





**PG SS 2023 Dynamic System Exploration** 

04/06/2023

Wilhelm Kirchgässner Marvin Meyer Dr.-Ing. Oliver Wallscheid

## **Dynamic Systems**



- Differential equations
  - Ordinary or partial
- Can be represented in state-space
- Solving initial value problems
- Real-world systems need to be identified
- Data-driven learning







## Control, Identification, and Excitation Planning







Mathematical model (Identification)

**Control Input (Excitation)** 

Reference Signals (Requested state)





Measurement (System response)



### **Online Design of Experiments**



- Which reference signals should be generated to maximize learning per time?
- Data-driven and/or learnable algorithm should consider:
  - Previously generated reference trajectories
  - Visited states
  - Input-, state-, and output space coverage
  - System constraints
- Safety critical applications









#### **Potential Algorithms to Investigate During this Project**



- Neural ordinary differential equations
- Tree Parzen estimator/ Gaussian processes (Bayesian optimization)
- Invertible neural networks
- Variational AutoEncoder/ Diffusion Model
- Reinforcement Learning
- Heuristics based on model predictive control



## **Dynamic System Exploration**



# Thank you for your attention

#### **Contact:**

Power Electronics and Electrical Drives

**Paderborn University** 

D-33098 Paderborn, Germany

Email: {kirchgaessner, meyer, wallscheid}@lea.upb.de

Web: https://ei.uni-paderborn.de/lea/personal/arbeitsgruppe/mitarbeiter

