

Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker

Topic 4: FEM Magnetics Toolbox

Extension of the FEM Magnetics Toolbox for time domain simulation

6. April 2023

Intro: FEM Magnetics Toolbox

Intro: FEM Magnetics Toolbox

E FEM Magnetics Toolbox		- 🗆 X
Manual Design Automated Design		
Definition Excitation Simulation		
Simulation Definition	Winding Scheme	Update Preview
Simulation Type inductor	Number Turns Winding 1 25	Gmsh Visualisation
Core Definition	Winding Scheme Winding 1 Square	· · · · · · · · · · · · · · · · · · ·
Material N95 -	Air Gap Definition	
Manual	No. of Air Gaps 0 * Method Percent *	· · · · · · · · · · · · · · · · · · ·
2D axisymmetric core parameters		
Window Height [m] 0.03 Core inner diameter [m] 0.02 Window Width [m] 0.011	Winding Isolation	
Winding 1: Conductor Definition	P2P [m] 0.0005	
Winding Material copper • Wire Type Litz Wiri •	Core Isolation (Bobbin)	
Litz from database Manual	Core2Cond top [m] 0.001 Core2Cond inner [m] 0.001	
Manual wire parameters	Core2Cond bottom [m] 0.001 Core2Cond outer [m] 0.001	
Wire Radius [m] 0.0015		
Implicit Litz Rad * Fill Factor 0.6		
Number Strands 600 Strand Radius [m] 35.5e-6		

Previous Work Example

Basics: Losses in Magnetic Components

windings

solid

strands

skin effect and proximity effect

Basics: Losses in Magnetic Components

Die Universität der Informationsgesellschaft

This project: time domain simulation

LEA

Example: Dual Active Bridge

in PE often non-sinusoidal flux:

- for linear material: superposition
- For non-linear material: time domain

This project: time domain simulation

Integrate an existing code example into our framework

Material data for time domain simulations

Getting material data for time domain simulations

- Magnet database, contains lot of real-world measurements
- Use neuronal networks / machine learning to get the data for different wave forms

Flux Density vs Frequency and Power Loss

Princeton Power Electronics Research Lab

Goals

- Extend the FEMMT project with the capability for time domain simulations
- Use MagNet database to provide material data for the time domain simulation
- Validate the simulations with a commercial FEM tool (ANSYS Maxwell or Comsol Multiphysics)

This Project: time domain simulation

Skills (you can learn / improve)

- FEM (open source environment ONELAB)
- Neuronal networks / machine learning
- Python
- Version Control System (Git)
- Power Electronics

This Project

Deadlines / Organisation

- Make appointment for mandatory interview via mail to piepenbrock@lea.upb.de until Tuesday Apr 11th, 8am
- Interviews take place on Wednesday Apr 12th
- If you have time limits for April 12th, please include that in the email. We will try to take it into account.
- Possible topics in interview:
 - Power electronics
 - Law of induction
 - -Power Electronics and Electrical DrivesContact:Paderborn UniversityTill Piepenbrock, M.Sc.D-33098 Paderborn, GermanyResearch AssistantD-33098 Paderborn, GermanyEmail: piepenbrock@lea.upb.deWeb: lea.upb.de

GENERAL INFORMATION

- Self managed group work
- You are responsible for your results
- 9 credits (= 270 h workload)
- Time range \approx 6 month with 10 h per week
- Meetings are held every week
- Not every applicant can be admitted to the project, since the number of participants is limited

Questions?

