

Exercise 5: Boost Converter with Peak-Current-Mode Control

A widely used alternative to Pulse Width Modulation (PWM) are the so called Peak-Current-Mode (PCM) and Average-Current-Mode (ACM). Peak-Current-Mode with constant switching frequency turns on the transistor at the beginning of each switching period. The switch-off time instant of the transistor is determined by the inductor current hitting the positive reference current. For duty ratios lower than 50% the generated signal forms look similar to the ones generated by a PWM. Interesting effects occur if the converter is operated with a duty cycle greater than 50%. Figure 1 shows the circuit diagram of a boost converter that is controlled by a cascaded control structure:

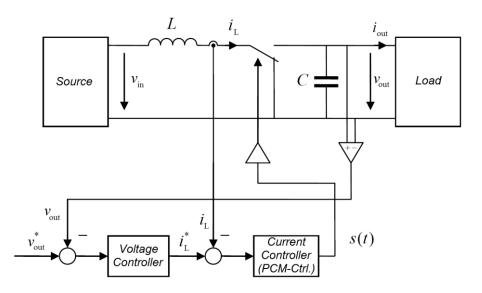
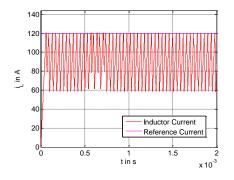


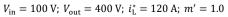
Figure 1: Voltage controller with subordinated Peak-Current-Mode current controller driving a boost converter

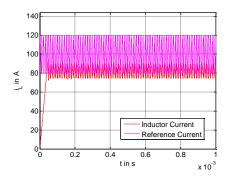
The specification of the boost converter is given below:

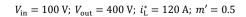
Nominal input voltage:	$V_{\rm in} = 100 \rm V$	Boost inductance:	$L = 49 \ \mu \text{H}$
Nominal output voltage:	$V_{\rm out} = 400 \rm V$	Output capacitor:	$C = 1 \mathrm{mF}$
Nominal output current:	$I_{\rm out} = 30 \text{A}$	Switching frequency:	$f_{\rm s} = 100 \; \rm kHz$

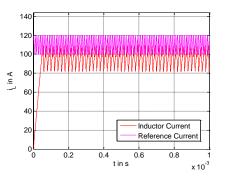
- 1. Calculate the duty ratio D, the average inductor current \overline{i}_{L} and the inductor current ripple Δi_{L} for nominal operation.
- 2. The inductor current of the boost converter should be controlled by a Peak-Current-Mode controller. Draw a detailed schematic diagram of the controller. How large is the control error?
- 3. Explain why slope compensation has to be integrated in the PCM controller. Determine the minimum slope value m_{\min} to guarantee stable operation for the considered operation point.
- 4. Add the slope compensation to your schematic diagram from problem 2) and make a proposal for control error reduction.

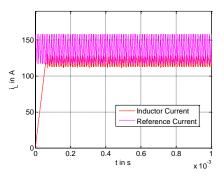


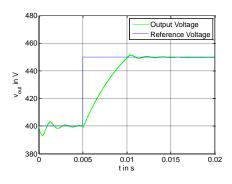

The following tasks will be presented in form of simulations in MATLAB/Simulink.


- 5. Open the simulation model and build up the PCM controller. Validate the performed calculations.
- 6. Add a voltage controller and simulate the complete system with different reference voltages. Vary the load and observe the behavior of the controlled system.

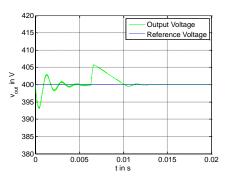

Simulation results of implemented PCM controller:


 $V_{\rm in} = 100 \text{ V}; V_{\rm out} = 400 \text{ V}; i_{\rm L}^* = 120 \text{ A}; m' = 0$





 $V_{\rm in}=100$ V; $V_{\rm out}=400$ V; $i^*_{\rm L}=120$ A (Ctrl. Err. Comp.)



Simulation results of voltage controlled boost converter:

 $V_{\rm in} = 100$ V; $V_{\rm out_0} = 400$ V; $v_{\rm out}^* = 400$ V $\rightarrow 450$ V; m' = 1.0

 $V_{\rm in} = 100 \text{ V}; V_{\rm out_0} = 400 \text{ V}; v_{\rm out}^* = 400 \text{ V}; I_{\rm out} = 30 \text{ A} \rightarrow 3 \text{ A}$

