

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

PADERBORN UNIVERSITY The University for the Information Society

Abschlusspräsentation des Semesterprojekts

Hochkompakter, hocheffizienter 48 V-12 V DC-DC-Wandler für Elektrofahrzeuge in einem Gehäuse mit Wasserkühlung

Projektgruppe Leistungselektronik

Hendrik Becker, Christian von Germeten, Ismail Sarwar, Hasnain Rajput

Einführung

- Leiterplatten-Modifikation
- Neuaufbau der Magnetik
- Gehäuse-Entwurf
- Messergebnisse

Einführung

- Leiterplatten-Modifikation
- Neuaufbau der Magnetik
- Gehäuse-Entwurf
- Messergebnisse

http://magazine.fev.com/de/der-fev-hecs-ecobrid-mit-48-volt-hybridisierung/

PADERBORN UNIVERSITY

Ausgangssituation

[Fischer u.a 2019]

Projektgruppe Leistungselektronik

Eigenschaften

- Ausgangsleistung: 1 kW
- Maximaler Wirkungsgrad: 96,8 %
- Wirkungsgrad bei Volllast: 94,2 %

- Modifikation der Platine
- Modifikation der Magnetik
- Integration in Gehäuse

[Fischer u.a 2019]

NIVFRSITY

Einführung

Leiterplatten-Modifikation

- Neuaufbau Magnetik
- Gehäuse-Entwurf
- Messergebnisse

Leiterplatten-Modifikation

Leiterplatten-Modifikation

Leiterplatten-Modifikation

Projektgruppe SS-2019

PCB-Modifikation Vorderseite WS 18 -> SS 19

PCB-Modifikation Vorderseite WS 18 -> SS 19

PCB-Modifikation Vorderseite WS 18 -> SS 19

- Näher zu den MOSFETs verschoben
 - Besserer Anschluss der Spulen

eite WS 18 -> SS 19

seite WS 18 -> SS 19

• SMD Steckleisten auf der Rückseite

• Strommessung auf der Rückseite

PCB-Modifikation

Einführung

- Leiterplatten-Modifikation
- Neuaufbau der Magnetik
- Gehäuse-Entwurf
- Messergebnisse

Neuaufbau der Magnetik

Ausgangspunkt: Simulationen der Vorgruppe WS 18

- Rückleiter kann verkleinert werden (blaues Rechteck)
- Außenschenkel können gekürzt werden
- Spulen mit rechteckiger Form verlustärmer

[Fischer u.a 2019]

Ferrit mit Spule WS 2018

Ferrit mit Spule SS 2019

Ausgangspunkt: Simulationen der Vorgruppe WS 18

- Rückleiter kann verkleinert werden (blaues Rechteck)
- Außenschenkel können gekürzt werden
- Spulen mit rechteckiger Form verlustärmer

[Fischer u.a 2019]

Ferrit Material	N95
Kerndurchmesser	12 mm
Windungsdurchmesser Innen	14 mm
Kantenlänge Außen	28 mm
Kupferstärke der Windungen	400 μm (2 x 200 μm)
Windungen	7
Luftspalt	500 μm

Isolation zwischen Windungen mit Kaptonfolie

Einführung

- Leiterplatten-Modifikation
- Neuaufbau der Magnetik
- Gehäuse-Entwurf
- Messergebnisse

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden

RahmenKühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden
 - Rahmen
 Kühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden
 > Rahmen
 > Kühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden
 > Rahmen
 > Kühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 - > Unterboden
 - ➢ Rahmen
 - ➤ Kühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden
 > Rahmen
 > Kühlkörper

- Entwurf mittels Solidworks
- Material: Aluminium
- Volumen: 0,73 dm³
- Bestehend aus 3 Komponenten
 > Unterboden
 > Rahmen
 - ➤ Kühlkörper

Einführung

- Leiterplatten-Modifikation
- Neuaufbau der Magnetik
- Gehäuse-Entwurf
- Messergebnisse

NIVFRSITY

Effizienz

Oszilloskop-Messungen

Oszilloskop-Messungen

Zusammenfassung

	Coilcraft- Spule	Gekoppelte Magnetik WS18	Gekoppelte Magnetik SS19	Veränderung WS18->SS19
$\eta_{ m max}$	94,3 %	96,8 %	97 %	+0,2 %
$\eta_{1\mathrm{kW}}$	92,2 %	94,2 %	94 %*	-0,2 %*
P _{loss, 1 kW}	85 W	62 W	63,28 W*	+1,28 W*

[Fischer u.a 2019]

PADERBORN UNIVERSITY * approximiert

Power Electronics and Electrical Drives Prof. Dr.-Ing. Joachim Böcker

Vielen Dank für Ihre Aufmerksamkeit!

Neuaufbau Magnetik

Induktivität 200 kHz [µF]		Widerstand 200 kHz [mΩ]		Widerstand DC [mΩ]	
SS 19	WS 18	SS 19	WS 18	SS 19	WS 18
16,77	16,7	185,4	189	0,96	5,5
16	17,7	116,6	188	0,63	5,7
16,2	15,7	196,9	174	0,91	5,3
15	16,9	106,8	170	0,66	5,2

[Fischer u.a 2019]

Oszilloskop-Messungen

Oszilloskop-Messungen

Hardware

Tiefsetzsteller

Schaltungstopologie

Hardware

Stromrippel

Hardware

Stromrippel

ERBORN

VFRSITY

Stromrippel

