

Leistungselektronik und Elektrische Antriebstechnik Prof. Dr.-Ing. Joachim Böcker

Topic 3: Calorimetric Measuring Chamber Optimization

Improvement of a compensating temperature measurement system

6. April 2023

Intro: Calorimetric Test Chamber

Intro: Calorimetric Test Chamber

Problems

- Long system settling time (> 5h)
 - Water temperature is key problem

Problems

- Vulnerable to disturbances
 - Open window in laboratory

time in h

Introducing a control for chamber temperature and cooling water temperature

Measurement time < 2 hours

Die Universität der Informationsgesellschaft

Project task: Practical implementation

LEA

PART I

- System Analysis
 - Identifying control variables
 - Simulation in Matlab/Python
- Prototype control for single operating points

PART II

- Practical implementation
 - Active pre-heating/-cooling for multiple operating points
 - Schematic and PCB Design

PART III

- Practical implementation
 - Integration in the existing project
 - Control loop dimensioning
 - Microcontroller programming
- Validation of loss measurements for multiple
 operating points

Project task: Practical implementation

PART I

System Analyr
Identrian in trol variables
S¹
Provention of the single operating points

PART II

- Practical imple in the second s
 - دic and PCB Design د

PART III

Practical implementation

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

- Integration in the existing project
- Control loop dimensioning
- Microcontroller programming
- Validation of loss measurements for multiple operating points

Project Task: Skills

Skills (you can learn/improve)

- Calorimetric measurement
- Power electronics
- Control loop programming
- C and Matlab programming
- PCB design
- Version-control-system (Git)
- Lab work

This Project

Deadlines/Organisation

- Make appointment for mandatory interview via mail to piepenbrock@lea.upb.de until Tuesday 11th, 8am
- Interviews take place on Wednesday April 12th
- If you have time limits for April 12th, please include that in the email. We will try to take it into account.
- Possible topics in interview:
 - Power electronics
 - Thermal management
 - Programming
 - Control (P/PI/PID-Controller)

Power Electronics and Electrical Drives Paderborn University D-33098 Paderborn, Germany Web: lea.upb.de

.

GENERAL INFORMATION

- Self managed group work
- You are responsible for your results
- 9 credits (= 270 h workload)
- Time range \approx 6 month with 10 h per week
- Meetings are held every week
- Not every applicant can be admitted to the project, since the number of participants is limited

