Prof. Dr.-Ing. Joachim Böcker

Grundlagen der Elektrotechnik B

24.09.2015

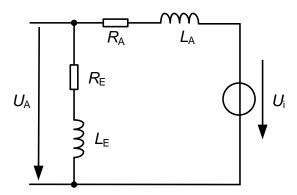
Name:						Matrikelnummer:			
Vorname:									
Studiengang:						☐ Fachprüfung			
						☐ Leistungsnachweis			
Aufgabe:	1	2	3	4	5	Punkte	Punkte	~	Note
(Punkte)	(16)	(20)	(24)	(20)	(20)	Klausur	Tests	Σ	

Bearbeitungszeit: 120 Minuten

Zugelassene Hilfsmittel:

- ein nichtprogrammierbarer Taschenrechner ohne grafikfähiges Display
- Zeichenmaterialien (Zirkel, Geodreieck, Lineal, Stifte...)

Bitte beachten Sie:


- Bitte Studienausweis mit Lichtbild bereitlegen!
- Sie können nur dann an der Klausur teilnehmen, wenn Sie sich im System PAUL angemeldet haben. Falls Sie trotz fehlender Anmeldung diese Klausur mitschreiben, wird das Ergebnis nicht gewertet.
- Bitte beschriften Sie jeden Klausurbogen mit Ihrem Namen und Matrikelnummer. Benutzen Sie für jede Aufgabe einen neuen Klausurbogen. Verwenden Sie keine Bleistifte und keine roten Stifte.
- Bei Zahlenrechnungen sind die Maßeinheiten in jedem Schritt mitzuführen. Nichtbeachtung führt zu Punktabzug.
- Alle Lösungswege sind nachvollziehbar zu dokumentieren und zu kommentieren! Die Angabe eines Endergebnisses ohne erkennbaren Lösungsweg wird nicht gewertet.

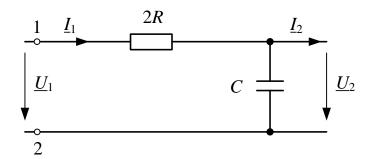
Viel Erfolg!

Aufgabe 1: Gleichstrommotor

(16 Punkte)

Gegeben sei ein Gleichstromnebenschlussmotor (s. Abb.) mit einer Nennspannung von U_{AN} = 220 V. Der Ankerwiderstand betrage R_A = 0,5 Ω und der Erregerwiderstand R_E = 110 Ω . Die im Nennarbeitspunkt aufgenommene elektrische Leistung betrage P_N = 11 kW. Im unbelasteten Betrieb wird an den Motorklemmen ein Strom von I = 5 A bei einer Drehzahl von n = 1150 min⁻¹ gemessen.

Zunächst soll der Betrieb im Nennpunkt untersucht werden. Berechnen Sie hierzu die resultierende


- **1.1** Drehzahl n_N ,
- **1.2** das Drehmoment T_N sowie
- **1.3** den Wirkungsgrad η_N .

Des Weiteren ist das Anlaufverhalten zu analysieren.

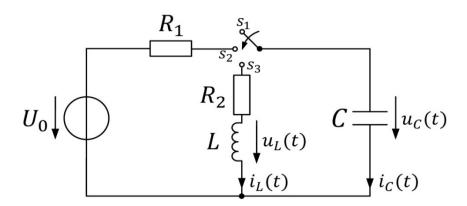
- **1.4** Berechnen Sie den Anlaufstrom des Motors.
- **1.5** An welcher Stelle im Ersatzschaltbild ist ein Vorwiderstand sinnvollerweise einzufügen, um den Anlaufstrom zu begrenzen?
- **1.6** Wie müsste ein entsprechender Vorwiderstand ausgelegt werden, um den Strom auf 150 % des Nennstroms zu begrenzen?

Aufgabe 2: Kompl. Wechselstromrechnung / Leistung bei sinusförmigen Vorgängen (20 Punkte)

Gegeben sei folgendes Netzwerk mit dem Widerstand 2R und dem Kondensator C.

- **2.1** Bestimmen Sie die Spannungsübertragungsfunktion $\underline{H}(j\omega) = \frac{\underline{U}_2}{\underline{U}_1}$ bei unbelasteten Ausgang ($\underline{I}_2 = 0$ A).
- 2.2 Bei welcher Frequenz weisen der Imaginär- und der Realteil die gleichen Beträge auf?
- **2.3** Stellen Sie die Übertragungsfunktion nach Betrag und Phase dar.

Im Weiteren wird an den Eingang der Schaltung eine Wechselspannungsquelle angeschlossen. Die Werte der Schaltung betragen


$$2R = 22 \Omega$$
 $C = 500 \,\mu\text{F}$ $f = 50 \,\text{Hz}$ $U_1 = 115 \,\text{V} \,e^{j45^\circ}$

- **2.4** Berechnen Sie die resultierende Impedanz \underline{Z}_1 zwischen den Klemmen 1 und 2 und stellen Sie diese auch nach Betrag und Phase dar.
- **2.5** Berechnen Sie den Strom $\underline{I_1}$.
- **2.6** Ermitteln Sie die an den Klemmen 1 und 2 aufgenommene Wirk-, Blind- und Scheinleistung.
- **2.7** Berechnen Sie die zusätzlich in Reihe zu 2R zu schaltende Impedanz \underline{Z}_3 , die nötig ist, um einen Strom $\underline{I}_1 = 2,5$ A $\mathrm{e}^{-\mathrm{j}75^\circ}$ zu erhalten.
- **2.8** Lässt sich die zusätzliche Impedanz \underline{Z}_3 aus Widerständen, Kondensatoren und Induktivitäten realisieren?

Aufgabe 3: Ausgleichsvorgänge und Schwingkreis

(24 Punkte)

Gegeben sei die nachfolgend dargestellte Schaltung mit der Gleichspannungsquelle U_0 . Der Schalter befindet sich zunächst in der Position s_1 .

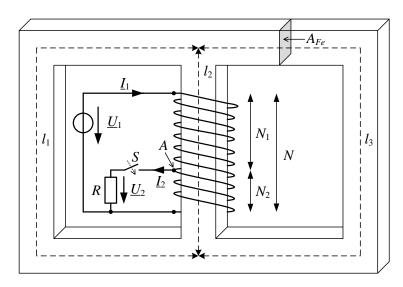
Der Schalter wechselt für t=0 in die Position s_2 . Für t<0 gelte $E_c=2CU_0^2$.

- **3.1** Wie groß sind die Anfangswerte $i_c(t=0^+)$ und $u_c(t=0^+)$? Begründen Sie hierbei Ihre Antwort kurz und prägnant.
- **3.2** Stellen Sie die Differentialgleichung für $u_c(t)$ auf. Verwenden Sie hierbei die entsprechende Zeitkonstante für die gegebene Schalterstellung.
- **3.3** Bestimmen Sie den zeitlichen Verlauf von $u_c(t)$ und $i_c(t)$. Welche Werte nehmen beide Größen nach Abklingen des Ausgleichsvorgangs an?
- **3.4** Skizzieren Sie $u_c(t)$ und $i_c(t)$ qualitativ. Achten Sie auf korrekte Achsenbeschriftungen und verdeutlichen Sie die Zeitkonstante in Ihrer Skizze.

Nach hinreichend langem Abklingen des Ausgleichsvorgangs ($t=t_1$) wechselt der Schalter in die Position s_3 .

- **3.5** Wie groß sind nun die Anfangswerte $i_L(t=t_1^+)$ und $u_L(t=t_1^+)$? Begründen Sie hierbei Ihre Antwort kurz und prägnant.
- 3.6 Ermitteln Sie die Differentialgleichung für $u_L(t^*)$. Stellen Sie zudem die Differentialgleichung unter Verwendung der Kennkreisfrequenz $\omega_0=\frac{1}{\sqrt{LC}}$ und der Dämpfung $d=\frac{R_2}{2}\sqrt{\frac{C}{L}}$ dar.

Hinweis: Vereinfachen Sie sich die Schreibarbeit, indem Sie $t^* = t - t_1$ verwenden.


- **3.7** Erläutern Sie anhand der charakteristischen Gleichung der obigen Differentialgleichung, welche drei unterschiedlichen Schwingungseigenschaften $u_L(t^*)$ aufweisen könnte.
- **3.8** Bestimmen Sie den zeitlichen Verlauf von $u_L(t^*)$ und $i_L(t^*)$. Es gelte: $R_2 > 2Z_0$.
- **3.9** Welche Werte nehmen $i_L(t^* \to \infty)$ und $u_C(t^* \to \infty)$ an? Argumentieren Sie hierbei nicht mit mathemischen Formeln, sondern anhand der Energiebilanz des Systems.

Hinweis: Die Teilaufgabe 3.9 können Sie auch ohne das Ergebnis aus 3.8 lösen.

Aufgabe 4: Magnetischer Kreis / Transformator

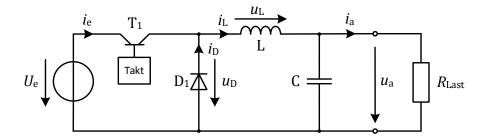
(20 Punkte)

Gegeben sei ein Spartransformator mit einer Anzapfung am Punkt A. Sowohl Streuflüsse als auch Wicklungswiderstände sind zu vernachlässigen. Die mittleren Wege im Eisen sind $l_1=l_3=70~{\rm cm}$ sowie $l_2=30~{\rm cm}$. Der Querschnitt $A_{Fe}=650~{\rm mm}^2$ ist in der gesamten Anordnung gleich. Das Eisenmaterial ist nicht vormagnetisiert und weist im betrachteten Betriebsbereich keine magnetische Sättigung auf. Bei Magnetisierung des Eisenmaterials stellt sich ein konstantes Verhältnis $H_{fe}/B_{Fe}=260\frac{{\rm Am}}{{\rm Vs}}$ ein. Primärseitig ist die Wicklung an das elektrische Netz ($U_1=230~{\rm V}$, $f=50~{\rm Hz}$) und sekundärseitig sind ein ohmscher Widerstand $R=50~\Omega$ sowie ein idealer Schalter S angeschlossen.

 $\mu_0 = 4\pi \cdot 10^{-7} \frac{V_s}{Am}$

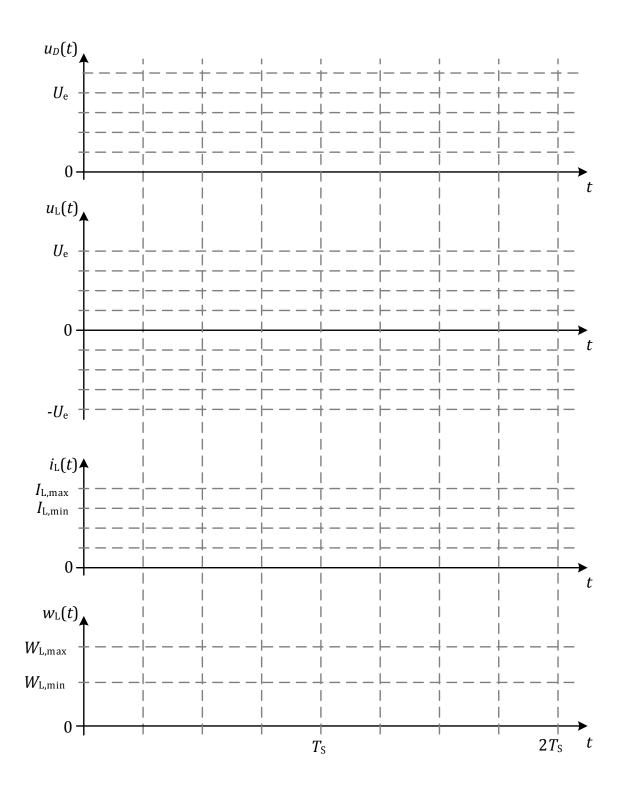
4.1 Welchen Vorteil bietet diese Bauform gegenüber einem Transformator mit zwei getrennten Wicklungen? Welche charakteristische Eigenschaft eines Transformators geht durch diese Anordnung verloren?

Der Schalter S sei zunächst im geöffneten Zustand.


- **4.2** Zeichnen Sie das äquivalente Reluktanzmodell der Anordnung und bestimmen Sie die Windungszahl N, so dass sich im mittleren Schenkel eine Flussdichte $B_{Fe,eff} = 0.8$ T einstellt.
- **4.3** Welcher effektive Magnetisierungsstrom I_1 fließt in der Wicklung?
- **4.4** Wie groß ist die Induktivität L der Wicklung?

Nun wird der Schalter S geschlossen. Im stationären Zustand wird am Widerstand R eine Scheinleistung von $S=80~\mathrm{VA}$ gemessen.

- **4.5** Wie groß ist die effektive Spannung U_2 ?
- **4.6** Wie groß sind N_1 und N_2 ?
- **4.7** Wie groß ist nun der effektive Primärstrom I_1 ?


Aufgabe 5: Gleichstromsteller

(20 Punkte)

Mit Hilfe des abgebildeten Gleichstromstellers wird aus einer Eingangsspannung $U_{\rm e}=24\,{\rm V}$ eine einstellbare Ausgangsspannung $U_{\rm a}$ erzeugt. Der Transistor ${\rm T_1}$ und die Diode ${\rm D_1}$ seien ideal. Die Taktfrequenz betrage $f_{\rm s}=25\,{\rm kHz}$. Es werde stationärer und nichtlückender Betrieb vorausgesetzt. Für die nachfolgenden Betrachtungen werde C als so groß angenommen, dass $u_{\rm a}(t)\approx U_{\rm a}={\rm konst.}$ gilt.

- **5.1** Zeichnen Sie die Ersatzschaltbilder für die beiden Schaltzustände des dargestellten Gleichstromstellers.
- **5.2** Geben Sie die minimale und die maximale Ausgangsspannung der obigen Schaltung an.
- 5.3 Skizzieren Sie im vorgefertigten Diagramm (nächste Seite) für das Tastverhältnis D=0.75 folgende Verläufe:
 - Diodenspannung $u_{\rm D}(t)$
 - Spulenspannung $u_{\rm L}(t)$
 - Spulenstrom $i_L(t)$ (Es gelte $i_L(t=0) = i_{L,min}$)
 - In der Spule gespeicherte Energie W_L(t)
- Berechnen Sie L, wenn für die maximale Stromschwankungsbreite $\Delta i_{L,max} = 0.2$ A gelten soll. Geben Sie den Tastgrad an, bei dem die größte Stromschwankungsbreite auftritt.
- **5.5** Als Last wird nun eine 12 V Glühlampe an den Ausgang angeschlossen. Die Glühlampe kann als ohmscher Verbraucher mit konstantem Widerstand R_{Last} angesehen werden.
 - Berechnen Sie den erforderlichen Tastgrad *D*, um die Glühlampe bei Nennspannung zu betreiben.
 - Die Nennleistung der Glühlampe betrage 10 W. Wie groß muss der Tastgrad *D* gewählt werden, um die Glühlampe mit 5 W zu betreiben?

