Exercise 3

The magnetic arrangement shows a winding of N = 50 turns over an iron core. A DC current of I = 10 A flows through the winding. As shown in the figure, an air gap of length d = 0.2 mm exists in the flux path. The following data holds true for the iron core.

$$I_{Fel}$$
= 15 cm, I_{Fe2} = 7 cm, A_{Fel} = 4 cm², A_{Fe2} = 2 cm², μ_r = 4000

- a) Draw a sketch showing the profile of the generated magnetic flux ϕ .
- b) Draw the electrical equivalent of the magnetic circuit.
- c) Calculate the magnetic flux density b_L and the magnetic flux ϕ_L in the air gap.
- d) Plot the magnetic flux ϕ_L graphically as a function of gap length d.
- e) Calculate the magnetic energy in the iron and air gap.
- f) Calculate the mass m (shown in figure), which can maintain the arrangement.
- g) Calculate the stiffness of the assembly.