

Elektrische Antriebstechnik

17.03.2014

Name:						Matrikelr	nummer:
Vorname:							
Studiengang:						☐ Fachprüfung	
						☐ Leistung	gsnachweis
Aufgabe:	1	2	3	4		Gesamt	Noto
(Punkte)	(18)	(21)	(20)	(21)		(80)	Note

Bearbeitungszeit: 120 Minuten

Zugelassene Hilfsmittel:

- eine selbsterstellte, handgeschriebene Formelsammlung (1 Blatt DIN A4, beidseitig beschrieben, keine Kopien oder Ausdrucke)
- ein nichtprogrammierbarer Taschenrechner ohne grafikfähiges Display
- Zeichenmaterialien (Zirkel, Geodreieck, Lineal, Stifte...)

Bitte Studienausweis mit Lichtbild bereitlegen!

Bitte beschriften Sie jeden Klausurbogen mit Ihrem Namen und Ihrer Matrikelnummer. Benutzen Sie für jede Aufgabe einen neuen Klausurbogen. Verwenden Sie keine Bleistifte und keine roten Stifte.

Alle Lösungswege sind nachvollziehbar zu dokumentieren und zu kommentieren! Die Angabe eines Endergebnisses ohne erkennbaren Lösungsweg wird nicht gewertet.

Viel Erfolg!

Aufgabe 1: Getriebedimensionierung für einen Lüfter

(18 Punkte)

Ein Lüfter in einer Umluftanlage wird von einem Elektromotor über ein Getriebe angetrieben. Der Antriebsmotor weist folgenden Betriebsbereich auf:

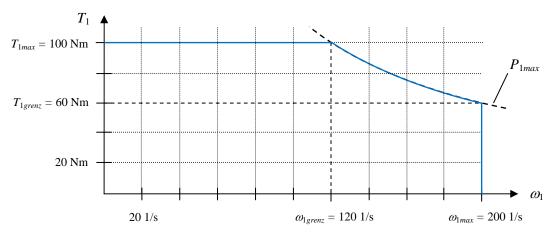


Abbildung 1.1: Betriebsbereich des Antriebsmotors

Der Motor besitzt das Massenträgheitsmoment $J_1=0.4~{\rm kgm^2}$, der Lüfter dagegen das Massenträgheitsmoment $J_2=2.0~{\rm kgm^2}$. Die Drehmoment-Drehzahl-Charakteristik des Lüfters kann durch die Gleichung $T_2=0.003~{\rm Nms^2}\cdot\omega_2^2$ angenähert werden.

- **1.1** Wie wirkt sich der Wirkungsgrad eines formschlüssigen Getriebes auf die übersetzte Drehzahl und das übersetzte Drehmoment auf der <u>Ab</u>triebsseite aus?
- **1.2** Nennen Sie zwei typische Getriebearten und ihre zugehörige Schlussart.
- 1.3 Der Lüfter soll eine maximale Leistung von $P_{2max}=10~kW$ abgeben können. Berechnen Sie die Getriebeübersetzungen i_{G1} für maximale Drehzahlreserve sowie i_{G2} für maximale Drehmomentreserve. Skizzieren Sie die Leistungshyperbel von P_{2max} in obiges Diagramm und markieren Sie auf dieser die zu i_{G1} und i_{G2} gehörenden Arbeitspunkte. Das Getriebe kann bei der Berechnung als verlustlos angenommen werden.
- 1.4 Neben den bereits berechneten Getriebeübersetzungen gibt es auch eine optimale Getriebeübersetzung i_{Gopt} , die eine optimale Ausgewogenheit zwischen maximaler Drehzahl- und Drehmomentreserve ermöglicht. Ermitteln Sie rechnerisch die optimale Getriebeübersetzung unter der vereinfachten Annahme, dass das maximale Motordrehmoment T_{1max} bis zur maximalen Winkelgeschwindigkeit ω_{1max} gestellt werden kann.
- 1.5 Auf welche Drehzahl n_1 muss der Motor mit der Getriebeübersetzung i_{Gopt} hochgefahren werden, damit der Lüfter die Leistung P_{2max} abgibt? Welches Motordrehmoment T_1 stellt sich in diesem Arbeitspunkt ein? Markieren Sie den Arbeitspunkt in obigem Diagramm mit der Bezeichnung i_{Gopt} .
- **1.6** Wie groß ist die Hochlaufzeit, wenn der Motor mit dem aus Teilaufgabe 1.5) ermittelten Drehmoment T_1 bei $i_G = i_{Gopt}$ auf die Drehzahl n_1 hochgefahren wird? Welche kinetische Energie ist in den rotierenden Lüfterschaufeln bei dieser Drehzahl gespeichert?

1.7 Skizzieren Sie die mit $i_G=i_{Gopt}$ auf die Antriebsseite umgerechnete Lastcharakteristik in das oben dargestellte Diagramm und ermitteln Sie die ungefähre Drehzahl und das ungefähre Drehmoment des Antriebs, die sich bei maximaler Motorleistung P_{1max} einstellen.

Aufgabe 2: Gleichstrommaschine

(21 Punkte)

Ein konstant erregter Gleichstrommotor hat folgende Daten.

Bemessungsspannung U_{AN}	110 V
Bemessungsdrehmoment T_N	30 Nm
Ankerwicklungswiderstand R_A	0,151 Ω
Ankerinduktivität L_A	0,1 mH
Leerlaufdrehzahl n_{0}	1450 min ⁻¹

- **2.1** Bestimmen Sie den Ankerstrom und die Drehzahl bei Halblast bei Speisung des Motors mit der Bemessungsspannung.
- **2.2** Nennen Sie zwei Möglichkeiten zur Verstellung der mechanischen Drehzahl dieser Gleichstrommaschine und erwägen Sie die Vor- und Nachteile.

Nun wird der Motor gemäß Abbildung 2.1 durch einen Transistorsteller aus einer Gleichspannungsquelle $U_{Batt}=144\,V$ gespeist. Der Transistorsteller wird als verlustfrei angenommen und alle ohmschen Widerstände werden vernachlässigt. Die Schaltfrequenz des Transistorstellers beträgt 5 kHz.

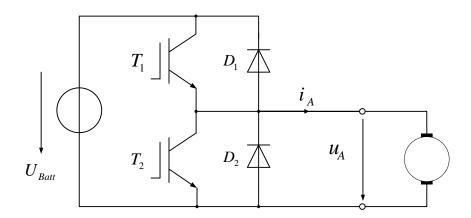


Abbildung 2.1: Gleichstrommaschine mit Transistor-Steller

- **2.3** Erläutern Sie in Stichworten oder mit einer einfachen Skizze, in welchen Quadranten der Motor hinsichtlich des Drehmoments T und der Drehzahl n betrieben werden kann.
- 2.4 Im stationären Betrieb wird der Transistorsteller mit einem Tastverhältnis a=0,75 gesteuert. Welchen Wert besitzt der Mittelwert der Ankerspannung u_A ? Der Ankerstrom i_A weist einen Mittelwert von 50 A auf. Welche Werte besitzt die Stromsteilheit $\frac{di_A}{dt}$ und welche Extremwerte i_{Amax} und i_{Amin} treten auf?

2.5 Im stationären Betrieb sind für die Fälle A und B die Verläufe der Ansteuersignale S1 und S2 der Transistoren T1 und T2 und die Verläufe der Ankerspannung u_A und des Ankerstromes i_A im Zeitabschnitt bis zum Zeitpunkt t_X in Abbildung 2.2 dargestellt. Ergänzen Sie qualitativ die Verläufe u_A und i_A im Zeitabschnitt ab t_X .

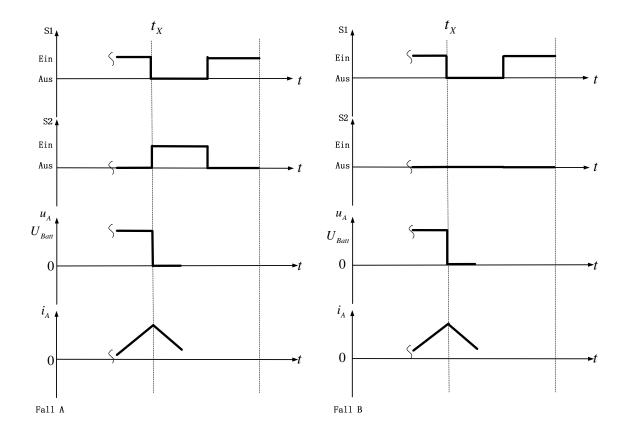
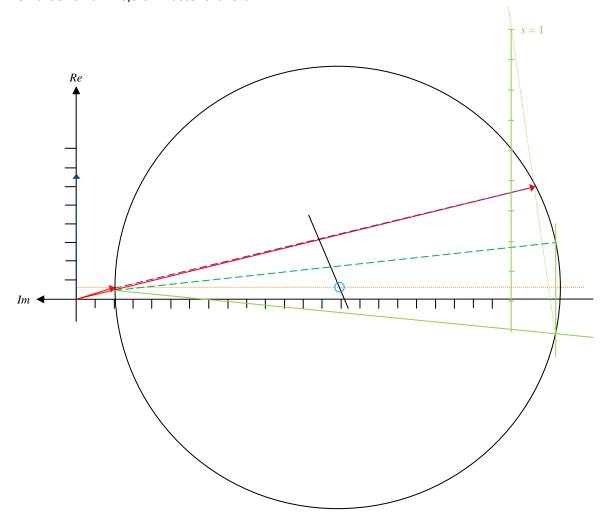


Abbildung 2.2: Zeitdiagramme

Aufgabe 3: Asynchronmaschine

(20 Punkte)

Gegeben ist eine in Stern geschaltete Asynchronmaschine mit den folgenden Daten:


$$U_N = 380 V$$

$$f_N = 50 Hz$$

$$p = 1$$

$$\cos(\varphi_N) = 0.874$$

Desweiteren ist die Stromortskurve der Asynchronmaschine bei Betrieb mit Nennfrequenz gegeben. Die Achsen sind im 0,5 cm Raster skaliert.

Die zu verwendenden Maßstäbe sind wie folgt festgelegt:

Strommaßstab:

$$m_I = 2 \frac{A}{mm}$$

Leistungsmaßstab:

$$m_P = 1320 \frac{W}{mm}$$

Drehmomentmaßstab:

$$m_T = 4.2 \frac{\mathrm{Nm}}{\mathrm{mm}}$$

- **3.1** Welche Größen beschreiben den Zusammenhang zwischen der Statorkreisfrequenz ω_S und der Rotorkreisfrequenz ω_R ? Geben Sie diesen in Form einer Gleichung an.
- **3.2** Um welchen ganzzahligen Faktor unterscheidet sich der Anlaufstrom einer in Stern verschalteten Asynchronmaschine gegenüber einer baugleichen, aber in Dreieck verschalteten Asynchronmaschine bei jeweils gleicher Außenleiterspannung?
- **3.3** Beschriften Sie im oben dargestellten Bild zunächst die Spannungs- und Stromzeiger, die grün und violett gestrichelten Geraden, sowie mindestens drei relevante Punkte auf dem Kreis der gegebenen Stromortskurve.
- **3.4** Ermitteln Sie aus obiger Stromortskurve die Leerlaufleistung P_0 , den Leerlaufstrom $\underline{I_0}$, die Stillstandsleistung P_1 sowie den Stillstandsstrom $\underline{I_1}$.
- **3.5** Wie groß sind das Anlaufdrehmoment T_1 und das Kippdrehmoment T_K ? Bestimmen Sie die beiden Werte geometrisch.
- 3.6 Konstruieren Sie den Stromzeiger \underline{I}_N mit Hilfe der gegebenen Daten (bitte kein rot verwenden). Welchen Wert hat der Nennstrom und wie groß ist das abgegebene Drehmoment T_N in diesem Betriebspunkt?
- 3.7 Die Statorfrequenz entspricht der Nennfrequenz. Ermitteln Sie mit Hilfe des Nennschlupfs s_N die Drehzahl n_N der Asynchronmaschine im Nennpunkt. Ermitteln Sie **rechnerisch** die elektrische Nennwirkleistung P_{elN} . Wie groß ist der Wirkungsgrad η_N im Nennpunkt?
- **3.8** Berechnen Sie mit Hilfe der von Ihnen ermittelten Leerlaufleistung P_0 den Eisenverlustwiderstand R_{Fe} . Der Statorwiderstand R_S kann dabei vernachlässigt werden.

Aufgabe 4: Synchronmaschine

(21 Punkte)

In einem Kraftwerk wird ein Synchrongenerator eingesetzt. Die Maschine ist in der Schaltungsgruppe Stern geschaltet und wird übererregt in ihrem Bemessungspunkt betrieben. Für die Berechnungen kann die Maschine als verlustlos angenommen werden. Auf der Schalttafel im Kraftwerk können von fünf Instrumenten die folgenden Werte abgelesen werden:

Drehmoment	T_N	101,86 kNm
Drehzahl	n_N	1800 1/min
Leistungsfaktor	$\lambda_{\rm N}=\cos\left(\varphi_{\rm N}\right)$	0,92
Lastwinkel	ϑ_N	-36,5°
Netzspannung (Generatorseite)	U_N	6,0 kV

Tabelle 4.1: Bekannte Betriebsdaten des Synchrongenerators

- **4.1** Welche Bauformen von Synchronmaschinen kennen Sie und wie unterscheiden sich diese voneinander hinsichtlich ihres konstruktiven Aufbaus?
- **4.2** Der Erregerstrom eines Synchrongenerators ist so eingestellt, dass die Maschine weder Blindleistung vom speisenden Netz aufnimmt noch Blindleistung in das Netz einspeist. Wie groß ist in diesem Betriebspunkt der Leistungsfaktor und welcher trigonometrische Ausdruck beschreibt das Verhältnis von Strangspannung zu Polradspannung?
- **4.3** Berechnen Sie mit den oben angegebenen Daten die elektrische Nennwirkleistung P_N , die elektrische Nennscheinleistung S_N sowie die elektrische Nennblindleistung Q_N .
- **4.4** Wie groß ist das Kippdrehmoment T_K ? Ermitteln Sie die Polpaarzahl p der Maschine sowie die Frequenz f_N des gespeisten Netzes.
- **4.5** Berechnen Sie den Nennstrom I_N sowie die Kurzschlussströme I_k und I_{k0} . Erstellen Sie das Zeigerdiagramm für den Nennbetriebspunkt des Synchrongenerators. Beginnen Sie dabei zunächst mit der Konstruktion der Stromzeiger \underline{I}_N , \underline{I}_k und \underline{I}_{k0} .
- **4.6** Ergänzen Sie in Ihrem Zeigerdiagramm den Strangspannungszeiger \underline{U}_{SN} . Konstruieren Sie mit Hilfe der bereits eingezeichneten Stromzeiger die noch fehlenden Spannungszeiger \underline{U}_{PN} und $(\underline{U}_{SN}-\underline{U}_{PN})$. Welchen Wert hat die Polradspannung U_P im Nennpunkt? Wie groß ist die Synchronreaktanz X_S ?
- 4.7 Während des Betriebs reduziert sich die Belastung durch abgeschaltete Verbraucher im Netz, sodass der Strangstrom I_S jetzt auf 80% des unter 4.5) berechneten Nennstrom I_N sinkt. Berechnen Sie den Polradwinkel ϑ sowie den Phasenverschiebungswinkel φ , die sich nach dem Lastwechsel eingestellt haben. Welche Scheinleistung S, Wirkleistung P und Blindleistung Q gibt der Generator nun ins Netz ab? Der Erregerstrom I_E wurde während des Lastwechsels nicht verändert.
- **4.8** Welches Drehmoment *T* zeigt das entsprechende Instrument an der Schalttafel nach dem Lastwechsel an? Ist am Beispiel des aufgetretenen Lastwechsels eine direkte Proportionalität zwischen Laststrom und Drehmoment erkennbar?

Lösung

Aufgabe 1) Getriebedimensionierung für einen Lüfter

- 1.1) Der Wirkungsgrad eines formschlüssigen Getriebes beeinflusst die übersetzte Drehzahl nicht $(\omega_1=i_G\cdot\omega_2)$, jedoch das übersetzte Drehmoment aufgrund von Reibung $(T_1=\frac{T_2}{i_G\cdot\eta_G})$. **[2 Punkte]**
- 1.2) Zahnradgetriebe (formschlüssig)Reibradgetriebe (kraftschlüssig)[2 Punkte]
- 1.3) Getriebeübersetzung für maximale Drehmoment- und Drehzahlreserve:

$$T_{2} = k \cdot \omega_{2}^{2}$$

$$T_{1} \cdot i_{G} = k \cdot \left(\frac{\omega_{1}}{i_{G}}\right)^{2}$$

$$i_{G}^{3} = \frac{k \cdot \omega_{1}^{2}}{T_{1}}$$

$$i_{G} = \sqrt[3]{\frac{k \cdot \omega_{1}^{2}}{T_{1}}}$$

$$\omega_{1} = \frac{P_{2max}}{T_{1max}} = \frac{10.000 \text{ W}}{100 \text{ Nm}} = 100 \frac{1}{\text{s}}$$

$$i_{G1} = \sqrt[3]{\frac{k \cdot \omega_{1}^{2}}{T_{1max}}} = \sqrt[3]{\frac{0.003 \text{ kgm}^{2} \cdot (100 \text{ 1/s})^{2}}{100 \text{ Nm}}} = \underline{0.67}$$

$$T_{1} = \frac{P_{2max}}{\omega_{1max}} = \frac{10.000 \text{ W}}{200 \text{ 1/s}} = 50 \text{ Nm}$$

$$i_{G2} = \sqrt[3]{\frac{k \cdot \omega_{1max}^{2}}{T_{1}}} = \sqrt[3]{\frac{0.003 \text{ kgm}^{2} \cdot (200 \text{ 1/s})^{2}}{50 \text{ Nm}}} = \underline{1.34}$$

Alternative Berechnungsmöglichkeit:

$$\omega_2 = \sqrt[3]{\frac{10 \text{ kW}}{0,003 \text{ Nms}^2}} = 149,38 \frac{1}{\text{s}}$$

$$T_2 = 0,003 \text{ Nms}^2 \cdot \left(149,38 \frac{1}{\text{s}}\right)^2 = 66,94 \text{ Nm}$$

$$i_{G1} = \frac{T_2}{T_{1max}} = \frac{67 \text{ Nm}}{100 \text{ Nm}} = 0,67 \qquad \qquad i_{G2} = \frac{\omega_{1max}}{\omega_2} = \frac{200 \frac{1}{\text{s}}}{149,38 \frac{1}{\text{s}}} = 1,34$$

[4 Punkte]

1.4) Optimale Getriebeübersetzung:

$$P'_{1max} = T_{1max} \cdot \omega_{1max} = 100 \text{ Nm} \cdot 200 \text{ s}^{-1} = 20.000 \text{ kW}$$

$$i_{Gopt} = \sqrt[3]{\frac{k \cdot \omega_{1max}^2}{T_{1max}}} = \sqrt[3]{\frac{0,003 \text{ kgm}^2 \cdot (200 \text{ s}^{-1})^2}{100 \text{ Nm}}} = \underline{\frac{1,06}{100 \text{ Nm}}}$$

Alternative Berechnungsmöglichkeit:

$$\omega_2 = \sqrt[3]{\frac{20 \text{ kW}}{0,003 \text{ Nms}^2}} = 188,207 \frac{1}{\text{s}}$$

$$T_2 = 106,26 \text{ Nm}$$

$$i_{Gopt} = \frac{\omega_{1max}}{\omega_2} = \frac{T_2}{T_{1max}} = \frac{106,26 \text{ Nm}}{100 \text{ Nm}} = 1,06$$

[2 Punkte]

1.5) Drehzahl und Drehmoment des Motors bei maximaler Lüfterleistung:

$$T_1 = \frac{k \cdot \omega_1^2}{i_2^2}$$
 (Drehmomentgleichung der Last auf Antriebsseite umgerechnet)

$$T_1 = \frac{P_{2max}}{\omega_1}$$
 (Leistungshyperbel der Last auf Antriebsseite umgerechnet)

Gleichsetzen liefert:

$$\frac{k \cdot \omega_1^2}{i_C^3} = \frac{P_{2max}}{\omega_1}$$

$$\omega_1^3 = \frac{P_{2max} \cdot i_G^3}{k}$$

$$\omega_1 = \sqrt[3]{\frac{P_{2max} \cdot t_G^3}{k}} = \sqrt[3]{\frac{10.000 \text{ W} \cdot (1,06)^3}{0,003 \text{ kgm}^2}} = 158,34 \frac{1}{\text{s}}$$

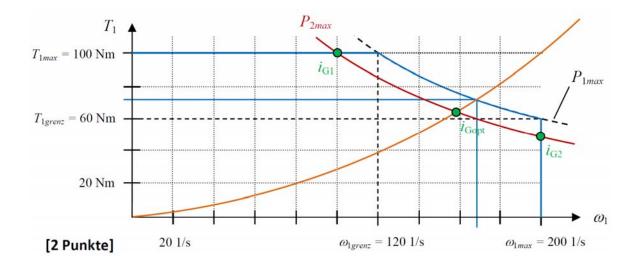
$$n_1 = \omega_1 \cdot \frac{60}{2\pi} = \underbrace{\frac{1512,8 \frac{1}{\min}}{}}_{}$$

$$T_1 = \frac{P_{2max}}{\omega_1} = \frac{10.000 \text{ W}}{158,34 \text{ 1/s}} = \underline{63,15 \text{ Nm}}$$

Alternative Berechnungsmöglichkeit:

$$\omega_1 = i_{Gopt} \cdot \omega_2 = 1,06 \cdot 149,38 \frac{1}{s} = 158,34 \frac{1}{s}$$

$$T_1 = \frac{T_2}{i_{Gopt}} = \frac{66,94 \text{ Nm}}{1,06} = 63,15 \text{ Nm}$$


[4 Punkte]

1.6) Hochlaufzeit und kinetische Energie:

$$\omega_1 = \frac{1}{J} T_1 \cdot t_H \qquad \text{(für konstantes Drehmoment)}$$

$$t_H = \frac{\omega_1 \cdot J}{T_1} = \frac{\omega_1 \cdot (J_1 + \frac{1}{i_{Gopt}^2} J_2)}{T_1} = \frac{158,34 \frac{1}{s} \cdot (0.4 \text{ kgm}^2 + \frac{1}{(1.06)^2} 2.0 \text{ kgm}^2)}{63,15 \text{ Nm}} = \underline{5,47 \text{ s}}$$

$$W_{kin} = \frac{1}{2} J_2 \cdot w_2^2 = \frac{1}{2} \cdot 2,0 \text{ kgm}^2 \cdot \left(\frac{158,34 \text{ 1/s}}{1,06}\right)^2 = \underline{22,31 \text{ kJ}}$$

[2 Punkte]

1.7) Drehzahl und Drehmoment des Antriebs bei maximaler Motorleistung:

Aufgabe 2) Gleichstrommaschine

2.1

$$\Psi_E' = \frac{u_{AN}}{\omega_0} = \frac{110V}{1450 \, \text{min} * \frac{2\pi}{\frac{60s}{\text{min}}}} = 0,7244Vs$$

1) i_A bei Halblast: [1P]

$$i_A = \frac{15Nm}{\Psi_F'} = \frac{15Nm}{0.7244Vs} = 20.71A$$

2) Betriebsdrehzahl bei Halblast [1P]

$$n = \frac{U_{AN} - R_A i_A}{\Psi_E'} * \frac{60}{2\pi} = \frac{110V - 0.151\Omega * 20.71A}{0.7244Vs} * \frac{60}{2\pi} = 1408 \,\text{min}$$

2.2

- 1) Vorwiderstand: Vorteile → einfache Ausführung; Nachteile → hohe Verluste, daher schlechter Wirkungsgrad [1P]
- 2) Transistorsteller: Vorteile → hoher Wirkungsgrad; Nachteile → relativ komplizierte Ausführung, mehrere Komponenten erforderlich [1P]

3)

2.3

I. und II. Quadranten, da bei dieser Anordnung der GS-Maschine die Ankerspannung einer Polarität und der Ankerstrom in beide Polaritäten bereitgestellt werden können. [2P]

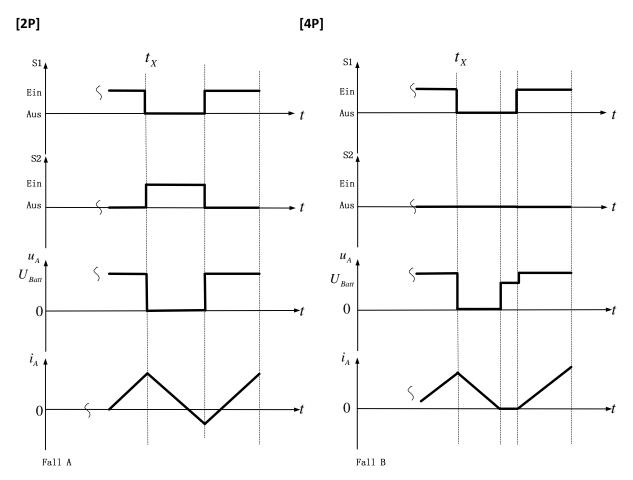
2.4

Mittelwert von U_A

$$U_A = aU_{Batt} = 0.75 * 144V = 108V$$
 [1P]

Stromsteilheiten:

$$\frac{di_A}{dt_1} = \frac{U_{Batt} - aU_{Batt}}{L_A} = 3.6 * 10^5 A/s$$
 [2P]


$$\frac{di_A}{dt}_2 = \frac{-aU_{Batt}}{L_A} = -10.8 * 10^5 A/s$$
 [2P]

Extremwerte von i_A

$$I_{Amax} = 50A + \frac{\left(\frac{di_A}{dt_1}\right) * \frac{a}{5000s^{-1}}}{2} = 77A$$
 [2P]

$$I_{Amin} = 77A + \left(\frac{di_A}{dt_2}\right) * \frac{1-a}{5000s^{-1}} = 23A$$
 [2P]

Aufgabe 3) Asynchronmaschine

3.1) Der Zusammenhang zwischen ω_S und ω_R wird durch den Schlupf s beschrieben: $\omega_R = s \cdot \omega_S$. Im Stillstand weist der Rotorstrom dieselbe Frequenz auf wie das Drehfeld im Stator. Im Leerlauf läuft der Rotor mit dem Drehfeld synchron um, sodass keine Spannung im Rotor induziert wird. Folglich fließt im Rotor kein Strom.

[1 Punkt]

3.2) Wird eine in Dreieck verschaltete Asynchronmaschine auf Sternschaltung umgerüstet, so beträgt der Anlaufstrom der Maschine bei unveränderter Drehspannung nur noch ein Drittel gegenüber dem Anlaufstrom einer in Dreieck verschalteten Maschine. Damit fällt auch das Anlaufdrehmoment dreimal kleiner aus, was in etwa zu einer Verdreifachung der Hochlaufzeit auf Nenndrehzahl führt.

[2 Punkte]

- 3.3) Beschriftung der Stromortskurve mit Stromzeiger I_0 und I_1 sowie Spannungszeiger $U_{N_{Strang}}$; violette Linie: Leistungsgerade; grüne Linie: Drehmomentgerade; Punkte auf Kreis: s_0 (Leerlaufpunkt), s_1 (Anlaufpunkt) und s_∞ (ideeller Kurzschluss). [3 Punkte]
- 3.4) Aus der Ortskurve lassen sich die folgenden Strecken abtragen:

$$I_0 = 10.7 \text{ } mm \cdot m_I = 22,86 \text{ A}$$
 $I_1 = 114,6 \text{ } mm \cdot m_I = 229,2 \text{ A}$ $P_0 = 3,3 \text{ } mm \cdot m_P = 4,356 \text{ kW}$ $P_1 = 29,7 \text{ } mm \cdot m_P = 39,2 \text{ kW}$

[4 Punkte]

3.5) Kippdrehmoment und Anlaufdrehmoment:

$$T_K = 53.5 \ mm \cdot m_T = 224.7 \ Nm$$
 $T_1 = 15.6 \ mm \cdot m_T = 65.52 \ Nm$

[2 Punkte]

3.6) Konstruktion des Stromzeigers für Nennpunkt:

$$\varphi_N = \arccos(0.874) = 29.07^{\circ}$$

Stromzeiger im Winkel φ_N antragen und Schnittpunkt mit Kreis bestimmen. Daraus erhält man eine Zeigerlänge von:

$$I_N = 29.8 \ mm \cdot m_I = 59.6 \ A$$

$$T_N = 22,2 \ mm \cdot m_T = 93,24 \ Nm$$

[3 Punkte]

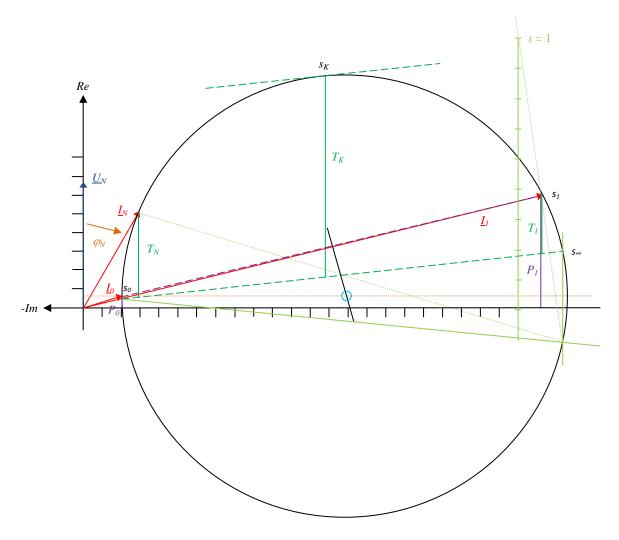
3.7) Nenndrehzahl und Nennwirkungsgrad:

$$\omega_{RS_N} = (1 - s_N)\omega_S = (1 - 0.035) \cdot 50 \text{ Hz} \cdot 2\pi = 303.16 \frac{1}{s}$$

$$\eta_N = \frac{\omega_{RS_N}}{p} \cdot \frac{60}{2\pi} = \frac{303.16 \frac{1}{s} \cdot 60}{1 \cdot 2\pi} = 2895 \frac{1}{\text{min}}$$

$$P_{mN} = T_N \cdot \omega_{mN} = 93.24 \text{ Nm} \cdot 303.16 \frac{1}{s} = 28.27 \text{ kW}$$

$$P_{elN} = 3 \cdot U_{N_{Strang}} \cdot I_N \cdot \cos(\varphi_N) = 3 \cdot 220 \text{ V} \cdot 59.6 \text{ A} \cdot 0.874 = 34.38 \text{ kW}$$


$$n_N = \frac{P_{mN}}{P_{elN}} = \frac{28.27 \text{ kW}}{34.38 \text{ kW}} = 0.822 (82.2\%)$$

[4 Punkte]

3.8) Ermittlung des Eisenverlustwiderstands

$$P_0 = \frac{U_{N_{Strang}}^2}{R_{Fe}} \to R_{Fe} = \frac{U_{N_{Strang}}^2}{P_0} = \frac{(220 \text{ V})^2}{4356 \text{ W}} = 11,11 \,\Omega$$

[1 Punkt]

Aufgabe 4) Synchronmaschine

4.1) Theoriefrage 1:

Schenkelpolmaschine => besitzt ausgeprägte Rotorpole

Vollpolmaschine => Rotor rotationssymmetrisch mit eingefrästen Nuten für Erregerwicklung

[2 Punkte]

4.2) Theoriefrage 2:

Leistungsfaktor $\lambda = 1$

$$\cos(\vartheta) = \frac{U_S}{U_P}$$

[1 Punkt]

4.3) Nennleistungen:

$$P_{N} = T_{N} \cdot \omega_{N} = T_{N} \cdot 2\pi \cdot \frac{n_{N}}{60} = 101,86 \text{ kN} \cdot 2\pi \cdot \frac{1800}{60} \text{ s}^{-1} = \underline{-19,2 \text{ MW}}$$

$$S_{N} = \frac{P_{N}}{\cos(\varphi_{N})} = \frac{-19,2 \text{ MW}}{-0,92} = \underline{20,87 \text{ MVA}}$$

$$Q_{N} = \sqrt{S_{N}^{2} - P_{N}^{2}} = \underline{8,18 \text{ MVA}}$$

[2 Punkte]

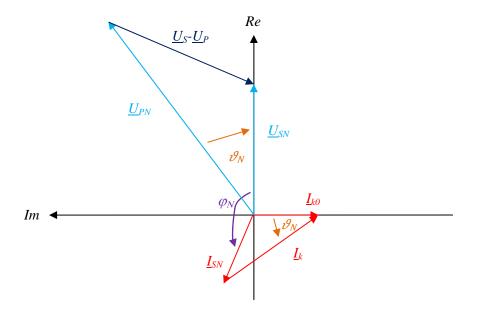
4.4) Kippdrehmoment und Netzfrequenz:

$$T_K = \frac{T_N}{\sin(\vartheta_N)} = \frac{-101,86 \text{ kNm}}{\sin(-36,5^\circ)} = \underline{\frac{171,24 \text{ kNm}}{60}}$$

$$f_N = p \cdot f_{mech} = p \cdot \frac{n_{mech}}{60} = 2 \cdot \frac{1800}{60} \text{ s}^{-1} = 2 \cdot 30 \text{ Hz} = \underline{\frac{60 \text{ Hz}}{60}}$$

$$p = \underline{2}$$

[2 Punkte]


4.5) Ströme und Zeigerdiagramm:

$$I_{SN} = \frac{P_N}{\sqrt{3} \cdot U_N \cdot \cos(\varphi_N)} = \frac{-19,2 \text{ MW}}{\sqrt{3} \cdot 6000 V \cdot (-0,92)} = \underline{2008,17 \text{ A}}$$

$$I_k = \frac{I_{SN} \cdot \cos(\varphi_N)}{\sin(\vartheta_N)} = \frac{2008,17 \text{ A} \cdot (-0,92)}{\sin(-36,5^\circ)} = \underline{3106 \text{ A}}$$

$$I_{k0} = I_{SN} \cdot \sin(\varphi_N) + I_k \cdot \cos(\vartheta_N) = 2008,17 \text{ A} \cdot \sin(-156,93^\circ) + 3106 \text{ A} \cdot \cos(-36,5^\circ) = \underline{1709,87 \text{ A}}$$

ZD:

[5 Punkte]

4.6) Polradspannung und Synchronreaktanz:

$$U_{PN} \approx 6400 V$$

$$\Delta U \approx 4200 V$$

$$X_S = \frac{\Delta U}{I_{SN}} = \frac{4200 \text{ V}}{2008,17 \text{ A}} = \frac{2,09 \Omega}{1}$$

[3 Punkte]

4.7) Lastwechsel (I_k und I_{k0} bleiben konstant, da U_s und U_p weiterhin gleich):

$$I_S = 0.8 \cdot I_{SN} = 1606.4 \text{ A}$$

$$I_S \cdot \cos(\varphi) = I_k \cdot \sin(\vartheta)$$

$$I_S \cdot sin(\varphi) = I_{k0} - I_k \cdot cos(\vartheta)$$

Quadrieren der Gleichungen und addieren ergibt:

$$I_S^2 = I_k^2 + I_{k0}^2 - 2I_{k0}I_k \cdot \cos(\theta)$$

$$\vartheta = \arccos\left(\frac{I_k^2 + I_{k0}^2 - I_S^2}{2I_{k0}I_k}\right) = \underline{-19,85^\circ}$$

$$\varphi = \arccos\left(\frac{I_k \cdot \sin\left(\vartheta\right)}{I_S}\right) = \underline{\frac{-131,0^{\circ}}{}}$$

$$P = \sqrt{3} \cdot 6 \text{ kV} \cdot 1606,4 \text{ A} \cdot \cos(-131^\circ) = \underline{-10,95 \text{ MW}}$$

$$S = \sqrt{3} \cdot 6 \text{ kV} \cdot 1606,4 \text{ A} = \underline{16,69 \text{ MVA}}$$

$$Q = \sqrt{S^2 - P^2} = \underline{12,59 \text{ MVA}}$$

[5 Punkte]

4.8) Drehmoment nach Lastwechsel:

$$T = \frac{P}{\omega_{mech}} = \frac{(-)10,95 \text{ MW}}{\frac{1800}{60}2\pi} = \underline{58,09 \text{ kNm}}$$

Bei einer Reduzierung des Laststroms um 20% stellt sich bei gleichbleibender Erregung ein neues Drehmoment ein, das nur noch 57% des Nenndrehmoments entspricht. Daher besteht zwischen der Laststromänderung und dem korrespondierenden Drehmoment kein linearer Zusammenhang.

[1 Punkt]