaker to 

be extracted

– We assume that we have about 10 sec. of enrollment/adaptation utterance 

spoken by the target speaker
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SpeakerBeam [Zmolikova et al., 2017]
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Target Speaker

Adaptation 

layer

Speech mixture

Time Frequency mask 

of the target speaker

Time avg.

Auxiliary network

• Adaptation layer

– Drive NN to output mask for the target 

speaker only, given target speaker 

embedding

– Different implementations possible, e.g. 

factorized layer, scaling, etc.

• Auxiliary network

– Compute speaker embedding given the 

enrollment/adaptation utterance

– Implemented using sequence summary 

network [Vesely et al. 2016]

– Jointly optimized with mask estimation 

NN

• SpeakerBeam performs 1ch processing 

to compute mask, but it can be 

combined with beamforming for multi-ch

processing

Speaker 

embedding



Results [Zmolikova et al., 2019]

• WSJ2mix-MC

– Artificial 2-speaker mixtures from WSJ utterances

– 1ch no reverberation

– 8 channels with reverberation T60 = 0.2 – 0.6 s
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WER [%] 1 ch (no reverb) 8 ch (w/ reverb)

Single speaker 12.2 16.2

Mixtures 73.4 85.2

SpeakerBeam (1ch) 30.6 -

SpeakerBeam + 

Beamformer

- 22.5

SpeakerBeam + 

Beamformer

(w/ AM joint training)

- 20.7



Software
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• Spatial mixture models: https://github.com/fgnt/pb_bss

– Different spatial mixture models

• complex angular central Gaussian , complex Watson,von-Mises-Fisher

– Methods: init, fit, predict

– Beamformer variants

– Ref: [Drude and Haeb-Umbach, 2017]

• NN supported acoustic beamforming: 

https://github.com/fgnt/nn-gev

 NN-based mask estimator and maxSNR beamformer

 Ref: [Heymann et al., 2016]

 Part of Kaldi CHiME-3 baseline
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https://github.com/fgnt/pb_bss
https://github.com/fgnt/nn-gev


Summary of part II

• Acoustic beamforming as a front-end for ASR

– Exploits spatial information present in multi-channel input for noise 

suppression, which typical ASR feature sets (log-mel, cepstral) ignore 

– Leads to significant WER improvements

• SPP / Mask estimation is key component of beamformer

– Both, spatial mixture models and neural networks are powerful mask 

estimators with complementary strengths

• Acoustic beamforming followed by DNN-based ASR is a typical 

representative of a combination of signal processing approaches 

with deep learning

– Leads to interpretable, lightweight system compared to a NN with multi-

channel input 
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But what about overall optimality? We‘ll come back to that…
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