

Übung 6: Radiallager

Gegeben sei das folgende 8-polige Radiallager:

Jeder Pol der Anordnung weist eine Polfläche $A_{\rm Pol}=1,2{\rm cm}^2$ auf. Zudem wird jeder Pol von einer Wicklung mit N=300 Windungen umgeben, die jeweils mit einem Vormagnetisierungsstrom $I_0=2,2{\rm A}$ durchflossen werden. Der Luftspalt δ zwischen den Polen und dem 9kg schweren Rotor beträgt 0,8 mm. Für die Berechnungen kann für das Statormaterial eine realtive Permeabilität $\mu_{\rm r,Fe}=\infty$ angenommen werden.

- a) Wie groß ist die Flussdichte im Luftspalt, wenn die Spulen nur mit dem Vormagnetisierungsstrom bestromt werden?
- b) Wie groß sind die Flussdichten im linken- (B_{-}) und rechten (B_{+}) Luftspalt, wenn die Spulen mit einem zusätzlichen Strom $I_x = 1,2A$ bestromt werden?
- c) Welche Kraft wird dann auf das zu lagernde Objekt ausgeübt?
- d) Welcher Strom I_x muss fließen, um genau die Gewichtskraft des Rotor tragen zu können? (Annahme: $g \approx 10 \frac{\text{m}}{\text{s}^2}$)
- e) Berechnen Sie die Kraft-Strom Konstante k_i .
- f) Berechnen Sie die Kraft-Weg Konstante k_x .