

Exercise 4: Permanent Magnet

The arrangement shown, consists of a permanent magnet made of neodymium-iron-boron (NdFeB). For the magnet, $l_m=1$ cm, $A_m=2$ cm². For the air gap, d=1.25 mm and $A_l=1$ cm². (The magnetic resistance of iron $R_{\rm Fe}\approx 0$ A/Vs (i.e $\mu_{\rm r}=\infty$).

- a) Determine flux ϕ in the air gap at an ambient temperature of $\theta = 60$ °C. (Use corresponding curves from the data provided below).
- b) What is the force F_l in the gap?
- c) How much is the force F_l at an ambient temperature of $\theta = 150$ °C?
- d) What is the maximum permissible air gap length d so that, no irreversible demagnetization to the permanent magnet occurs at an ambient temperature of $\theta = 150$ °C?

