

Übung 9: Permanent erregter Gleichstrommotor

Gegeben sei ein permanent erregter Gleichstrommotor für eine Arbeitsmaschine mit folgenden Daten:

- Bemessungsleistung $P_n = 24,8 \,\mathrm{kW}$
- Bemessungsdrehmoment $T_n = 69,6 \,\mathrm{Nm}$
- Bemessungsstrom $I_{a,n} = 64, 4 \,\mathrm{A}$
- Ankerwiderstand $R_a=0,188\,\Omega$ be
i $\vartheta=125\,^{\circ}\mathrm{C}$
- Trägheitsmoment (mit Arbeitsmaschine) $J = 1,12 \,\mathrm{kgm^2}$

Der Motor werde mit der Bemessungsspannung im Leerlauf betrieben. Die Ankerinduktivität und der Spannungsabfall an den Kohlebürsten seien vernachlässigbar.

Der maximal zulässige Ankerstrom betrage $I_{a,\text{max}} = 190 \,\text{A}$.

- a) Berechnen Sie den benötigten Vorwiderstand R_v für das Anfahren des Motors aus dem Stillstand.
- b) Bei welcher Drehzahl kann der Vorwiderstand gebrückt werden?
- c) Berechnen und skizzieren Sie den Drehzahlverlauf n(t). Nach welcher Zeit t_B kann der Vorwiderstand gebrückt werden?
- d) Skizzieren Sie den Verlauf des Ankerstroms i_A
- e) Nach welcher Zeit t_n hat der Motor seine Bemessungsdrehzahl erreicht?

Der Motor werde nun an einer regelbaren Spannungsquelle im Leerlauf betrieben.

- f) Geben Sie einen geeigneten Spannungsverlauf $u_a(t)$ an, damit der Motor in möglichst kurzer Zeit seine Bemessungsdrehzahl erreicht.
- g) Nach welcher Zeit $t_{\tilde{n}}$ hat der Motor jetzt seine Bemessungsdrehzahl erreicht?